
A Comparative Analysis of Visual Localization Algorithms in Indoor Navigation 

İrem Yakar, Esra Gunaydın, Ramazan Alper Kucak, Serdar Bilgi, Mahmut Oguz Selbesoglu 

ITU, Department of Geomatics Engineering, 80626 Maslak Istanbul, Türkiye - (yakari, esgunaydin, kucak15, bilgi, selbesoglu) 

@itu.edu.tr 

Technical Commission II 

Keywords: Visual Odometry, EKF SLAM, Indoor Navigation, Localization 

Abstract 

Localization can be defined as the process of determining the position and orientation of an entity within an environment, that would 

enable it to navigate and carry out tasks effectively. It is of fundamental importance for a wide range of areas such as robotics, medicine, 

indoor and outdoor navigation, autonomous vehicles, etc. Localization problems might be solved either with hardware or software 

designs. However, considering the challenging environments that would need a localization process, hardware designs might be 

complicated to apply to this problem. Indoor navigation can be shown as an example of these challenging environments since classical 

positioning methods cannot be used in such places. In this case, visual localization might be a solution since it requires either monocular 

or stereo images taken through the path. It would be a time-saving and cost-effective way to determine the locations that images were 

taken, thus the path that a robot or medical instrument, etc. take along the way. In this case, it is important the determine the 

performances of different localization algorithms. In this study, the performance of two different localization algorithms in indoor 

navigation was tested. In this context, Visual odometry and EKF SLAM algorithms were used to determine the camera trajectory 

utilizing the images that were taken in a straight corridor with a smartphone camera. To determine the accuracy of each method, the 

distances between each image-taking point were measured and compared with the distances obtained from the algorithm. Thus, root 

mean square error values were determined by each method. The precisions of each method were also given based on the fact that the 

distance between each image-taking point was equal. Therefore, the usage of both algorithms in indoor navigation was discussed.  

1. Introduction

Localization is the process of determining the location of an 

object or person and is an interesting and challenging problem in 

many fields such as security, indoor navigation, robotics and 

interactive technologies (Haque et al., 2013). Advancements in 

localization-based technologies have increased the demand for 

applications like positioning, and real-time tracking of physical 

objects within buildings. Thus, there has been a marked increase 

in commercial interest, particularly in indoor localization 

services (Yassin et al., 2016). The reliable and effective operation 

of indoor navigation can be achieved through the collaboration 

of both hardware and software components. Physically tangible 

hardware components are systems that require careful 

installation, configuration, and maintenance to ensure optimal 

performance. Examples of popular technologies used for indoor 

localization include Wi-Fi, Radio Frequency Identification 

(RFID), ultrasonic sensors, Bluetooth, and Ultrawide Band 

(UWB) (Curran et al., 2011; Aguilar-Garcia et. al, 2015; Basri 

and El Khadimi 2016).  

On the other hand, the software component is adaptable and 

incurs minimal costs since it is non-physical. In this context, 

several important localization methods are as follows: Visual 

Odometry, EKF SLAM, Mono SLAM, Structure from Motion 

(SfM), Visual Place Recognition (VPR) deep learning-based 

methods, etc. These techniques aim to address the challenges of 

autonomous navigation and mapping in complex environments, 

each with its advantages and limitations. Among these methods, 

Visual odometry is a technique for estimating the position and 

orientation of an agent (e.g., vehicle, human, or robot) using a 

series of images from one or more attached cameras. It is a cost-

effective alternative to traditional methods such as Global 

Navigation Satellite Systems (GNSS), Inertial Navigation 

Systems (INS), wheel odometry, and sonar-based localization, 

offering greater accuracy with relative position errors typically 

ranging from 0.1% to 2% (Scaramuzza and Fraundorfer, 2011). 

In addition, Simultaneous Localization and Mapping (SLAM) is 

a technique that enables autonomous vehicles to simultaneously 

build a map of an unknown environment and determine their 

position. This process requires handling non-linear models due to 

the inherent errors in vehicle position and the relationship 

between the map and these errors (Sasiadek et. al, 2008). The 

study conducted by Leonard and Durrant-Whyte (1991) 

introduced the first SLAM algorithm, EKF-SLAM, which uses 

the Extended Kalman Filter method to solve the SLAM problem 

and applies a probabilistic approach to reduce the impact of 

sensor inaccuracies on the mobile robot's map accuracy 

(Naminski, 2013). The study conducted by Chatterjee et al. 

(2011), which tested the EKF SLAM algorithm, demonstrated 

that the system successfully performed localization and mapping 

for mobile robots in indoor environments, achieving high 

accuracy and producing reliable results under real-world 

conditions.

