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Abstract 
 
Knee arthroplasty benefits significantly from computer-assisted navigation, which improves the accuracy of prosthesis placement. 
However, current methods require invasive optical locators to track the position of the knee, which carries risks such as infection and 
prolonged healing times. To address these limitations, this work uses markerless trinocular SLAM to achieve accurate 3D 
reconstruction of the knee during surgery. The approach integrates SuperGlue for robust feature matching and incorporates 
segmentation to mask the knee, improving reconstruction accuracy despite challenges such as low-texture surfaces, reflections and 
spotlight illumination. The accuracy of the handheld trinocular camera system is evaluated under dynamic conditions, simulating 
camera movement during surgery to ensure accurate reconstruction during real-time surgery. In addition, a robot-guided dataset will 
be used to assess the repeatability and robustness of the SLAM approach. This research focuses on positional accuracy in motion and 
aims to advance real-time, non-invasive navigation solutions for knee arthroplasty, contributing to safer and more efficient surgical 
outcomes. 
 

1. Introduction 

In knee arthroplasty, computer-assisted navigation is an 
important method for increasing the precision of the placement 
of the artificial knee (Moret and Hirschmann, 2021). 
Approximately 29% of operations in knee arthroplasty are 
already supported by assistive, partially navigated systems (Rath 
et al. 2011). In general, the navigation procedure is used to 
support the surgeon in placing a saw block, as guide for the 
subsequent bone cut. However, currently it is necessary to drill 
optical locators into the bone in order to track the knee during the 
operation (Figure 1.). The locators allow the knee to be 
determined in relation to the patient's leg axis, which is defined 
by the center of the hip and ankle joint. The disadvantage of this 
method is that the drilled holes increase the risk of infection and 
also prolong the healing process of the patient (Stübig et al. 
2020). Hence avoiding the drilling procedure is the main 
motivation for the presented research. 
 

A markerless navigation procedure could allow to transfer the 
pre-planned position of the sawblock into the surgery area 
without the need for drilling into the patient’s bone. To achieve 
these two main objectives, need to be accomplished. First the 
localisation of the knee and leg axis, and secondly the 
visualisation of the cut position on the leg. While the latter is to 
be achieved using augmented reality, the localisation procedure 
can be performed using photogrammetric methods. A proof-of-
concept study by Hu et al. (2021) suggests that marker-free knee 
surgery using photogrammetric techniques offers promising 
results. However, conventional SLAM (simultaneous 
localisation and mapping) methods reach their limits in surgical 
applications as they do not sufficiently meet the specific 
requirements, as shown by Kahmen et al. (2020). There, a 
trinocular camera system with visual odometry is proposed to 
reconstruct the knee surface. The potential is shown that the knee 
can be successfully reconstructed with a stable camera system.  
Our aim is that during surgery, the visible area of the femur and 
tibia is digitized using photogrammetry. Then, this resulting 
model is aligned with pre-operative CT scans to establish the legs 

Figure 1. Current stages of navigated knee surgery 
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axis. After successfully aligning pre-operative CT with planned 
saw position, it is possible to transfer the saw position onto the 
bone. Therefore, the visible areas of the bones should be 
reconstructed as completely as possible, as this leads to better 
orientation of the knee itself. This presents challenges as the 
bones have less texture and the wet surface causes reflections, 
which are intensified by the punctual illumination. Additional 
due to blood or tissue covering the surface. Another challenge is 
presented in the movement of the knee: This causes femur and 
tibia to move simultaneously and independently.   
 
The basic idea of the proposed markerless trinocular SLAM 
system for knee arthroplasty is to first acquire detailed 3D images 
of the knee joint in a static state. In this first step, the surface of 
the knee is captured from different angles to create an accurate 
model. Once the model has been created, the system could then 
move into the active phase of the surgery, using it to navigate the 
procedure in real time. The reconstructed knee model would act 
as a reference point, allowing the surgeon to track and control 
movements with high precision. This approach would enable 
non-invasive navigation during knee arthroplasty without relying 
on physical markers. 
 
