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Abstract

This paper introduces a custom-built low-cost camera ring device designed for automatic cast synthesis, able to accurately and
instantly scan body parts. The scanned mesh will be used as a backbone model for the cast design and 3D printing. The system
is based on the multi-view active stereo principle and it is composed of a circular array of 16 synchronized cameras (Fig. 1) and 4
equally distributed IR pseudo-random laser pattern projectors. We employ a custom multi-view stereo reconstruction pipeline based
on (Schönberger et al., 2016), which guarantees optimal results without the downsides of the supervised data-driven multi-view
stereo algorithms, i.e. data collection and ground truth labeling. Additionally, inspired by (Duda and Frese, 2018), we propose
a novel, automated calibration system to extract intrinsic and extrinsic camera parameters which are required to perform robust
multi-view stereo reconstructions.

1. Introduction

The traditional process of making customized casts is a time-
consuming process that requires, in addition to the collection
of functional data itself, the presence of a professional figure
in charge of designing and making the final product. Custom
3D printed casts based on a scan of the body part to be treated
can overcome these limitations. The developed system aims
to obtain these scans by a one-shot acquisition processed by a
multi-view stereo reconstruction pipeline. An instant acquis-
ition allows to reduce the stress of the acquisition process on
the patient while avoiding the presence of artifacts on the re-
construction due to the temporal desynchronization of the im-
ages. Extracting 3D models of human limbs, however, repres-
ents a challenging task for classical MVS approaches based on
Patch Match Stereo (Bleyer et al., 2011). Due to the repetitive-
ness of the skin texture, measuring the visual similarity using
a photometric measurement like normalized cross correlation
(NCC) could lead to wrong estimations. In order to alleviate
the problem we make use of 4 equally distributed IR pseudo-
random laser pattern projectors and propose simple yet effective
changes on COLMAP framework (Schönberger et al., 2016) to
address the challenge represented by low textured areas. To
successfully perform the 3D reconstruction the cameras must
be calibrated, i.e. both intrinsic and extrinsic parameters have to
be estimated. Traditional calibration systems require a human
operator to move around in the 3D space an object with a well-
known geometrical pattern, e.g. a checkerboard. Our system
allows to perform calibration in an automated way, minimizing
the errors introduced by human intervention. After the acquisi-
tion phase, the computation is performed by a consumer-grade
external compute unit equipped with an Intel Core i7-12700KF,
16 GB of RAM and an Nvidia 2060 capable of extracting a low-
resolution mesh within 15 seconds and the final high-resolution
output within 40 seconds with sub-millimeter accuracy.

Figure 1. The custom-built low cost 3D camera ring device.

2. Related Work

The proposed system is related to prior work in multi-view ste-
reo 3D reconstruction and camera calibration.

2.1 Multi-view Stereo

In Multi-View Stereo (MVS) the desired 3D model is computed
starting from a set of images and their corresponding camera
extrinsics and intrinsics. Differently from Structure from Mo-
tion (SfM) (Schönberger and Frahm, 2016, Lindenberger et al.,
2021) where camera instrinsics and extrinsics estimation is per-
formed along with 3D reconstruction, MVS can achieve better
accuracy as the calibration process, performed beforehand, usu-
ally exploits regular structures to perform a better estimation of
the necessary parameters. In (Seitz et al., 2006) MVS meth-
ods are grouped into four main categories. The first class of
algorithms (Seitz and Dyer, 1997, Treuille et al., 2004, Ji et
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al., 2017) first compute a cost function on a 3D volume to ex-
tract the desired surface from it. The second class (Fromherz
and Bichsel, 1995, Kutulakos and Seitz, 1999) iteratively evolve
the hypothesis surface. The third class (Szeliski, 1999, Zheng
et al., 2014, Yao et al., 2018) outputs for each for each image
on the dataset its corresponding depth map, usually exploiting
consistency constraints between output depth maps. Finally in
the last group (Faugeras et al., 1990, Taylor, 2003) are inserted
algorithms which try to fit a surface over a set of feature previ-
ously extracted and matched. Modern classical MVS methods
typically use patch match with photometric consistency (Zheng
et al., 2014, Schönberger et al., 2016, Romanoni and Matteucci,
2019, Xu and Tao, 2019, Wang et al., 2023). Belonging to the
third class, input images consists of one reference image for
which the depth map is estimated and two or more source im-
ages.
One of the first data-driven MVS method exploiting an end-to-
end convolutional neural network was presented in (Ji et al.,
2017). Each input image is converted to a special 3D volume
representation denoted as colored voxel cube (CVC) and used
as input for the network. More recent methods usually extract
dense image features from multiple views and backproject them
into 3D volumes. In MVSNet (Yao et al., 2018) features are ex-
tracted to produce a matching cost volume. Following methods
(Gu et al., 2020, Yao et al., 2019, Sayed et al., 2022) based on
MVSNet reduced the GPU memory consumption due the em-
ployment of 3D convolutional layers while retaining the same
level of performance or improving over it.

