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Abstract

Optical markers’ centres’ calculation, indirectly inferred from fitted ellipses’ borders, is subject to uncertainties which arise from
both noise in data and systematic errors and whose nonlinear propagation has a strong impact on the attainable overall uncertainty
of industrial close-range photogrammetric systems. Based on both exhaustive experimental measurements and a revisit of pinhole
projection theory mapping the 2D detected ellipses’ borders onto 3D circular markers’ borders, the detection’s precision, shown to
be independent of systematic errors and markers’ size in the range of sizes 40-160 px, is characterized as a function of markers’ gray
intensity and orientation, both of which measurable during image processing. The proposed model has two or three experimental
coefficients which need to be customized according to the used camera-lens system and edge-detection algorithm.

1. Introduction

Manufacturing of large parts (Mendikute et al., 2017) and high-
precision robot guidance and calibration (Zakeri and Xie, 2024)
are examples of industrial applications which nowadays neces-
sitate the assistance of external high-accuracy metrological tools,
such as CMM’s (Lavecchia et al., 2018) or Laser-Trackers (Filion
et al., 2018), to fulfill the demanding accuracy requirements of
the market. Industrial close-range photogrammetry with optical
markers has the potential for competing against these at higher
versatility and significantly lower cost. Nevertheless, reaching
unquestionably an overall accuracy below 0.1 mm in the meter
range (Gharaaty et al., 2018), immediately appealing to this in-
dustrial context, is conditioned by the nonlinear propagation
of numerous uncertainty sources of both systematic (accuracy)
and random (precision) nature (Sims-Waterhouse et al., 2020).
Modeling them realistically as a function of scene’s variables,
what would allow their effective compensation and control, still
remains an open problem. On the one hand, precision, inher-
ent to processing of noisy image data, is typically modeled by
Gaussian distributions of assumed or barely estimated standard
deviations, what may indeed predict the total precision of the
photogrammetric system, but rather qualitatively than quantit-
atively. On the other hand, the dramatic impact that system-
atic errors have upon the quality of the photogrammetric meas-
urement is well known, but, in practice, due to their intricacy,
most of the time they are ignored, not fully compensated, or
incorrectly treated also as random variables of greater standard
deviation than the noise itself existing in data, what seriously
compromises the reliability of the photogrammetric tool. In ef-
fect, not correcting them one by one —trying to filter them by
redundancy of acquired data is useless (Luhmann, 2014a)— is
translated into photogrammetric measurements more discrep-
ant than expected. In this sense, the uncertainty of markers’
centres’ detection, which has the greatest effect on the photo-
grammetric system’s final behavior, has been a topic of active
research for more than five decades, because both systematic
and random error components coexist and, unfortunately, ac-
tions on mitigating one aggravate collaterally the other.
∗ Correspondence: osaezdeegilaz@ideko.es; Tel.: +34-943-748-000