We aim to realise a marker free navigation by generating a highly 
accurate 3D reconstructions of the knee surface in real time - 
despite the low texture and interfering influences such as 
reflections, shading or occlusions.  
 

2. Trinocular SLAM based on SuperGlue 

The challenges listed lead to the implementation of a trinocular 
SLAM based approach based on the work of COLMAP SLAM 
(Morelli et al., 2023). To orient the image sequence in trinocular 
SLAM we cannot use the entire image content. This is because 
the knee is moving during surgery and therefore the configuration 
of femur and tibia and the surrounding tissue is changing. Neiss-
Theuerkauff et al. (2024) presents an AI-based segmentation for 
femur and tibia which we integrate to mask the respective bones 
in the images for further processing. On these masked images we 
used the AI-based feature matching algorithm SuperGlue (Sarlin 
et al. 2020). Based on the matched features a precise relative 
orientation can be calculated, which is crucial for the knee 
reconstruction (Figure 2.). The movement of the trinocular 
camera system multiple allows us to acquire images in sequence 

during multiple epochs from different points of view. Each image 
triplet is matched to the triplet of the two previous epochs of the 
sequence. We use COLMAP to align the images in a bundle 
during acquisition (Schönberger and Frahm, 2016). COLMAP 
calculates the bundle adjustment without considering a scale, 
therefore the pre-calibrated camera system defines the scale of 
the 3D reconstruction. 
 
2.1 Handheld trinocular camera system 

There are many challenges to achieve a markerless 3D 
reconstruction of the knee. Kahmen et al. (2020) designed a 
trinocular camera system and discussed the advantages in 
medical surgery. Due to the limited space in the surgery room, a 
small handheld measurement system is required. In our 
application we use a similar trinocular system as a handheld 
device (Figure 3). The trinocular system consists of two 
monochromatic cameras and one RGB camera, as developed by 
Kahmen et al. (2020). The three cameras are arranged in an 
equilateral triangle with a side length of 5 cm and tilted inwards 
rotated by about 2 degrees. This results in large image overlay at 
a distance of approximately 60 cm. The camera system has a 
handle at the bottom for free movement of the device. 
 

 
 

Figure 3. Setup of the trinocular camera (left, (Kahmen et al. 
2020)) and when aligned with an anatomical knee 
model (right, (Schierbaum et al. 2024)) 

 
Before the camera system is used, it is calibrated using a test 3D 
field. The relative orientation and the interior parameters are 
determined. For this propose, approximate values are first 
determined using AICON 3D Studio (Version 12.0 by AICON 
3D Systems, Germany). AxOri (by AXIOS 3D Services, 

Figure 2. Process of the trinocular SLAM with COLMAP and SuperGlue (Schierbaum et al., 2024) 
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Germany) is then used to calculate a bundle adjustment with 
fixed relative orientation constraint in the camera system. We 
place the coordinate origin in the projection centre of the first 
camera. The interior orientation parameters must be transformed 
from metric to pixel-based due to COLMAP requirements. The 
conversion equations are given in Luhmann (2023). 
 
2.2 Image pre-processing 

The first step after image acquisition is to pre-process the images. 
To orient the image sequence in trinocular SLAM we cannot use 
the entire image content because the knee is moving during 
surgery. The dynamic scene challenges the SLAM. Therefore, a 
segmentation is used to mask the regions where the bones are 
located (Neiss-Theuerkauff et al. 2024). The masking is also used 
to filter out the images where no bones are visible. A second filter 
method is the keyframe selection by Morelli et al. (2023), which 
checks the image content for innovation. In our case we adapt 
their method to perform the keyframe selection on images of the 
first camera. We use feature matching, based on SuperGlue 
(Sarlin et al. 2020), to control the overlapping regions between 
successive images in the recorded sequence. The keyframe is 
accepted for the following workflow if the matching has at least 
20 matches. 
 
2.3 Trajectory 

To reconstruct an accurate 3D model of the knee surface during 
surgery we used a feature-based method to predict the movement 
of our handheld camera system. This involves orienting the 
images of the trinocular system in a local coordinate system. 
 
