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ABSTRACT: 

Pan-tilt-zoom (PTZ) cameras are widely used in surveillance systems due to their wide field of view and high resolutions. However, 

the lack of accurate orientation information limits their full utilization in photogrammetry. Therefore, for photogrammetric applications, 

the primary task for PTZ cameras is to achieve image orientation. Cameras mounted on gimbals can only self-rotate around the base, 

resulting in acquired images that are nearly purely rotated. Current conventional structure from motion (SfM) pipelines assume pixel 

parallax exists between matching correspondences and generate object points through 3D triangulation. Applying these methods to 

estimate the interior and exterior orientation parameters of images from a self-rotating PTZ camera is challenging. To address this issue, 

this paper employs the concept of global SfM and proposes an improved global image orientation method for the pure rotation motion 

of PTZ cameras. Initially, a subset of image pairs is selected for internal orientation, and the internal orientation parameters of the 

images are estimated. Subsequently, global external orientation is performed on all images to estimate their external orientation 

parameters. Finally, bundle adjustment of the collinearity equation without object points optimizes both the internal and external 

orientation parameters. Experiments on synthetic and real-scene datasets demonstrate the practicality and accuracy of this method. For 

synthetic datasets, the estimated focal length of our method deviates from the true value by within 1 pixel, and the mean location error 

of the principal points is 0.93 pixels. For real-scene datasets, the mean reprojection error of the checkpoints of our method is 2.72 

pixels, with a maximum of 4.66 pixels. In contrast, Agisoft Metashape's mean reprojection error is 4.73 pixels, with a maximum 

reaching 8.06 pixels. This shows that our method can accurately determine the image orientation parameters of PTZ cameras and 

achieve higher accuracy compared to the popular commercial software Agisoft Metashape. 

1. INTRODUCTION

Pan-tilt-zoom (PTZ) cameras (Sinha, 2021) have some 

degrees of pan, tilt, and zoom control and enable a flexible way 

for images acquisition. They are widely used in surveillance 

systems with the advantages of a wide field of view and high 

resolutions. Regarding the other applications of PTZ cameras, 

some works have studied panoramic stitching (Yong et al., 2019), 

object recognition and tracking (Jinlong et al., 2024; Nebeluk et 

al., 2023; Yun et al., 2021) and intelligent transportation 

(Haghighat and Sharma, 2023; Zhang et al., 2022). However, 

PTZ cameras are not fully utilized in the field of photogrammetry 

and geoinformatics.  One reason is that these captured images 

often lack of accurate orientation information. Therefore, for 

photogrammetric applications, the first task for PTZ cameras is 

to achieve image orientation, i.e., to be able to automatically 

calibrate the interior and exterior orientation parameters (Liu and 

Zhang, 2023; Wu and Radke, 2012; Zhang et al., 2020).  

Some related works on estimating image orientation 

parameters are first reviewed. They can be divided into two 

categories according to whether reference object points are used. 

By placing a plane calibration plate indoor, Wu and Radke (2012) 

established a functional relationship between the interior 

orientation parameters and the zoom ratio of lens of PTZ cameras. 

In additional, similar to place recognition, it roughly estimated 

the exterior orientation parameters by matching the pre-generated 

feature database with the PTZ camera image. For special scenes 
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such as the sports field, Chen et al. (2018) employed the 

structured point-line features to calculate the image orientation 

parameters of the PTZ camera. For road scenes, Wang et al. 

(2020), Song et al. (2021) and Esin et al. (2024) used lane 

boundary lines and vehicle outline to calculate the vanishing 

point and then used it to estimate the image orientation 

parameters. These methods are often limited to the reference 

points in specific structured scenes.  

Correspondingly, the methods that do not use reference 

object points are more flexible. In this category, it is typically to 

employ the so-called structure from motion (SfM) technique 

(Schonberger and Frahm, 2016). For a set of multi-view images, 

SfM can automatically estimate the interior and exterior 

orientation parameters at the same time based on the multi-view 

geometry. As a result, SfM has become one of the most popular 

methods for achieving image orientation parameters. However, 

conventional SfM pipelines assume pixel parallax exists between 

matching correspondences and then generate object points by 3D 

triangulation. Subsequently, a self-calibrating bundle adjustment 

is employed and the interior and exterior parameters of image 

orientation can be accurately obtained. As for PTZ cameras, they 

are mounted on the gimbal and can only self-rotate around the 

base. It results in the acquired images being with nearly pure 

rotation. And for these images, it is not feasible to generate object 

points. Therefore, conventional SfM methods are not applicable 

to image orientation tasks of PTZ cameras. 