One of the most common methods for detecting the centers of
circular optical markers relies on edge detection (Luhmann et
al., 2020, Chapter 5.4.2.5). The total uncertainty of this cal-
culation stems from the determination of edges by image pro-
cessing and the inference of centers from edges by solving the
perspective. On the one hand, the former uncertainty depends
primarily on the edge-detection algorithm employed to determ-
ine raw edges’ points (distorted), the camera’s intrinsic para-
meters’ calibration used to undistort them, and the criterion to
fit an ellipse to the undistorted edges’ points. Incidentally, the
raw edges’ points’ detection may be affected, in turn, by, among
others, the markers’ relative size, orientation and illumination
degree, as well camera’s sensor’s noise calibration. In this re-
gard, the precision of this calculation as a function of markers’
size has been studied in depth since early 80’s, from first theor-
etical models (Förstner, 1984) to subsequent validations by sim-
ulations (Trinder, 1989) and experiments (Shortis et al., 1995,
Dauvin et al., 2018), concluding that the bigger the marker,
the more precise its detection, independently of the noise level
present in images and the bit depth. On the other hand, the
uncertainty of inferring the markers’ centers is above all influ-
enced by eccentricity errors (systematic) —differences between
the projected centers and the centers of the corresponding fitted
ellipses caused by non-affine essence of the pinhole projection
(Wrobel, 2012)—, especially when seen markers’ sizes exceed
10 pixels (Luhmann et al., 2020, Chapter 3.6.1.2). Precisely, to
a tolerable detriment of precision, the compromise solution of
working with sizes of 5-10 px and neglecting eccentricity er-
rors has been widely used (Robson et al., 2018, Pottler et al.,
2005), even if, by doing so, achieving high accuracy may be
compromised (Luhmann, 2014b). Notwithstanding, this solu-
tion may not be viable in complex scenes where the working-
distance range is broad and/or planning a distribution of optical
markers of different size within the scene is not feasible, such as
in multi-camera applications and robot tracking. Furthermore,
shrinking the seen markers’ sizes reduces the amount of inform-
ation available for discerning the edges themselves and the 3D
geometrical properties that can be computed from them (Otepka
and Fraser, 2004), what does not reduce the net uncertainty of
the detection (Mordwinzew et al., 2015).
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The objective of this work is to model realistically the preci-
sion of marker’s centers’ detection for the particular case of op-
tical circular markers which are completely seen as eccentric
ellipses of size of several tens of pixels. The proposed model
is based on both exhaustive experimental measurements and a
revisit of the pinhole projection theory mapping the 2D detec-
ted borders of ellipses onto 3D circular markers’ borders. This
paper is organized as follows. In Section 2 the experimental
setup is described, the eccentricity-error correction is revisited,
and the image-processing algorithm is detailed. In Section 3
the statistical analysis of results is performed, and the model is
derived and discussed. Finally, in Appendix there are important
formulae concerning the pinhole projection and ellipse’s rep-
resentation used throughout the paper.

2. Materials and methods

2.1 Experimental set-up

Figure 1. Experimental set-up: granite table, camera-lens
system, light source, optical circular retroreflective markers

(hemispheres) and support structures.

Figure 1 shows the photogrammetric measuring set-up designed
to characterize the marker-detection precision. It consists of a
measuring device (camera-lens system plus illumination device)
and sixteen optical markers, which are all firmly attached onto
a granite table. On the one hand, the industrial camera used is a
Teledyne Dalsa Genie Nano M2590, which has a resolution of
2592 × 2048 pixels (5.3 MP) and a pixel size of 4.8 × 4.8 µm.
The lens is a Schneider Optics Kreuznach Cinegon, with a F-
number of 1.8 mm and a fixed focal length of 16 mm. The ring-
shape light source is a DCM ALB0810A-W00i/AN, which is
physically separated from the camera-lens system. On the other
hand, each marker is composed of a 1.5-inch-diameter steel
hemisphere with a 20-mm-diameter circular non-coded retrore-
flective optical target, a Hubbs Metrology Solutions SBR-1.500-
20MM, mounted on a 1.5-inch-diameter magnetic ball probe
seat monument, and a Metrologyworks BT-A-Y-BPSM-Y. These
present the advantages of being orientation-adjustable without
altering the location of their 3D centers, what is used as ground
truth for eccentricity error, and of being precisely measurable
by a Laser Tracker, in this paper concretely by an Hexagon
Leica Absolute Tracker AT960. The markers are randomly dis-
tributed onto the granite table, at distances between 335 and
1260 mm from the camera, such that, as shown in Fig. 2, the
image plane be as filled as possible despite the geometrical lim-
itations. They appear in images with sizes ranging from 40 to
160 pixels.