2.3.1 Image pairs 
Before starting the feature matching between two images of our 
sequences we have to define the image pairs. The selection of the 
image pairs depends on the one hand on the highest possible 
accuracy of the image orientation. On the other hand, the aim is 
to calculate the 3D model in real time. From these two points of 
view, we investigate different methods to generate the image 
pairs. For each new image triplet, we obtain new image pairs. The 
pairs can be ordered in three groups and are shown in Figure 4.  
 
Pairs of images between: 

1. same epoch (black arrows) 
2. current epoch and previous epoch from the same 

camera (green arrows)  
3. current epoch and previous epoch from the same 

camera (blue arrows)  
 

 
 

Figure 4. Schematic representation of image pairs between two 
consecutive image epochs  

 
We build our investigation methods from these three groups. The 
first method includes all image pairs of the two first groups (black 
and green arrows). The second method includes all image pairs 
of the first and the third group (black and blue arrows). The third 
method includes all groups (black, green and blue arrows). In 
addition, in all methods we take into account the image pairs that 
we can generate with the images of the second preceding epoch 

(i-2). All different methods are listed in Table 1. The last column 
shows the new image pairs that will be added in the next epoch i. 
As the image pairs of first group already exist, they are not 
determined again (dotted black arrows in Figure 4.).  
 

Meth 
od 

Group Epoch Pairs / 
Epoch 1 2 3 i - 1 i - 2 

1 ● ●  ● ● 9 
2 ●  ● ● ● 15 
3 ● ● ● ● ● 21 

 
Table 1. Different methods to generate image pairs in the 

trinocular system 
 
2.3.2 Image matching 
The formed image pairs are the basis for following feature-based 
image matching. In our workflow we use a two-step method 
consisting of SuperPoint (DeTone et al. 2018) and SuperGlue 
(Sarlin et al., 2020). SuperPoint is a CNN-based feature detector, 
which recognises and describes features in an end-to-end 
approach. The architecture uses synthetically generated point 
labels for training, making it robust to various transformations 
without manually labelled data. It combines feature detection and 
description in one network, enabling close alignment between the 
two, improving recognition and stability. SuperPoint creates an 
even distribution of points in the image, which supports a more 
informative and balanced feature representation (DeTone et al. 
2018). In our application, the search area is limited by features 
due to masking. Therefore, the area is small in which many high-
quality features can be found and the bones have homogeneous 
surfaces.  This results in a non-maximum-suppression value of 4 
pixel and a keypoint threshold of 0.001. The two values regulate 
the quality and quantity of the features. 
 
After detection, the graph neural network SuperGlue match the 
features between the defined images pairs. It models the features 
of both images as graphs and uses self- and cross-attention 
mechanisms to incorporate contextual information and 
relationships between features. The features are iteratively 
enriched in a common feature space, which enables robust and 
consistent matches even with significant perspective and 
illumination differences.  
 
2.3.3 Motion estimation 
The matches and their corresponding features, as well as their 
descriptors, are transferred to the COLMAP database. We also 
load the intrinsic and relative orientation of our trinocular camera 
system in COLMAP. In a first batch of images the COLMAP 
mapper starts with an initial pose estimation and the 3D points 
between the first image pair. New images in this batch are added 
to be registered in the COLMAP model. From the registered 
images, features can be added to the sparse point cloud by 
triangulation. The bundle adjustment iteratively optimises the 
reprojection error, increasing the accuracy of the camera position 
and orientation, as well as the sparse point cloud (Schönberger 
and Frahm 2016). 
  
The bundle adjustment does not consider the relative orientation 
of the camera system, which results in a scale-free reconstruction. 
Therefore, we scale the reconstruction with the first image triplet. 
To reduce the uncertainty of the image triplet a bundle adjustment 
with stable camera system is performed. 
 