To solve this problem, this paper considers the idea of 
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rotation averaging (Xiao et al., 2021; Zhang et al., 2023) and 

propose an improved global image orientation pipeline for 

estimating interior and exterior parameters for PTZ cameras. 

Compared with the popular commercial software Agisoft 

Metashape, our method can obtain higher accuracy on the 

orientation results. 

2. RELATED WORKS 

Our work is related to the image orientation methods, 

typically SfM. It can be divided into two categories: incremental 

and global SfM. Incremental SfM starts with an initial 

reconstruction of a subset of images, e.g., a pair or a triplet, and 

then sequentially adds further images to the block with repeated 

bundle adjustment. Global SfM, on the other hand, deals with all 

available images simultaneously, i.e. relative orientations of all 

overlapping image pair are taken as input to compute global 

poses, typically in a two-step procedure, first carrying out global 

rotation averaging for global rotation matrices, followed by 

global translation averaging for global translation matrices. 

Incremental SfM: Schönberger and Frahm (2016) 

proposed a very popular incremental SFM framework COLMAP, 

which added some robust strategies to the conventional pipeline. 

For example, in selecting the next best view it considers the 

distribution of matching points and gives priority to candidate 

images with more uniform distribution. In order to achieve robust 

and efficient triangulation, the RANSAC strategy is added to the 

DLT algorithm, and the intersection angle and object point depth 

are verified, and local bundle adjustment is performed after 

adding this image. In addition, in scene expansion, global bundle 

adjustment is performed after adding a certain number of images. 

After adding images using the incremental SfM method, Wang 

and Heipke (2020) first calculated the global rotation of the 

candidate image based on the relative rotation between the new 

image and the oriented image using the single rotation average 

(Hartley et al., 2013), and then used the linear equation to solve 

its global translation, thereby improving the efficiency of 

absolute orientation of the new image. 

In recent years, some research works have used the concept 

of view-graph representing the matched image pairs to improve 

the time efficiency of incremental SfM (Cui et al., 2021; Gong et 

al., 2023) to meet the requirements of large-scale image 3D 

reconstruction. Cui et al. (2021) proposed a new method for 

constructing an sparse view-graph, and used an incremental local 

reconstruction strategy to save computational memory, thereby 

improving the efficiency and robustness of SfM when processing 

large data. Gong et al. (2023) proposed a coarse-to-fine subgraph 

extraction method from the original view-graph, which on the 

one hand eliminates redundant and erroneous image pairs, and on 

the other hand takes into account the distribution of subgraph 

vertices, thereby greatly improving the computational efficiency 

of the subsequent incremental SfM. 

Rotation averaging: Hartley et al. (2013) reviewed rotation 

averaging in detail with different forms of rotation deviation 

measurement. Chatterjee and Govindu (2013) further 

emphasized the efficiency and robustness of rotation and 

translation. They first used Lie groups to represent rotation and 

L1 norm to relatively calculate initial rotation values, and then 

optimized them through iterative reweighted least squares 

method and implemented a loss function similar to Huber. The 

negative impact of gross errors was resisted by dynamically 

adjusting the weights of the residuals. Reich et al. (2017) 

improved the method of Chatterjee and Govindu (2013) through 

convex relaxation semidefinite procedures to obtain more robust 

global rotation initial values. Wilson et al. (2016) pointed out that 

local convexity analysis is almost impossible to achieve in L2 

norm, and pointed out that it is mainly affected by the relative 

rotation noise and the network structure of image association. 

Wilson and Bindel (2020) extended the work of Wilson et al. 

(2016) on the non-convexity of rotational averaging, studied the 

spatial distribution of local minima, and derived theoretical 

boundaries for different distributions, pointing out that local 

convexity can be used to represent the intrinsic measure of the 

difficulty of rotational averaging. Chatterjee and Govindu (2017) 

tested different robust estimation methods and suggested using 

the 𝐿1 2⁄  norm when performing rotational translation to reduce 

the negative impact of gross errors in relative orientation. Gao et 

al. (2021) introduced the incremental SfM robust mechanism into 

rotation averaging to improve its robustness, and proposed a 

corresponding incremental rotation averaging method. They first 

selected image triplets to construct the camera global rotation as 

seeds, and then incrementally added the best candidate images. 