The goal of the experiment is to characterize the markers’ detec-
tion precision as a function of scene variables such as markers’
position and orientation and illumination degree. To create a

Figure 2. (a) The sixteen markers seen by the camera (image
plane) using an exposure time longer than in experiments. (b)

Example of image taken under experiment’s conditions.

database for this purpose, four layouts (a random reorientation
of markers plus a change in exposure time and/or light source’s
position) were photographed a statistically significant number
of times in order to compute the standard deviation of each
marker’s center’s detection. Relative motion among makers
and/or camera-lens system must be mitigated as much as pos-
sible, not to attribute deviations of camera’s extrinsic paramet-
ers and/or markers’ positions to the detection itself. In this
sense, first, a granite table was chosen because this material of-
fers a low thermal expansion and high rigidity. Additionally, it
was endowed with a pneumatic suspension in its base, working
as a low-pass filter with a cutoff frequency of 15 Hz, to dampen
eventual high-frequency vibrations caused by other machines
in the laboratory. Second, the experiment was conducted in a
dedicated laboratory with climate control, where the temperat-
ure is maintained around 20ºC ± 1ºC. Furthermore, the tem-
peratures of camera’s body, lens, illumination, support struc-
tures and table were monitored via thermocouples, as shown
in Fig. 3, and the internal camera’s sensor’s temperature via
software. A 2-hours-long camera warm-up procedure was car-
ried out prior to measurements (cf. Fig. 4a) to guarantee that
all experiments were done in the same steady-state temperature
conditions (cf. Fig. 4b), avoiding any measurement disturb-
ance related to dilation (Dauvin et al., 2018). Finally, the data
capture was performed at the highest frequency allowed by the
camera in experiment’s conditions (40 Hz) over a short period
of time (90 s). Detection’s standard deviations were thus calcu-
lated over 3600 photographs.

2.2 Mapping 2D ellipses’ borders onto 3D circular mark-
ers

Let the axes u, v and w be the camera’s reference frame, such
that axis w be normal to the image plane, u = v = 0 be at
the center of the image, and the camera be at w = 0 follow-
ing the pinhole model. In this frame, as illustrated in Fig. 5, a
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Figure 3. Camera sensor temperature monitoring

Figure 4. Monitoring: temperatures by thermocouples in colors
and internal camera’s sensor’s temperature by software in black.

(a) Temperatures as a function of time during warm-up. (b)
Temperatures over time of the four experiments done.

3D circular marker can be unambiguously defined by its center
(uc, vc, wc)

T , its radius r, and a normal unit vector to its plane.
For instance, without loss of generality, we shall define this unit
normal vector as n̂⊥ = (cos θ cosϕ, cos θ sinϕ, sin θ)T , where
the angles θ and ϕ represent the latitude and the longitude, re-
spectively, with θ chosen such that the w-component of n̂⊥ be
non negative.

Figure 5. Pinhole camera-model marker-projection
representation: the border of a 3D circular marker is seen as a

2D ellipse on image plane.

The following unit vector is perpendicular to n̂⊥ and hence lies
on the plane of the circle:

n̂∥ = (sin θ, 0,− cos θ cosϕ)T /
√

1− cos2 θ sin2 ϕ. (1)

Points at the border of the 3D circular marker, (u, v, w)T , can
be calculated by rotating rn̂∥ around the axis defined by n̂⊥
through all angles α:

(u, v, w)T = (uc, vc, wc)
T + ¯̄Rαrn̂∥, (2)

where ¯̄Rα is the necessary rotation matrix, which can be com-
puted via Rodrigues’ rotation formula:

¯̄Rα = ¯̄I + sinα ¯̄S + (1− cosα) ¯̄S2, (3)

¯̄S =

 0 − sin θ cos θ sinϕ
sin θ 0 − cos θ cosϕ

− cos θ sinϕ cos θ cosϕ 0

 . (4)

Figure 6. Two equivalent parametric descriptions of the 2D
ellipse. (a) 2D point of view: canonical parameters. (b) 3D point

of view: Kager’s parameters.

Under the pinhole model and assuming no distortion caused by
the lens, the 3D border in Eq. (2) is projected on the image
plane as the 2D border (x, y)T = (u/w, v/w)T , working with
dimensionless pixel coordinates. This 2D border is an ellipse
and, after some manipulations, it satisfies the following quad-
ratic equation:

a+ bx+ cx2 + dxy + ey + fy2 = 0, (5)

where the expressions for these six coefficients are given in Ap-
pendix. This 2D ellipse has five degrees of freedom, since its
equation is homogeneous. From 2D point of view, it can be
described by the canonical parameters (cf. Fig. 6a): its cen-
ter (x00, y00)

T , its radii rx and ry , and its rotation angle β.
Alternatively, from 3D point of view, it can be defined by the
following five parameters related to the above-mentioned ones
of the 3D circular marker (cf. Fig. 6b): its projected center
(x0, y0)

T = (uc/wc, vc/wc)
T , its orientation angles θ and ϕ,

and its relative radius r̃ = r/wc.