2.4 3D reconstruction 

For the 3D reconstruction using Multi-View Stereo (MVS), 
source images are required for which depth and normal maps are 
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created. For each of these source images, reference images are 
then searched which fulfil two prerequisites. Therefore, the 
trajectory and the correspondence sparse point cloud form the 
basis for the 3d reconstruction of the bones. These are used to 
estimate the overlapping images. There must also be an angle of 
between 5° and 20° between the source and reference images. If 
the angle is too small, the geometry is not sufficient for an 
appropriate depth estimate. If the angle is too large, the 
overlapping image content becomes too small, which leads to a 
poor 3D reconstruction (Schönberger et al. 2016). 
 
In our workflow, we defined at least six source image triplets. 
These image triples show the masked knee from different 
directions to ensure a complete reconstruction. Once the 
reference images have been defined for each source image, the 
PatchMatch Stereo (Zheng et al. 2014) process begins to compute 
dense depth maps. Each pixel in the source images goes through 
several steps to obtain an accurate depth estimate. First, each 
pixel is assigned a random depth hypothesis, which is then 
optimised across neighbouring pixels. By propagating and 
comparing the depth values between neighbouring pixels, better 
estimates can be found. The depth values are then randomly 
varied to find locally optimal depth solutions. This process is 
performed iteratively until stable and consistent depth maps are 
computed for each source image (Schönberger et al. 2016). 
 
The depth maps are then merged. As several depth maps from 
different reference views were calculated for each source image, 
these maps are now combined into a dense 3D point cloud. 
Firstly, unreliable depth values are filtered in order to retain only 
the consistent and stable depth values. This adjusted depth 
information is then localised by triangulation in a common 3D 
scene. Care is taken to ensure that each point has only one unique 
3D position, even if it is visible in multiple depth maps. This 
fusion produces a dense point cloud of the knee (Schönberger et 
al. 2016). 
 

3. Experimental setup 

An experimental setup was used to evaluate the trinocular 
SLAM. For this purpose, an artificial knee joint was placed 
within a reference frame and recorded by the trinocular camera 
system. The frame provides a reference data to determining the 
orientation of the trinocular system (Kahmen et al. 2020). The 
knee joint and the frame were placed on a table covered with blue 
surgical cloth. The setup was illuminated with two spotlights that 
shine on the knee from opposite directions to ensure shadow free 
lighting. In a first dataset, the hand-held trinocular camera system 
is moved in a circle over the artificial knee. The camera system 
is moved in such a way that there is no rotation around the visual 
axis. During the motion two images are taken per second. The 
dataset includes a total of 30 image triples. The ground truth of 
the exterior orientation is shown in Figure 5. It has been equalised 
in a bundle adjustment using the circular markers, taking into 
account the fixed relative orientation between the cameras.  
 

 
 

Figure 5. Ground truth trajectory of the handheld dataset for the 
first camera. First epoch (blue) to last epoch (red) 

 
A second dataset is created using the robot “Fanuc CR-7iA/L”. 
The idea of using the robot is that we cannot give any information 
about the precision of our trinocular SLAM. The robot offers the 
possibility of acquiring images several times in comparable 
situations. The trinocular camera was attached to robot as 
presented in Figure 6. The camera was then moved along a 
predefined path. As stated by the manufacturer the robot has a 
repeat accuracy of 0.01 mm. Setting the motion speed to 80 % of 
the maximum speed, the robot achieved a speed of 800 mm/s. 
This corresponds approximately to the movement speed when the 
camera system is moved slowly hand. In addition to the linear 
motion, we predefined stopping positions to allow for stable 
image acquisition.  
 