Localization problems might be solved with either hardware or 

software design in indoor environments. However, solving such 

a task in an indoor environment might be more complicated 

utilizing a different hardware design compared with the software 

design. In recent years visual localization algorithms have 

emerged as a fast and easy solution to localization problems in 

challenging environments.  The camera images are used in visual 

localization to obtain orientation and position using methods 

such as Structure from Motion, feature matching, and deep 

learning to determine the path and map locations in different 

environments. In this context, using just visual elements such as 
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photographs taken with a basic camera would be sufficient to 

determine the path that the robot follows through the 

environment. In this study, the localization process was carried 

out using visual odometry and EKF SLAM algorithms with the 

images taken in a straight corridor of the building to obtain the 

camera movement of the camera through the environment and to 

determine the performances of each algorithm. The results were 

also compared. The real distance measurements on the ground 

were measured with steel tape and were the distance 

measurements obtained by the localization process. Thus, the 

accuracy of each method was presented.  

 

2. Methods 

The location information is of fundamental importance for the 

present communication systems that enable location-based 

services. The outdoor environments is relatively easy to 

determine the positions and locations of the objects with high 

accuracy utilizing the standalone cellular systems or GNSS. On 

the other hand, indoor applications are much more challenging in 

terms of localization problems since the signals of GNSS systems 

or cellular systems cannot work in indoor environments properly 

(Yassin et al., 2016). 

 

Thus, indoor localization needs different solutions to determine 

the position and location of the path taken during the process. 

Since GNSS or cellular systems do not work properly in such 

environments, image-based localization techniques have come to 

the fore for sufficient determination of the path during the 

process. In this context, visual odometry and EKF-SLAM can be 

pointed out as the two most used methods in image-based 

localization studies. 

 

2.1 Visual Odometry  

Visual Odometry can be defined as the method of determining 

the position and motion of a camera by utilizing and analyzing a 

series of images. It is of fundamental importance in many 

different areas such as autonomous robot navigation and 

computer vision (Scaramuzza and Fraundorfer, 2011). Visual 

odometry is suitable for such applications since it utilizes 

consumer-grade cameras that enable a direct determination of the 

position of the vehicles and robots, unlike expensive sensors and 

systems (Gonzalez et al., 2012). Visual odometry does not 

provide a map of the environment, unlike SLAM which enables 

navigation and localization without storing observed landmarks. 

This method is known for its cost-effectiveness, ease of use and 

reliability. Visual odometry operates in environments where no 

external signals or references exist, making it useful in 

environments with weak or no GNSS signal (Galati et al., 2017). 

Visual odometry incrementally estimates a vehicle's motion by 

analysing sequential camera images and computing the relative 

pose between viewpoints using 2D bearing vectors derived from 

the captured features. At time k, the visual odometry algorithm 

takes two consecutive images, Ik and Ik−1 s input and provides an 

incremental estimate of the motion relative to the local camera 

reference frame. This motion estimate is represented as δ*k,k−1∈ 
R3: 

 

𝛿 ∗𝑘,𝑘−1= (∆𝑠 ∗𝑘 , ∆𝜃𝑘)                           (1) 

 
Δs*k, represents the translational movement of the camera in the 

2D plane; Δθk, refers to the change in orientation or rotation of 

the camera between two consecutive frames. One of the key 

challenges in visual odometry is scale ambiguity during motion, 

which requires the estimation of a scale factor to recover the true 

distance. This uncertainty can be mitigated by incorporating 

additional measurements, such as prior knowledge of the 

camera's height. Motion estimates are generated using randomly 

sampled correspondences, and their mean and covariance are 

computed. In this way, while visual odometry accurately predicts 

motion, it effectively manages uncertainties and error 

accumulation throughout the process (Ouerghi et. al., 2018). 

 

The workflow of the visual odometry can be seen in Figure 1. 

 

 
 

Figure 1. The workflow of visual odometry. 

 

2.2 EKF SLAM 

EKF SLAM is a widely used method for simultaneous 

localization and mapping (SLAM) in mobile robots. In this 

approach, the robot’s position and surrounding landmarks are 

tracked to build a map of the environment. The two fundamental 

equations that describe this process are the EKF state model (2) 

and the observation model (3) can be represented as follows: 

 

𝑋𝑘+1 = 𝑓(𝑋𝑘 , 𝑈𝑘 , 𝑤𝑘)                             (2) 

 

𝑍𝑘+1 = ℎ(𝑋𝑘+1, 𝑣𝑘+1)                             (3) 

 
The process and observation noise are represented by wk ~ N(0, 

Qk) and vk ~ N(0, Rk), respectively. Xk+1 is the estimated state 

vector at time k+1, with discrete time and known input Uk. Zk+1 

is the estimated measurement vector at k+1, with vk as the 

observation noise. Qk and Rk represent the covariance matrices 

for prediction and observation. EKF provides an approximation 

of the optimal state estimate, with the aim of EKF-SLAM being 

to recursively estimate the landmark state Xk as specified by the 

Zk+1 measurement. In addition, in EKF-SLAM, the Jacobian 

matrix plays a crucial role in both the prediction and update steps 

by linearizing nonlinear systems, thereby facilitating the 

prediction and observation processes.  (Ullah et al., 2020). 