During the expansion process, they were optimized by local 

rotation averaging and global rotation averaging until the global 

rotation of all images was successfully solved. Zhang et al. (2023) 

revisited the problem of rotation averaging by leveraging the 

uncertainties inherent in two-view epipolar geometry and 

investigating robust loss functions. They demonstrated that 

incorporating the covariance matrix of uncertainties directly into 

the optimization process can significantly enhance the quality of 

estimated global rotation matrices. 

3.  METHOD 

This paper proposed an improved global image orientation 

pipeline for PTZ cameras, and the workflow is given in Figure 1. 

For a set of input images with pure rotation of PTZ camera, SIFT 

algorithm is typically used for feature extraction and matching, 

and the infinite homography matrices of image pairs are 

calculated. The subsequent process can be divided into three 

steps: the estimation of the interior parameters, the estimation of 

the exterior parameters, and the final global optimization using 

bundle adjustment without object points. 

 

Figure 1. The workflow of the proposed method. 

3.1 Estimation of the interior parameters 

The first task for the estimation of interior orientation 

parameters is to obtain an initial focal length value. Specifically, 

we refer to the multi-view geometry to obtain initial focal length 

value by using all the infinite homography matrices. For each 

matched image pair (𝑖, 𝑗), its homography 𝐻𝑖𝑗 is known and has 

been normalized, such that det(𝐻𝑖𝑗) = 1. And the equation (1) 

shows the relationship between the image of the absolute conic 

𝜔 and the homography 𝐻𝑖𝑗. 

𝜔 = (𝐻𝑖𝑗)
−𝑇
𝜔(𝐻𝑖𝑗)

−1
               (1) 

Then it can be rewritten as  
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𝐴𝑐 = 0   (2) 

Where 𝐴 is a 6𝑚 × 6 matrix, here 𝑚 means the number of 

matched image pairs, and 𝑐  is arranged as a 6-vector with the 

elements of the conic 𝜔. A least-squares solution of the equation 

(2) can be obtained by SVD decomposition. 𝜔 is carried out by 

Cholesky decomposition as 𝜔 = 𝑈𝑈𝑇 , and thence we use the 

equation (3) to obtain the camera matrix. 

𝐾 = 𝑈−𝑇   (3) 

  The principal point is set to the center of the image, and the 

initial value of the distortion parameter is set to zero. Through 

these processes, the initial values of the interior orientation 

parameters can be obtained.  However, these values are very far 

from the true value, especially the focal length. If the focal length 

deviation is very large, it will reduce the accuracy of the 

subsequent relative rotation calculation. Therefore, it is critical to 

obtain a more accurate initial value of the focal length. 

To do so, we designed the interior orientation optimization 

(see Figure 1).  Our idea to achieve this is to select a set of image 

pairs with good configuration, which helps to find a focal length 

value close to ground truth. According to the number of the 

matching correspondences, we select the top 𝑘  matched image 

pairs ℰ𝑠𝑒𝑙𝑒𝑐𝑡  with the largest number and have the 

correspondingly set of homography matrices {𝐻𝑖𝑗}𝑠𝑒𝑙𝑒𝑐𝑡
 . Then, 

the 𝐾 matrix can be refined by minimizing  

∑ 𝑑(𝑥𝑗 , 𝐾𝑅𝑖𝑗𝐾
−1𝑥𝑖)

2

(𝑖,𝑗)∈ℰ𝑠𝑒𝑙𝑒𝑐𝑡

 

over 𝐾  and 𝑅𝑖𝑗 , where 𝑥𝑖 , 𝑥𝑗   are the locations of the 

correspondences between image pair ( 𝑖, 𝑗 ). And the initial 

estimates of 𝑅𝑖𝑗  for the minimization is obtained by 𝑅𝑖𝑗 =

𝐾−1𝐻𝑖𝑗𝐾. 

3.2 Estimation of the exterior parameters 

In this stage, the matrix of the selected image pair and the 

initial values of the interior orientation parameters mentioned 

above are taken as input, and the relative rotations are calculated. 

Then, the global rotation matrix of all images, i.e., the exterior 

orientation elements of each image, is calculated by rotation 

averaging (Dümbgen et al., 2024; Zhang et al., 2023). 