 
 
Figure 6. Experimental setup with the robot and the artificial 

knee joint surrounded by the reference frame with 
two spotlights from opposite sides  

 
In this second dataset, we distinguish between two recording 
configurations. In a first dataset the knee is recorded together 
with the reference frame. For a second dataset the reference 
frame is removed and only the knee is captured by the trinocular 
camera system. The knee remains in the same position during all 
recordings. The image sequences consist of each 59 image triples 
and are therefore twice as large as the first dataset. The first 
sequences with a reference frame should serve as a ground truth 
for the second sequence without the frame. However, as these 
differ greatly from one another and the robot does not always 
move to the positions at the same speed, there is only a reference 
for the image triples when the robot is stationary. As the image 
triples between the fixed positions are included in the evaluation, 
the influence of the camera movement can still be determined at 
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the stable positions. Figure 7. shows the three image sequences 
with the reference data.  Between the predefined positions (no. 1-
9) you can see the different deviating locations of the images in 
the three reference datasets. 
 

 
 

Figure 7. Ground truth trajectory of the triple robot dataset for 
the first camera. First epoch (blue) to last epoch (red) 
The numbers from 1 to 9 show the fixed positions of 
the robot (epochs: 0, 9, 17, 21, 28, 34, 43, 51 and 58). 

 
The two experimental setups result in the following datasets 
listed in Table 2. We analyse the data sets both with and without 
masks, in which case the reference frame is also visible in the 
images. Dataset 1 is the reference for the datasets 2 and dataset 4 
is the reference for dataset 5 to 8 in robot guided case. In the 
reference datasets, the orientation of the trinocular system is 
determined with an accuracy of better than 0.05 mm in 
translation and 0.005° in rotation, which is well above the 
expected accuracy for our SLAM.  
 

Set Robot or handheld Knee 
masked 

Orientation 
technique 

1 handheld -- Bundle adjustment 
2 handheld No Trinocular SLAM 
3 handheld Yes Trinocular SLAM 
4 Robot with frame -- Bundle adjustment 
5 Robot with frame No Trinocular SLAM 
6 Robot with frame Yes Trinocular SLAM 
7 Robot No Trinocular SLAM 
8 Robot Yes Trinocular SLAM 

 
Table 2. Datasets that are used in the work. Datasets 1 and 4 form 

the reference datasets of the two experimental setups. 
The reference for datasets 7 and 8 is created for the 
stable positions by dataset 4. 

 
4. Accuracy of the trinocular SLAM 

To compare the absolute coordinates and orientations of the 
camera trajectory, it is necessary to equate the origin and the 
orientation of the coordinate system (Kahmen et al. (2020), 
Therefore, the local coordinate system of the trajectory is 
transformed into the projection centre of the camera at the first 
epoch and the z-axis is transformed into the optical axis. 
 
4.1 Accuracy dependence of image pairs 

As we introduced our workflow, we presented the various 
methods for creating image pairs. Starting with the handheld 
dataset, we analyse the deviations compared to our reference. The 
dataset is calculated once with the masked images, where the 

camera orientation is only determined via the knee surface, and 
in a second step without masking, so that the markers on the 
reference frame can be used. Table 3. shows the results for these 
tests, where the mean Euclidean distance to the reference (Set 1) 
is given and the mean angular deviation is listed. 
 

No. Set Meth
od 

RMS 3D 
[mm] 

Max 3D 
[mm] 

RMS 
[°] 

Max 
[°] 

1 2 1 7.23 13.39 0.35 0.77 
2 3 1 6.32 11.48 0.79 1.50 
3 2 2 6.17 11.87 0.36 0.82 
4 3 2 calculation interrupt 
5 2 3 6.26 11.95 0.37 0.83 
6 3 3 6.08 11.61 0.78 1.54 

 
Table 3. Results of the investigation into various methods for 

generating image pairs. 
 
For the handheld dataset, trinocular SLAM archives around a 
mean Euclidean distance of 6 mm and more. The accuracy of the 
camera orientation shows no significant difference between the 
different methods. Only two evaluations stand out. First, the 
calculation of the orientation with method 2 could not be 
completed for the masked image sequence in which no sufficient 
feature matches were found in the images. Second, the accuracy 
of result 1 is lower than the other results. 
 
4.2 Accuracy robot-guided image sequences  

In the following investigation, the repeatability of the accuracy 
of a moving image recording is to be analysed. For this purpose, 
we use the dataset in which the robot holds the trinocular system 
to be able to analyse three image sequences independently of 
each other. Following the surprising results from the previous 
study, we also analyse the images with and without masking. The 
results are shown in Table 4. 
 