 
3. Case Study  

 

3.1 Visual Odometry Application  

Visual odometry is a method that is used to obtain movement of 

the camera through an environment by examining consecutive 

image frames. In this study, the visual odometry approach is 

applied to estimate the pose of a camera based on consecutive 

images utilizing the implementation in Python with OpenCV. 

 

We utilized consecutive images captured by a smartphone 

camera (Vivo Y21 S) in a straight corridor to obtain camera poses 

in an indoor environment.  The process initially performs The 

ORB (Oriented FAST and Rotated BRIEF) feature detector and 

descriptor to extract features in these sequential images.  The 

feature extraction step is important for subsequent image 

comparisons. Following feature extraction, we utilized a feature-

matching strategy implementing a brute-force matcher that is 

fundamental for identifying correspondences between successive 

image frames. The Hamming distance was utilized as a metric 

during the matching process, enabling the accurate tracking of 

motion between images since it is suitable for binary descriptors. 

The quality of these matches is very important as they directly 

affect the subsequent pose estimation process. The key points and 
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matched features between the two images can be seen in Figure 

2 and Figure 3 respectively. 

 

 
 

Figure 2. The key points identified in different images. 

 

 
 

Figure 3. The matched features between two images.  

 

After matches are identified, the algorithm determines the 

camera’s pose—its orientation and position—by computing the 

essential matrix from the matched features and then using this 

matrix to recover the camera’s rotation and translation. The 

essential matrix provides the relationship between consecutive 

views and therefore it is of fundamental importance to understand 

the path through the environment. The rotation matrix and 

translation vector are iteratively adjusted to improve the estimate 

of the camera's trajectory, starting with the identity matrix and 

zero translation for the initial image.  The iterative process that is 

used in the study enables us to update the camera's pose 

constantly, keeping track of its trajectory through the 

environment. The recent image data is used to recalculate the 

pose in each iteration, which gives us a dynamic representation 

of the camera's movement over time. The camera pose 

information was later stored in separate lists for the x, y, and z 

coordinates. The trajectory is built up across a series of images, 

with the camera’s position being adjusted according to the 

estimated relative motion between each frame. Then, the result is 

scaled based on the known distance between each image 

acquisition point. The images were taken in equal intervals 

during the image acquisition process. A scale factor was assigned 

to get the real-world distances using the following formula: 

 

Scale Factor = (Real Distance)/(Odometry Distance)   (4) 

 

P(scaled)=P(original)*Scale Factor                 (5) 

 

The visualization of the localization result in a 3D plot was 

obtained using Matplotlib. The 3D plot of the localization process 

can be seen in Figure 4. 

 

 

Figure 4. Localization with visual odometry. 

 

As the last step, the accuracy assessment process was carried out 

based on the real-world measurement between the image 

acquisition points, which is 305 cm between each point. The 

residuals (V) were calculated by taking the differences between 

model measurements and the ground truth value. Thus, the root 

mean square error (RMSE) was calculated using Equation 6, 

where n is the number of measurements. The RMSE was found 

to be ±3.03cm with visual odometry. 

 

                             RMSE=±√(([VV]/n))                                  (6) 

 

Where; 

VV = the square of the residuals 

n = number of distances 

 

The measured distances between each image pair are shown in 

Table 1.  As can be seen from the measurements, each distance 

is relatively close to the other which shows a significant 

precision.   
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Image Pair Measured Distance (cm) 

1 to 2 308.08 

2 to 3 307.92 

3 to 4 308.15 

4 to 5 308.03 

5 to 6 307.88 

6 to 7 308.10 

Table 1. The measured distances between each image pair with 

visual odometry. 

 

The Figure 5 depicts the distance differences between the ground 

truth and algorithm in accordance with the RMSE value. 

 

 

Figure 5. RMSE Value and the distance differences from 

ground truth between each image obtained with Visual 

Odometry. 

 

The standard deviation value was also calculated using the 

Equation 7: 

 

                                     σ = √ ((∑(Xi-𝜇)2 /n))                            (7) 
 

Where; 

σ = Standard Deviation 

Xi = Distances  

𝜇 = Mean 

n = Total number of distances 

 

The standard deviation was found to be 0.09 cm with visual 

odometry.  