2.2 Camera Calibration

The calibration process refers to the estimation of the intrinsic
(i.e. camera-specific) and extrinsic parameters of the rig. In-
trinsic (or internal) parameters are represented by the focal
length, the coordinates of the principal point, distortion para-
meters of each camera while extrinsic parameters identify the
pose (i.e. rotation and translation) of the camera w.r.t. a fixed
coordinate system. In Direct Linear Transform (DLT) meth-
ods (Abdel-Aziz and Karara, 1971, Heikkila and Silven, 1997)
given at least 6 known control points in the 3D space and their
relative projection the camera matrix P is computed by means
of SVD decomposition. Tsai (Tsai, 1987) proposed a new al-
gorithm for camera calibration named two stage method, in the
first the rotation, position of the pattern and scale factor are
computed. In the second stage, instead the internal paramet-
ers of the camera are estimated. In the seminal paper (Zhang,
2000) Zhang discovered that a camera could be calibrated by
just showing a planar pattern, at a few different orientations to
the camera. Previous available calibration techniques consisted
of using precisely fabricated 3D objects with painted patterns
which were expensive to make and not very practical to use.

3. Self Calibration Procedure

We estimate the intrinsic and extrinsic parameters in two con-
secutive steps.

3.1 Intrinsic parameters calibration

As most of the current calibration methods our calibration sys-
tem is based on the following procedure:

1. Collect k images, each one framing a checkerboard with
m internal corners from different point of views

2. List the m 3D corner positions P0, P1, P2, ..., Pm−1 in the
checkerboard reference frame

3. From each image i, extract the m 2D corners projections

4. Associate P0 with pi,0, P1 with pi,1, . . . , Pm with pm,1

5. Initialize the calibration parameters by solving a linear
system with k constraints given by the k estimated homo-
graphies projective mappings

6. Initialize the k checkerboard positions with the rotations
and translations extracted from the (normalized) homo-
graphies

7. Find the intrinsic parameters set along with the camera po-
sitions with respect to the checkerboard that minimize the
squared distances in the image space between extracted
corners and corners projections, using conventional least
square methods.

3.2 Extrinsic Parameters Calibration

Given the intrinsic camera parameters we fix the reference
frame of the camera ring device so that it is coincident with the
reference frame of a chosen camera, say the camera with ID 0.
Therefore, we estimate the n− 1 rigid body transformations Ti

that relate the other n− 1 cameras to the camera 0. To estimate
Ti, i = 1, . . . , n− 1 we designed the following procedure:

1. For each camera i and for each view of the checkerboard,
we solve a perspective-n-point (PNP) problem to estim-
ate the relative rigid body transformation that relates the
checkerboard with such a camera. We use here the in-
trinsic parameters estimated in the previous step

2. If two nearby cameras frame the checkerboard at the same
time, given the transformations computed in point 1, it is
possible to compute the relative rigid body transformation
that relates such a couple of cameras, e.g., Ti,j

3. From the transformations Ti,j it is possible to compute in a
closed form an initial guess for Ti = T0,1 ·T0,1 · . . . ·Ti−1,i

4. Find the extrinsic parameters Ti that minimize the squared
distances in the image space between extracted corners and
corners projections, using conventional least square meth-
ods. We use here the intrinsic parameters estimated in the
previous step