The difference between (x0, y0)
T and (x00, y00)

T is known as
eccentricity error (Luhmann, 2014b). Knowing that x00 =
(2fb − de)/(d2 − 4cf) and y00 = (2ce − db)/(d2 − 4cf)
and taking account of the expression for the quadratic coeffi-
cients given in Appendix, after some manipulations, this error
is calculated:

x0 − x00 = −r̃2 cos θ(x00 cos θ + sin θ cosϕ), (6)

y0 − y00 = −r̃2 cos θ(y00 cos θ + sin θ sinϕ), (7)

which is zero only if θ = π/2, i.e., if the plane of the 3D circu-
lar marker is parallel to the image plane. In the same way, the
ellipse’s radii and the rotation angle could be computed, as ex-
plained in Appendix. Interestingly, the product of radii verifies:

r2xr
2
y

r̃4
=

(sin θ + x0 cos θ cosϕ+ y0 cos θ sinϕ)
2

(1− r̃2 cos2 θ)3
, (8)

which means that, when θ = π/2, the 3D marker would be seen
as a circle of radius r̃, as illustrated in Fig. 6b.
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Due to the loss of information caused by the pinhole projection,
the map of the 2D ellipse’s border onto the 3D circular marker’s
border is not bijective. Indeed, Helmut Kager demonstrated that
for each description of the 2D elliptic border there are two dis-
tinct possible descriptions of the 3D marker (Kager, 1981). We
shall follow his work, based on relating invariant values of the
ellipse (obtained from eigen-decomposition) to a unitary cone,
to compute the two distinct possible values for x0, y0, θ and ϕ.
Incidentally, the calculation of the fifth parameter r̃ is missing
in his work. However, once the other four are known, it can be
easily calculated using two coefficients of the ellipse’s equation.
For instance:

r̃ =

√
F2c− C2f

C1f − F1c
, (9)

where the expressions for C1, C2, F1 and F2 are detailed in
Appendix.

Figure 7. Discrepancy among four random orientations
superimposed of each hemisphere. (a,c) Discrepancy among

ellipses’ centers in pixels and mm, respectively. (b,d)
Discrepancy among Kager’s selected centers in pixels and mm,

respectively. Discrepancy in mm reduces by an order of
magnitude when correcting the eccentricity error.

Selecting the correct solution from the two Kager’s candidates
calculated from the 2D detected border, which is subject to un-
certainty, is a complex task (Ahn and Kotowski, 1997). In this
paper, the choice is made by the criterion of lowest discrepancy
among multiple images, taken with fixed extrinsic parameters,
of the hemisphere at different orientations, since its 3D center
is invariant under rotation by construction. The effectiveness of
this criterion to correct the eccentricity error in this experiment
is illustrated by Fig. 7, which superimposes four random layouts
measured consecutively (cf. Fig. 2). Effectively, in pixels, the
discrepancy in Kager’s centers, maxi,j ||(x0, y0)i − (x0, y0)j ||
with i and j referring to layouts (Fig. 7a), is smaller than in
ellipses’ centers, maxi,j ||(x00, y00)i − (x00, y00)j || (Fig. 7b).
This reduction is more remarkable, of an order of magnitude,
when translating them into mm (cf. Fig. 7c and 7d).

2.3 Edge-Detection algorithm

Image processing for detecting markers’ edges’ points is carried
out in two stages. First, Canny edge-detector algorithm is ap-
plied to naı̈vely detect candidates for markers’ contours (Canny,
1986). It is used both as a filter, discarding non-elliptical can-
didates (false positives), and as seed for the subsequent stage.