No. Set Meth
od 

RMS 3D 
[mm] 

Max 3D 
[mm] 

RMS 
[°] 

Max 
[°] 

7 5.1 3 9.50 18.85 0.39 0.76 
8 6.1 3 4.90 9.10 0.38 0.75 
9 5.2 3 9.38 18.97 0.38 0.72 

10 6.2 3 4.88 8.85 0.36 0.65 
11 5.3 3 8.86 17.98 0.38 0.75 
12 6.3 3 4.27 7.27 0.54 1.15 

Table 4. Accuracy of robot-held images sequences 
 
While the analysis with and without masking produced 
comparable deviations in the previous study, the situation is 
different with the robot dataset. The average distance is 
approximately twice as good for the masked images. And the 
overall accuracy is also higher than in the handheld dataset. In 
addition, the absolute distances between two epochs are smaller, 
so that the images are similar and the features can therefore be 
assigned better. It is noteworthy that the trajectory has twice as 
many epochs as the handheld dataset and still delivers the better 
results. 
 
4.3 Accuracy frameless image sequence  

A third investigation into the orientation of the trinocular camera 
system is realised using the robot data set. For this purpose, we 
only refer to the specific image epochs in which the robot 
travelled to the predefined position. 
Based on these results, we analyse the image sequence without a 
reference frame and also refer to the nine positions shown in 
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Figure 7. From these image triples, we now calculate the mean 
deviation at these positions for our datasets. 
 

No. Set Meth
od 

RMS 3D 
[mm] 

Max 3D 
[mm] 

RMS 
[°] 

Max 
[°] 

8 6.1 3 5.06 8.89 0.30 0.57 
10 6.2 3 4.36 8.62 0.30 0.51 
12 6.3 3 4.09 5.33 0.49 0.78 
13 7 3 8.34 16.13 0.59 1.11 
14 8 3 6.95 13.81 0.57 1.28 

 
Table 5. Accuracy of robot-held images sequences at positions 

1 to 9. 
 
The average deviation is comparable for the predefined positions 
of the robot held dataset (6.1, 6.2, 6.3) and for the whole 
trajectory. However, when analysing the data set without a 
reference frame, the deviation is higher at 6.95 mm when the 
images are masked. Without masking, an accuracy of 8.34 mm is 
obtained, which is in the accuracy range of the other image 
sequences where the reference frame is in the image. 
 
4.4 Orientation of the 3D reconstruction 

The orientation of the camera system is initially an intermediate 
step on the way to the goal of orientating the knee joint in relation 
to the leg axis. This is why knowledge about the orientation 
accuracy of the 3D reconstruction is important. To do this, we 
use the robot dataset and use COLMAP to calculate a dense point 
cloud from the image triples taken at the defined position. This is 
to ensure that the dense point cloud is only created from images 
that were taken from the same positions. In order to obtain a 
ground truth, we generate a dense point cloud, also using 
COLMAP, based on the camera orientation determined using 
bundle adjustment. To analyse our trinocular SLAM, the point 
clouds from our SLAM and the ground truth are then matched 
using an ICP algorithm in the CloudCompare (Version 2.12.4) 
software.  
 

  
 
Figure 8. Reference point cloud (white) and the point cloud 

created by our trinocular SLAM (black) from the 9 
image triplets (left) and a top view of the point cloud 
using trinocular SLAM. 

 
The point clouds of the three datasets with reference frames 
around the artificial knee have absolute deviations between 
14 mm and 22 mm. Figure 8. on the left shows the point cloud of 
dataset 6.3. The deviation is 21.3 mm. In the orientation of the 
knee joint, the deviation is less than two degrees around the x-
axis. This shows that the deviations in the camera orientation are 
transferred to the position of the reconstruction and there are 
larger deviations, particularly in the translation of the knee joint. 
 