 

3.2 EKF SLAM Application 

The Extended Kalman Filter (EKF) for Simultaneous 

Localization and Mapping (SLAM) used in this study utilized the 

ORB (Oriented FAST and Rotated BRIEF) feature detector and 

descriptor to extract features in the sequential images. The 

images were matched for each sequential image pair to obtain the 

relative camera pose which consists of the estimation of both the 

translation and rotation between the images. The key of the EKF 

SLAM algorithm is the estimation of the camera trajectory and 

modification of its orientation and position over time. The 

flattened representation of the rotation matrices and the 3D 

position of the camera were obtained by the state vector. Thus, 

the motion of the camera in three-dimensional space could be 

modelled. The covariance matrix captures the uncertainty 

associated with the state estimates. The predictions and updates 

are performed with the EKF by embedding both the noise 

covariance and the estimated pose matrices. These are 

responsible for the errors in the motion model and measurement 

process. This allows the filter to refine the trajectory estimates 

iteratively. The estimated camera positions that include X, Y, and 

Z coordinates are stored and visualized in a 3D plot afterward. 

Thus, the camera's motion through the environment is graphically 

represented providing an understanding of how various camera 

perspectives relate spatially to one another and the overall path 

of movement. 

 

The result is also scaled based on the known distance that was 

measured between each image-taking point using the following 

formulas: 

 

Scale Factor = (Real Distance)/(EKF SLAM Distance)   (8) 

 

P(scaled)=P(original)*Scale Factor                 (9) 

 

The code manages different challenges in SLAM including 

feature extraction and matching, pose estimation, and state 

estimation presenting an approach to obtain the camera 

movement in an indoor environment based on visual input.   It is 

a basic but practical example of how EKF can be applied to visual 

SLAM problems, highlighting the key concepts and 

computational steps involved in creating a 3D trajectory map 

from image sequences. 7 images were used during the 

localization with the EKF SLAM algorithm. The result of the 

localization with the EKF SLAM algorithm can be seen in Figure 

6. 

 

 
Figure 6.  Localization with EKF SLAM. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W7-2024 
Optical 3D Metrology (O3DM), 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W7-2024-183-2024 | © Author(s) 2024. CC BY 4.0 License.

 
186



 

As the last step, the accuracy of the EKF SLAM was determined 

by comparing the ground truth distances with the distances from 

the algorithm. 

The measured distances between each image pair can be seen in 

Table 2. 

Image Pair Measured Distance (cm) 

1 to 2 313.2 

2 to 3 313.6 

3 to 4 310.5 

4 to 5 315.1 

5 to 6 328.2 

6 to 7 328.2 

Table 2. The measured distances between each image pair with 

EKF SLAM 

 

RMSE value was found to be ± 15 cm. The distances between 

each image and the RMSE value can be seen in Figure 7. 

 

 

Figure 7. RMSE Value and the distance differences from 

ground truth between each image obtained with EKF SLAM. 

 

The standard deviation was also calculated and it was found to be 

7.24 cm with EKF SLAM.  

 

4. Conclusion 

 

Image-based localization methods are important for indoor 

navigation studies since conventional positioning methods such 

as GNSS are limited due to signal blockages in challenging 

environments. The indoor navigation problem might be solved 

either with hardware or algorithm designs. However, hardware 

designs might be more time-consuming and costlier compared to 

algorithm designs. In these scenarios, image-based methods have 

come to the fore as a solution to the navigation problem in indoor 

environments. The usage of images enables the acquisition of 

visual information, therefore the determination of the position 

and orientation of the path taken is possible by utilizing such 

methods. In this case, image-based localization can be useful in 

shopping malls, hospitals, airports, etc., where positioning is 

important for safety, accessibility, and efficiency. The 

advancements in visual localization algorithms such as SLAM 

and Visual Odometry make it possible to obtain the position and 

orientation of the path taken during the process. This technology 

improves the efficiency of facility management and user 

experiences. 
 

In this study, the performance of two visual localization 

algorithms in indoor navigation was evaluated.  In this context, 7 

monocular photographs in total were captured in a straight 

corridor of a building with a smartphone camera. The localization 

process was carried out in Python environment using visual 

odometry and EKF SLAM methods. The accuracy of each 

method was determined by comparing the real-world 

measurements between each point and the distances obtained 

from the algorithm. The RMSE of visual odometry was found to 

be ±3.03 cm, while the accuracy of the EKF SLAM was found to 

be ±15 cm. The standard deviation values were also calculated 

and were found to be 0.09 cm for visual odometry while it was 

found 7.24 cm for EKF SLAM. It has been seen that visual 

odometry gives more precise results in comparison to EKF 

SLAM. It has been seen that in the case of using monocular 

images, visual odometry might give more satisfactory results but 

since each algorithm gave the local position of the movement, 

both can be used for basic applications. The use of different 

sensors and stereo-view images might contribute to the accuracy 

as well. In future studies, it is planned to investigate the 

monocular vs. stereo view in indoor localization studies. On the 

other hand, deep learning-based methods can also be applied to 

indoor navigation problems in future studies.   
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