The method presented above allows for consistent and accurate
calibrations. Unfortunately, the procedure for acquiring the cal-
ibration dataset is manual, time-consuming, and must be per-
formed by an experienced operator who moves the checker-
board to a set of suitable and fixed positions To perform auto-
mated calibration we employ a multi-board pattern (Fig. 2) that
allows maximizing the distribution of corners over the image
and that, at the same time, can be moved in a convenient and
automatic way to obtain an adequate distribution of checker-
boards positions. It allows to retain all the benefits of the meth-
ods employing planar surfaces in contrast to 3D calibration ob-
jects, i.e a relatively cheaper calibration apparatus and a simple
setup. Additionally the conformation of the multi-board pat-
tern, the number of rotations and the axis of rotation can be eas-
ily adjusted to better fit other camera configurations. Our multi-
board model is made up of two groups of 3 opposite boards. In
each group, two of the three boards are tilted vertically (Fig. 2).
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Figure 2. Calibration pattern. The pattern rotates along the
highlighted axis.

The 6 tables are installed on a rotating pin, so as to generate
different horizontal inclinations by rotating the pin. In order
to distinguish the checkerboards, each board is characterized
by a unique pattern of white circles drawn inside specific black
squares. We commanded the system to perform a sequence of
synchronized acquisitions rotating the movable pattern of a 12
degrees steps, until a total rotation of 360 degrees was obtained.
The corners extraction algorithms have been modified accord-
ingly to detect more than one checkerboard per image and to
recognize the unique pattern of white circles. To minimize the
changes to the default procedure and hence to keep unchanged
the backbone of the method the new dataset has been loaded
in such a way as to simulate the presence of a single checker-
board. Multiple checkerboards in single images were simply
considered as a single checkerboard framed in different posi-
tions (and times).

4. COLMAP framework overview

We’ll briefly review in this section the COLMAP frame-
work (Schönberger et al., 2016) which our method is based on.
Given as input a reference image Xref and a set of source im-
ages Xsrc = {Xm|m = 1...M}, the framework estimates for
each pixel l the depth θl, the normal nl and binary variables
Zm

l ∈ {0, 1} which indicates if the pixel l is occluded in image
m. The joint likelihood function P (X,Z,Θ, N) is accordingly
defined as:

L∏
l=1

M∏
m=1

[P (Zm
l,t|Zm

l−1,t, Z
m
l,t−1)

· P (Xm
l |Zm

l , θl, nl)

· P (θl, nl|θml , nm
l )]

(1)

The smooth term P (Zm
l,t|Zm

l−1,t, Z
m
l,t−1) enforces spatially

smooth output occlusion maps. The second term represents
the photometric consistency of the patch Xm, expressed as:
where the color similarity ρml is computed using a bilateral
NCC and a slanted plane-induced homography The last term
P (θl, nl|θml , nm

l ) encourages consistency among the output
depth and normal maps of different views. The equation 1,
being intractable is approximated and plugged inside a variant
(GEM) of the generalized Expectation-maximization (EM) al-
gorithm. The real posterior P (Z,Θ, N |X) is factorized in its
approximation q(Z,Θ, N) = q(Z)q(Θ, N). During the iter-
ation t of the E step of GEM the term q(Zm, l, t) is inferred,
while the values (Θ, N) are kept fixed. In the M step, instead,
PatchMatch propagation and sampling are used to choose the

optimal depth and normal. From the set of hypothesis:

{(θl, nl), (θ
prp
l−1, nl−1), (θ

rnd
l , nl), (θl, n

rnd
l ),

(θrnd, nrnd), (θprtl , nl), (θl, n
prt
l )}

(2)

where θrnd
l is a randomly generated depth value and θprtl is the

perturbated depth value, the tuple (θ, n) satisfying:

(θopt, nopt) = argmin
θ∗
l
,n∗

l

1

|S|
∑
m∈S

(1− ρml (θ∗l , n
∗
l )) (3)

is selected for the pixel l.