 

5. Discussion 

The results of this study provide valuable insight into the 
performance of trinocular SLAM for knee reconstruction. As 
expected, the accuracy in this study was lower compared to 
previous works such as Kahmen et al. (2020) and Schierbaum et 
al. (2024). Several factors contribute to this lower accuracy. First, 
the camera movement in our dataset led to lower image quality, 
which in turn negatively affected the accuracy of the image 
measurements. Blurred images can introduce errors into the 
reconstruction process. In addition, the camera was positioned 
approximately 60 cm away from the artificial knee joint, as 
opposed to the 30 cm distance used in Kahmen et al. (2020). This 
increased distance reduces the resolution of the images by a 
factor of 4, which leads to a decrease in detail capture and 
ultimately affects the quality of the reconstruction. In addition, 
the shading of the knee joint further complicates the process as it 
can obscure surface features and prevent effective feature 
extraction. 
 
One observation is that the results obtained with reference frames 
did not show higher accuracy than those without. In previous 
studies, reference frames have typically led to better results 
because it is easier to match corresponding features across 
images. However, in this study, the expected improvements from 
reference frames were not observed. This could be due to the 
specific settings of SuperGlue, which are optimised for 
textureless surfaces, resulting in fewer features matching on the 
reference frame. 
 
Another interesting finding is that the dataset of robot-held 
images produced better results than the hand-held dataset. The 
robot's movements were more homogeneous and repeatable, 
resulting in fewer outliers and more consistent data. In contrast, 
handheld data collection often introduces more variability, which 
can reduce overall accuracy. This highlights the importance of 
stable and controlled camera movement for high accuracy 
reconstructions in these applications. 
 
Despite these challenges, the trinocular SLAM system showed a 
promising ability to produce point clouds without large holes or 
significant gaps. Such problems were more common in previous 
studies using similar exposure settings, suggesting that the 
system is able to deal effectively with variations in reflections. 
These variations, which are influenced by the movement of the 
camera, are likely to contribute to a more complete reconstruction 
of the knee surface as reflections do not always occur in the same 
locations. 
 
It is important to note that for the purposes of this study, the knee 
was treated as a stable object. This assumption allowed a 
simplified assessment of the accuracy of the system, but in a real 
surgical context the knee joint itself would be subject to dynamic 
movements due to operational actions. These movements 
introduce additional complexity that will affect the accuracy of 
the reconstruction and the overall effectiveness of the navigation 
system. 
 

6. Conclusions and outlook 

This research demonstrates the potential of markerless trinocular 
SLAM for non-invasive navigation in knee arthroplasty, 
although the accuracies achieved still have some weaknesses. 
Camera motion, combined with challenges such as the low 
texture of the knee surface, has prevented the achievement of 
sub-millimetre accuracies. This is mainly due to factors such as 
camera movement, the increased distance to the knee joint and 
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the difficulty in capturing detailed information from a surface 
with poor texture. In particular, the increased distance compared 
to previous studies affects the resolution of the captured images 
and reduces the accuracy of the reconstructions. 
 
The results from the robotic dataset, which had more 
homogeneous and repeatable movements, showed better 
consistency and accuracy. These results provide a solid basis for 
further investigation under controlled conditions. This highlights 
the importance of controlled camera movements to ensure high 
quality reconstructions and improve the accuracy of 3D 
modelling. To further improve accuracy, adjustments to the 
camera settings are needed to improve image quality. 
 
Another important step for future work is to perform tests with 
more realistic data. The current work is primarily based on 
artificial knee data sets, while the challenges associated with real 
surgical environments, including dynamic knee movements and 
the presence of tissue or blood, have not been fully considered. 
Further testing with real data will help to identify additional 
challenges and potential areas for improvement. In addition, it 
will be necessary to investigate how the reconstructed knee can 
be aligned with the leg axis. 
 
In conclusion, the trinocular SLAM system is a promising 
approach for non-invasive navigation in knee arthroplasty, but 
improvements are needed to enable marker-free navigation. With 
further optimisation of the system, it could potentially contribute 
to intraoperative knee registration in the future. 
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