Specifically, several relative rotations 𝑅𝑖𝑗  are given with 

different coordinate frames, and 𝑛  global rotations {𝑅𝑖|𝑖 ∈
(1⋯𝑛)}  are computed to satisfy the compatibility constraint 

𝑅𝑖𝑗 = 𝑅𝑗𝑅𝑖
−1. The index (𝑖, 𝑗) is in the set of the selected image 

pairs 𝑆. In the presence of noise, the rotation averaging problem 

is expressed as seeking 

argmin
𝑅1⋯𝑅𝑛

∑ 𝑑(𝑅𝑖𝑗 , 𝑅𝑗𝑅𝑖
−1)

2
(𝑖,𝑗)∈𝑆    (4) 

Where 𝑑(∙,∙)2  measures the difference of two rotation 

matrices with 𝐿2  norm. In our case, we employ rotation 

coordinate descent (RCD, Parra et al., 2021) algorithm for 

equation (4) to achieve enhanced computational efficiency.  

3.3 Bundle adjustment without object points 

Similar with conventional SfM methods, the last step is to 

use bundle adjustment to optimize the interior and exterior 

orientation parameters. But in this case, the pure rotational 

motion of the camera makes it impossible to generate the 3D 

object points and collinear equation is not suitable for this 

problem.  A special idea is to use bundle adjustment without 

object points, such as structureless bundle adjustment (Cefalu et 

al., 2016) and pointless bundle adjustment (Rupnik and Pierrot-

Deseilligny, 2023).  

The initial values of 𝐾  and the global rotations {𝑅𝑖|𝑖 ∈
(1⋯𝑛)} have been obtained. Then the correspondences between 

the selected image pairs ℰ𝑠𝑒𝑙𝑒𝑐𝑡 are used to refine 𝐾 and {𝑅𝑖} by 

minimizing the equation (5). 

 𝐾, 𝑅𝑖 = argmin∑ 𝑑(𝑥𝑗 , 𝐾𝑅𝑗𝑅𝑖
𝑇𝐾−1𝑥𝑖)

2
(𝑖,𝑗)∈ℰ𝑠𝑒𝑙𝑒𝑐𝑡   (5) 

where 𝑥𝑖 , 𝑥𝑗   are the locations of the correspondences 

between image pair (𝑖, 𝑗). 

 

4.  RESULTS 

To evaluate our proposed method for PTZ cameras, 

experiments on four synthetic and one real-scene dataset were 

conducted. For comparisons, we also used the commercial 

software Agisoft Metashape to orientate these PTZ camera 

images. 

 

4.1 Measurement of rotation accuracy evaluation 

In order to measure the difference between the estimated 

rotation matrix and the ground true value, a distance function 

between two rotation matrices is defined: 

𝛿(𝑅1, 𝑅2) = arccos⁡(
(𝑡𝑟𝑎𝑐𝑒(𝑅1𝑅2

𝑇)−1)

2
)       (6) 

Here 𝛿(𝑅1, 𝑅2) is the angle value in radians, which will be 

further converted to angle values for a more intuitive effect. In 

the absence of control points for absolute orientation, the 

estimated global rotation matrices {𝑅1, ⋯𝑅𝑛} is not in the same 

coordinate system as the ground truth values {𝑅1
𝑔𝑡
, ⋯𝑅𝑛

𝑔𝑡
} . In 

this case, we need to find a rotation matrix 𝑅̅  to align the two 

coordinate systems first and it should minimize the difference 

between the transformed rotation matrix {𝑅𝑖𝑅̅}  and the ground 

truths {𝑅𝑖
𝑔𝑡
}. It will have the equation (7) 

𝑅̅ = argmin
𝑅̅

∑ 𝑑(𝑅̅, 𝑅𝑖
𝑇𝑅𝑖

𝑔𝑡
)𝑛

𝑖=1     (7) 

After transformation by 𝑅̅ , the equation (6) is used to 

evaluate the accuracy of the rotation matrix of each image, and 

then the minimum, median and maximum values can be 

statistically analyzed. 

4.2 Synthetic datasets 

Four synthetic datasets (see Table 1) were generated by 

simulating the PTZ camera shooting process with specific 

orientation parameters in scenes that have been pre-built into 3D 

models. We put the prepared 3D model (mesh model with texture) 

into the 3D rendering software, and set different interior and 

exterior orientation parameters to render image datasets of 

different perspectives. Because of the size of the display screen, 

the image resolution is 1920×1080.  