Second, a subpixel-level correction is applied to the retained
detected borders’ points. Several subpixel-level algorithms ex-
ist in the bibliography, such as Zernike Moments (Ghosal and
Mehrotra, 1993), Partial Area Effect (Trujillo-Pino et al., 2013)
and Gaussian Fitting (Wang et al., 2022). Nevertheless, in this
paper, since the focus is solely on precision, a simpler method
based on image interpolation is employed because it is algorith-
mically more robust, with no adjustable parameter but an up-
scaling factor, even if it is computationally less efficient. For
each valid marker’s contour an axis-aligned crop that fully con-
tains the ellipse is made and enlarged using linear interpolation.
In this research an up-scaling factor of 64 is used since con-
vergence tests showed stabilization beyond 32. In the resulting
enlarged image, Otsu binarization is performed (Otsu, 1979),
followed by contour detection (Suzuki and Abe, 1985). Finally,
the detected contour is transformed back to the original image’s
position and size. Next, the subpixel-level markers’ contours
obtained from this image-interpolation method are undistorted
thanks to Brown model (Brown, 1971). The corresponding in-
trinsic parameters were calibrated at the beginning of the exper-
iments following the procedure in (Leizea et al., 2023). Finally,
the elliptical equation given by Eq. (5) is fitted to these undistor-
ted edges’s points (Fitzgibbon and Fisher, 1995). Markers’ cen-
ters are inferred from the resulting ellipses as above explained
in Sec. 2.2.

3. Experimental results and discussion

3.1 Experimental results

A comprehensive database containing 64 instances of marker
detection (4 layouts of 16 markers each) was created from ex-
periments. There, the precision of each detection, calculated as
the standard deviations, over 3600 images, of ellipse’s degrees
of freedom (in particular, σx00 and σy00 from the canonical 2D-
point-of-view description, and σx0 , σy0 , σθ , σϕ and σr̃ from the
Kager’s 3D-point-of-view description), is related to all the vari-
ables, directly measurable on the image during its processing,
related to marker’s size and orientation (given by ellipse’s para-
meter sets: x00, y00, rx, ry, β and x0, y0, θ, ϕ, r̃) and marker’s
degree of illumination. The latter is directly calculated as the
average gray intensity of the pixels inside detected contours,
Igray, expressed in 8-bit scale from 0 to 255, instead of as a color
contrast because the background color distribution is quite uni-
form and of intensity below 5 (cf. Fig. 2b). In the subsequent
data analyses outliers are not systematically filtered to avoid
data overfitting, prioritizing the robustness of the model (i.e., as
less parameters as possible).

Two pairwise correlation-coefficient analyses were performed
in the database. Firstly, the Pearson’s correlation-coefficient
analysis (Pearson, 1895), which highlights linear relationships
between variables. Secondly, the Spearman’s rank-correlation-
coefficient analysis (Spearman, 1904), which, instead, accen-
tuates monotonic relationships. These results are merged into
Fig. 8.

On the one hand, Pearson’s analysis reveals strong linear cor-
relations among the standard deviations of centers’ coordinates,
namely, σx00 and σx0 , and σy00 and σy0 . In effect, as shown in
Fig. 9 for x dimension, the precision of calculating a marker’s
center is independent of the inference criterion from detected
borders (ellipse’s or Kager’s center):

σx00 ≈ σx0 , (10)
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Figure 8. Summary of correlation-coefficient analyses in
database.

Figure 9. Correlation between σx00 and σx0 .

σy00 ≈ σy0 . (11)

Figure 10. Correlation between σx0 and σy0 .

Figure 10 discloses an anisotropy between image plane’s x and
y axes:

σx0 ̸= σy0 , (12)

even if the calibration of camera-lens system’s intrinsic para-
meters performed prior to experiments yielded a square pixel
size. It is greater for more eccentric orientations and ultimately
explained by the non-affinity of the pinhole projection.