As for the interior orientation parameters, we simulated the 

different focal lengths, and the principal point is the center of the 

image. It should also be noted that these rendered images are 

distortion-free. As for the exterior orientation parameters, we 

simulated a series of P, T values using fixed angle intervals, and 

then converted them into different rotation matrices and input 

them to the rendering software. Figure 2 expresses the entire 

scene by stitching all the images into a panoramic image. It can 

be seen that the interior and exterior orientation parameters of the 

synthetic images are known and these synthetic datasets can be 

used to evaluate the accuracy of the estimated intrinsic 

parameters, especially focal lengths, and the estimated extrinsic 

parameters, e.g., global rotation matrices. 
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Datasets No. 
Size 

/pixels 

Focal 

length 

/pixels 

Sample images 

Theater 156 
1920× 

1080 
800 

 

Playground 96 
1920× 

1080 
1800 

 

City1 54 
1920× 

1080 
2000 

 

City2 240 
1920× 

1080 
3000 

 

Table 1. Data description of the synthetic datasets. ‘No.’ means 

the number of images, ‘Size’ represents the resolution of images 

and ‘Focal length’ here indicates the ground truth values when 

generating the rendered images. Sample images from different 

perspectives by setting different P and T values. 

 
Theater 

 
Playground 

 
City1 

 
City2 

Figure 2. Four synthetic datasets displayed in panoramic images. 

These Synthetic datasets were carried out by our method and 

the Agisoft Metashape and the results of orientation parameters 

are numerically analyzed, as is shown in Table 2. The error of 

interior orientation parameters is the difference between the 

estimated focal length, principal point coordinates and the ground 

truth ones. The error of exterior orientation parameters is the 

difference between the estimated rotation matrices and the 

ground truth ones, measured by angles.  

As for the interior orientation parameters, expect the 

Theater dataset, our obtained the comparable accuracy and the 

closer values to the ground truth focal length. As for the exterior 

orientation parameters, our method achieved the better accuracy 

for all datasets. It can be seen that our method can obtain the more 

accurate orientation parameters than Agisoft Metashape. 
According to the numerical analysis in Table 3, it can be seen that 

the focal length directly calculated using only the homography 

matrices has a large deviation from the true value. However, after 

the interior orientation optimization using the selected image pair, 

the focal length is very close to the true value. 

To further analyze our method, we will evaluate the 

accuracy of the results with initial values of the intrinsic 

parameters before bundle adjustment (see Table 3). Special 

attention should be paid to the estimation and optimization 

process of focal length. Due to the zooming of the PTZ camera 

lens, it is difficult to empirically give the initial value of the focal 

length of the image obtained. This shows that the optimization 

step we adopted is very helpful in finding a more accurate initial 

focal length value, which has a very positive effect on the 

subsequent relative orientation and bundle adjustment. 

 

 

Dataset Method 

Error of IO 

 /(pixels) 

Error of EO  

/(degrees×10-1) 

𝑑𝑓𝑓𝑖𝑛𝑎𝑙 𝑑𝑝𝑥𝑓𝑖𝑛𝑎𝑙 𝑑𝑝𝑦𝑓𝑖𝑛𝑎𝑙 min median max 

Theater 
Ours 0.49 0.76 0.96 0.90 0.91 0.93 

AM 0.18 0.31 0.41 1.02 1.06 1.13 

Playground 
Ours 0.87 0.59 1.24 0.88 1.04 1.25 

AM 0.88 1.05 0.75 0.99 1.09 1.29 

City1 
Ours 0.41 0.92 0.81 0.81 0.85 0.91 

AM 0.90 1.09 0.25 0.91 1.05 1.19 

City2 
Ours 0.80 3.32 0.88 0.71 0.96 1.22 

AM 1.48 2.33 0.71 1.29 1.77 1.51 

Table 2. Comparison of accuracy of orientation parameters. ‘AM’ 

means Agisoft Metashape, ‘IO’ means interior orientation and 

‘EO’ means exterior orientation. 𝑑𝑓𝑓𝑖𝑛𝑎𝑙  , 𝑑𝑝𝑥𝑓𝑖𝑛𝑎𝑙 , 𝑑𝑝𝑦𝑓𝑖𝑛𝑎𝑙 

represent the difference between the final focal length and 

principal point coordinates after bundle adjustment and the 

ground truth ones. 
 

Datasets 𝑑𝑓ℎ𝑜𝑚𝑜 𝑑𝑓𝑜𝑝𝑡𝑖 𝑑𝑝𝑥𝑜𝑝𝑡𝑖 𝑑𝑝𝑦𝑜𝑝𝑡𝑖 

Theater 3650.78 0.53 0.81 1.00 

Playground 8,999.02 1.31 0.82 1.29 

City1 598.92 1.83 0.89 0.77 

City2 9,692.2 7.64 5.65 4.01 

Table 3. Accuracy evaluation of initial values of internal 

parameters before bundle adjustment. 𝑑𝑓ℎ𝑜𝑚𝑜  means the 

difference between the average of the focal lengths directly 

calculated from the homography matrices of all matched image 

pairs and the ground truth one (as shown in Table 1). 𝑑𝑓𝑜𝑝𝑡𝑖 , 

𝑑𝑝𝑥𝑜𝑝𝑡𝑖, 𝑑𝑝𝑦𝑜𝑝𝑡𝑖 are the differences after the interior orientation 

optimization form the selected image pairs. 
 

4.3 Real scene dataset 

The real-scene dataset was collected by a Hikvision PTZ 

camera installed on a high tower in the city. During the rotation 

of the camera, the zoom ratio was fixed with a step size of 30 

degrees in the horizontal direction and 14 degrees in the vertical 

direction. One set of 360-degree panoramic images with 66 video 

frames and [0,71] degrees in the vertical direction was collected. 
Table 4 shows the internal orientation parameter results obtained 

by our method and AM software processing real scene data, 

which are numerically consistent. In addition, the panoramic 

image spliced according to our estimated internal and external 

parameters is shown in Figure 3, and there is no obvious 

misalignment in the panoramic image. 

method 𝑓/(pixels) 𝑝x/(pixels) 𝑝𝑦/(pixels) 𝑘1 𝑘2 

Ours 2101.130 949.675 572.746 -0.182 0.147 

AM 2103.640 958.798 569.203 -0.189 0.154 

Table 4 Results of the interior orientation parameters of our 

method and Agisoft Metashape. 

In order to further evaluate the accuracy of the orientation 

results, the panoramic image is absolutely oriented with the help 

of control points, the pose in world coordinates is restored, and 

then the reprojection error of the control points and check points 

is evaluated. The points are punctured on the panoramic image to 

obtain the correspondence between the pixel coordinates of the 

control points and the world coordinates, and the PnP method is 

used to absolutely orient the panoramic image. Finally, the world 

coordinates of the control points and check points are projected 

onto the panoramic image according to the absolute orientation 

results, and the reprojection error is calculated. 

And also, we assigned 25 control points and 5 check points 

in this city scene. The point distribution is shown in Figure 3. 

Among them, the control points were used in combined bundle 
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adjustment for absolute orientation results, and the reprojection 

errors of check points were used to evaluate the accuracy of our 

and Agisoft Metashape’s results, as is shown in Figure 4. It can 

be seen that the reprojection errors of the checkpoints obtained 

by our method are all lower than those of Agisoft Metashape, 

which means that our method estimates more accurate orientation 

parameters. 

 
Control points Check points 

Figure 3. One real-scene datasets displayed in the form of 

panoramic images 

 

 
Figure 4. Accuracy analysis of orientation results, and ‘AM’ 

means Agisoft Metashape. 

 

5. DISCUSSION AND CONCLUSION 

Experiments on synthetic and real-scene datasets 

demonstrate the practicality and accuracy of our method. For the 

synthetic datasets, the estimated focal length of our method 

deviates from the true value within 1 pixel, and the mean location 

error of the principal points is 0.93 pixels. For the real-scene 

dataset, the mean reprojection error of the checkpoints of our 

method is 2.72 pixels, with the maximum being 4.66 pixels. For 

the results of Agisoft Metashape, in contrast, its mean 

reprojection error is 4.73 pixels, with the maximum up to 8.06 

pixels.  

It shows that our method can accurately determine the image 

orientation parameters of the PTZ camera. Compared with the 

popular commercial software Agisoft Metashape, our method can 

obtain higher accuracy on the orientation parameters. Our 

method enhances the application potential of PTZ cameras in the 

field of photogrammetry. 
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