On the other hand, Spearman’s analysis shows strong correla-
tions of the standard deviations of the five Kager’s degrees of
freedom only with the illumination degree (gray intensity), but
not with seen markers’ size and orientation. In particular, the
strongest correlation concerns the standard deviation of the re-
lative radius, plotted in Fig. 11. It can be modelled by the fol-

Figure 11. Correlation between Igray and σr̃ .

lowing power law on the gray intensity:

σmodel
r̃ = k0I

k1
gray, (13)

where k0 = 0.0629 px and k1 = −0.5567 are two experimental
coefficients. These may depend on camera’s acquisition para-
meters’ calibration (how pixels’ color is resolved according to
the illumination degree) and on edge-detection algorithm (how
the location of ellipses’ border is determined according to pixel-
color distribution).

3.2 Modelling detection’s precision

Pearson’s and Spearman’s analyses show strong correlations of
the standard deviations of center’s coordinates, σx0 and σy0 ,
with the standard deviation of the relative radius, σr̃ , and the
illumination degree, Igray. The latter is conjectured here to be a
consequence of the former, and the following Ansatz for mark-
ers’ centers’ detection precision is hence proposed:

σmodel
x00,y00 = σmodel

x0,y0 = Cx,y σ
model
r̃ , (14)

where the coefficients Cx and Cy , which may be different from
each other to account for the projection anisotropy, are cal-
culated by fitting the Ansatz to experimental results with ad-
ditional assumptions. Interestingly, they are expected to be
greater than 1 only if a true subpixel-level correction is ap-
plied to edges, where distances like the relative radius r̃ can
be determined from detected points with a better precision than
single points like (x0, y0).

Figure 12. Experimental results vs model 1.

The first assumption that can be done is to make the coefficients
Cx and Cy in Ansatz (14) be equal and constant. The simplest
model is so obtained, which is compared against experimental
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results in Fig. 12, concretely with Cx = Cy =
√
2 in round

numbers. It is numerically robust but only gives a rough ap-
proximation of the detection precision (error up to ±38% for
85% of data), entirely ignoring the anisotropy.

Figure 13. Scale deformation caused by pinhole projection:
AABB bounding box of the ellipse (green) vs AABB bounding
box of circle of radius r̃ which would be projection of the 3D

marker if adjusted parallel to the image plane (blue).

The detection’s anisotropy observed experimentally stems from
the unequal scale deformation caused by pinhole projection along
x and y axes. In this paper it is proposed to calculate geomet-
rically the deformation scale factors by comparing, along each
axis, the size of the detected elliptical marker’s border with the
size of the non-eccentric projection of such marker, i.e., a circle
of radius r̃ centerd at (x0, y0), as the 3D marker would be seen
if it were virtually reoriented parallel to image plane without
modifying its 3D center. These sizes can be measured, as de-
picted in Fig. 13, from axis-aligned bounding boxes (AABB),
because they are precisely tangential to borders along the axes
in question (cf. Appendix). The marker’s border’s projection’s
AABB would go so from a square of side 2r̃ to a rectangle of
size LBBOX

x ×LBBOX
y under the action of pinhole projection. The

ratios between their sides can thus be understood as a reliable
average estimation of the sought deformation scale factors (the
square root is added because the subject of study are standard
deviations instead of variances):

κx,y =

√
LBBOX

x,y

r̃
, (15)

which, incidentally, are equal to
√
2 when the marker is parallel

to image plane.

Figure 14. Fitting the degree of freedom k2 of model 3.

To model the detection’s anisotropy, the assumption that the
coefficients Cx and Cy in Ansatz (14) are related the corres-
ponding deformation scale factors given by Eq. (15) is made.

Figure 15. σx0 : models vs experimental data.

Figure 16. σy0 : models vs experimental data.

The simplest choice in this sense is Cx,y = κx,y . This second
model, nevertheless, is not advantageous over the first one, yield-
ing similar error results at a higher computational cost. This is
because in the computation of the deformation scale factors the
uncertainty of the edge-detection algorithm, which depends on
the illumination degree, should be considered. An exponential
correction on the illumination degree is introduced in the third
proposed model:

Cx,y = κIgray/k2
x,y , (16)

where k2 = 112.24 after fitting to experimental data (cf. Fig. 14).
Interestingly, for middle gray intensities, around k2, the expo-
nent becomes unitary and the previous models are recovered.
With a third parameter, this model achieves a better goodness of
fit, with an error up to ±25% for 85% of data. Figures 15 and 16
compare it with the first one for σx0 and σy0 , respectively.

3.3 Discussion

The experiment has shown that, for the chosen industrial camera-
lens system and edge-detection algorithm, the detection’s pre-
cision is of order of 0.01 px, a value in line with previous pre-
dictions (Trinder, 1989, Dauvin et al., 2018). This random error
component of the uncertainty is independent of systematic ones
such as eccentricity errors, distortion-correction errors (calibra-
tion of intrinsic parameters) and edge-detection errors (image-
processing algorithm), but in this paper only the independence
of the first one has been empirically demonstrated. Unlike in
previous research works, the primary variable to model the pre-
cision of detecting a marker is its illumination degree, quantifi-
able as its averaged gray intensity during image processing. The
better illuminated, the more precise, almost regardless its relat-
ive size and orientation, at least for the studied range of sizes
(40 to 160 px). This does not necessarily disagree with previ-
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ous models, dedicated to smaller sizes, where the improvement
in precision with the size predicted there tended to stagnate bey-
ond 16 px notably for gray-color depths above 4 bits (Förstner,
1984, Trinder, 1989). Therefore, the model 1 proposed here,
a power law on it with only two experimental coefficients de-
pending on the camera-lens system and the edge-detection al-
gorithm, seems, in its current form, to be robust and realistic
enough to already predict, quantitatively rather than qualitat-
ively, the output precision of photogrammetric systems using
circular optical markers, for instance, via analytical uncertainty-
propagation models or Monte-Carlo simulations, especially in
industrial applications where illumination is not guaranteed to
be homogeneous, of course, provided that systematic errors be
under control. Nevertheless, markers’ orientation does also have
an impact on the precision (projection anisotropy), minor com-
pared to illumination’s, but not completely negligible. In this
sense, model 3, which accounts for it, seems to improve the
results of model 1 in relative terms, but not in a conclusive way.

4. Conclusions

The uncertainty of industrial close-range photogrammetric meas-
urements crucially depends upon the uncertainty of optical mark-
ers’ centers’ indirect detection. Their inference from detected
markers’ edges is subject to errors with systematic (accuracy)
and random (precision) components. This work presents a com-
prehensive model of the latter component which is input only by
magnitudes measurable during image processing. It is shown
that, for marker sizes of several tens of pixels, the detection
precision is independent of systematic errors and hinges mainly
on markers’ gray intensity (accounting for illumination degree)
and, to some extent, also on markers’ orientation (taking ac-
count of anisotropy caused by pinhole projection), but not on
their size. The robustness of the model has been prioritized and
versions of it with only two and three experimental parameters
are presented. It is expected that these adjustable parameters
will be able to be extrapolated to other industrial camera-lens
systems and edge-detection algorithms, but further research is
needed in this regard. The presented precision model can be dir-
ectly used as input for either analytical uncertainty-propagation
models or Monte-Carlo calculations an paves the way for per-
forming more realistic simulations of current industrial photo-
grammetric systems.

Appendix

The 3D border of Eq. (2) projected onto the image plane can be
written as:

x =
x0 + r̃(au cosα+ bu sinα)/

√
1− cos2 θ sin2 ϕ

1 + r̃(aw cosα+ bw sinα)/
√

1− cos2 θ sin2 ϕ
, (17)

y =
y0 + r̃(bv sinα)/

√
1− cos2 θ sin2 ϕ

1 + r̃(aw cosα+ bw sinα)/
√

1− cos2 θ sin2 ϕ
, (18)

where:
au = sin θ, (19)

bu = − cos2 θ cosϕ sinϕ, (20)

bv = cos2 θ cos2 ϕ+ sin2 θ, (21)

aw = − cos θ cosϕ, (22)

bw = − cos θ sin θ sinϕ. (23)

Equations (17) and (18) satisfy the quadratic form of Eq. (5),
once the parameter α is eliminated through trigonometric ma-
nipulations. The six coefficients of the quadratic form are all of
the form q = Q0 + r̃−2Q2 = Q0 + 2r̃−2Q̃2(1− cos2 θ sin2 ϕ)
for q = a, b, c, d, e, f :

A1 = −a2
ub

2
v, (24)

Ã2 =
b2v
2
x2
0 − bubvx0y0 +

c2u
2
y2
0 , (25)

B1 = 2auawb
2
v, (26)

B̃2 = bvbwx0y0 − (auaw + bubw)y
2
0 − b2vx0 + bubvy0, (27)

C1 = −a2
wb

2
v, (28)

C̃2 =
c2w
2
y2
0 − bvbwy0 +

b2v
2
, (29)

D1 = 2a2
wbubv − 2auawbvbw, (30)

D̃2 = −c2wx0y0 + bvbwx0 + (auaw + bubw)y0 − bubv, (31)

E1 = −2auawbubv + 2a2
ubvbw, (32)

Ẽ2 = −bvbwx
2
0+(auaw+ bubw)x0y0+ bubvx0− c2uy0, (33)

F1 = −a2
wb

2
u + 2auawbubw − a2

ub
2
w, (34)

F̃2 =
c2w
2
x2
0 − (auaw + bubw)x0 +

c2u
2
, (35)

where c2u = a2
u + b2u and c2w = a2

w + b2w.

The quadratic form can be described by five canonical paramet-
ers, as explained in Section 2.2: its center (x00, y00)

T , its radii
rx and ry , and its rotation angle β. The expression for the el-
lipse’s center has already been given in main text, as well as its
relationship with the projected center (cf. Eqs. (6) and (7)). The
radii value:

rx,y = −
√

2∆(ce2 + fb2 − dbe+ (d2 − 4cf)a)

d2 − 4cf
, (36)

with ∆ = c + f ±
√

(c− f)2 + d2. Apart from Eq. (8), there
is a relationship for the sum of their squares:

r2x+r2y =
r̃2

(1− r̃2 cos2 θ)2
[cos2 θ(1−r̃2+x2

0+y2
0)+Φ], (37)

with Φ = 2 sin θ(sin θ + x0 cos θ cosϕ+ y0 cos θ sinϕ).

Finally, by deriving the parametric forms of canonical ellipse
equation, namely, x = x00 + rx cosβ cosα − ry sinβ sinα
and y = y00 + rx sinβ cosα + ry cosβ sinα, as a function
of the angle α to find the angles αx and αy that zero them,
after some manipulations the following expressions for the axis-
aligned bounding box’s sizes for Eq. (15) are obtained:

LBBOX
x = 2 |rx cosβ cosαx − ry sinβ sinαx| , (38)

LBBOX
y = 2 |rx sinβ cosαy + ry cosβ sinαy| , (39)

where αx,y = arctan (∓ (rx/ry)
±1 tanβ).
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telsen, Leizea, I., 2017. Self-Calibrated In-Process photogram-
metry for large raw part measurement and alignment before ma-
chining. Sensors, 17.

Mordwinzew, W., Tietz, B., Boochs, F., Paulus, D., 2015. Rel-
evance of ellipse eccentricity for camera calibration. Proceed-
ings of Society of Photo-Optical Instrumentation Engineers,
9528, 116-125.

Otepka, J., Fraser, C., 2004. Accuracy enhancement of vision
metrology through automatic target plane determination. Pro-
ceedings of the ISPRS congress, Istanbul, Turkey, 12–23 July
2004, vol. XXXV, part B, ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sci-
ences, 873–879.

Otsu, N., 1979. A Threshold Selection Method from Gray-
Level Histograms. IEEE Transactions on Systems, Man, and
Cybernetics, 9(1), 62-66.

Pearson, K., 1895. Notes on regression and inheritance in the
case of two parents. Proceedings of the Royal Society of Lon-
don, 58, 240–242.
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