5. Multi-view Stereo 3D Reconstruction Pipeline

Figure 3 shows the main elements of the proposed multi-view
reconstruction pipeline. The point cloud estimation is the main
step of the proposed 3D reconstruction pipeline. The core al-
gorithm is based on the multi-view stereo (MVS) method pro-
posed in (Schönberger et al., 2016). A depth map and a normal
map are computed for each camera view by using the multi-
view patch matching approach (Bleyer et al., 2011). The es-
timated depth and normal maps are then fused together for final
point cloud computation using the graph-based technique used
in (Schönberger et al., 2016). As depicted in Fig. 3, we ex-
tend the COLMAP framework by performing several MVS es-
timations considering input scaled at multiple resolutions. We
define N as the total number of scales, then the spatial resolu-
tion of the image at the kth stage is defined as W

2N−k × H
2N−k .

The idea is that from lower-resolution images we can estim-
ate the rough 3D structure while being robust to noise; from
higher-resolution images, instead, we can focus on details im-
proving the overall quality of the reconstruction. We run the
COLMAP framework starting from the low resolution images.
The output depth and normal maps are used to initialize the
depth and normal hypothesis for the higher resolution images.
Additionally this procedure allow to make the method converge
faster. While the number of processed images increases, depth
and normal maps from lower resolution samples are generated
faster while upsampling the results of the previous scale ki−1 to
initialize the hypothesis of the current scale k makes the method
converge much faster achieving an overall speedup. Exploiting
the fact that object must be inside the operative region of the
camera ring, to further reduce the computational time required
to obtain the final outpoint point cloud, we use the meshes ob-
tained from the low resolution scale to generate a bounding box
around the object for each image. After generating the mesh at
scale k0 we backproject its silhouette for each input image. The
image is cropped to the bounding box containing the generated
2D mask and the corresponding camera parameters are modi-
fied accordingly. The generated 3D point clouds (one for each
resolution) are then fused together by using a custom Cluster-
ing Filter, which removes redundant points on lower resolution
point clouds.
The output from the point cloud estimation step is a high res-
olution dense point cloud that is typically affected by noise and
outliers (Fig. 4-left). In order to improve the quality of the re-
construction and to reach sub-millimeter accuracy, in the post-
processing step, the estimated point cloud is processed by ex-
ploiting a Statistical Outlier Removal filter (Fig. 4-middle).
Once most of the outliers are removed, the 3D mesh can be
computed from the point cloud by using the Screened Poisson
Surface Reconstruction algorithm (Kazhdan and Hoppe, 2013).
In order to further reduce noise in the estimation, a Laplacian
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Figure 3. Multi-view stereo reconstruction pipeline.

Smoothing (Sorkine et al., 2004) is applied to the 3D mesh. Fi-
nally, the final reconstructed 3D mesh is shown in Fig. 4-right.

Figure 4. Example of result cloud (left) post-processing (center)
and meshing (right).

6. Experiments

6.1 Calibration

We implemented the auto-calibration algorithms in C++, using
the OpenCV library for image processing and the Ceres lib-
rary for non-linear optimization. We validated the full auto-
calibration submodule by using a set of six checkerboards each
one composed of 12 x 5 internal corners, with a square size
of 37 mm. We ran the system on the data collected following
a total rotation of 360 degrees, finding that the system is able
to correctly extract the corners of most framed checkerboards,
distinguishing between different checkerboards. The conform-
ation of the multi-board pattern combined with the movement
around the axis allows to obtain an optimal corners distribution
within the images of each camera (Fig. 5). In the intrinsic calib-
ration procedure, we obtained a root mean square reprojection
error of 0.32 pixels and a maximum reprojection error of 0.38

Figure 5. Corners distribution, obtained by means of kernel
density estimation, i.e. a simplified version of the

Parzen–Rosenblatt window method, using a Gaussian kernel
with standard deviation of 30 pixels

pixels. In the extrinsics calibration procedure, we obtained a
root mean square reprojection error of 0.24 pixels and a max-
imum reprojection error of 0.33 pixels.

6.2 Multi-view Stereo

The experimental evaluation has been performed on data ac-
quired by using the custom-built camera ring device with 16
gray-scale cameras (2880x2160 px image size) with Intel Core
i7-12700KF, 16 GB of RAM and a Nvidia 2060.

Some quantitative results are shown in Table 1. Moreover, in
Table 1 a comparison with the original COLMAP implement-
ation is provided, showing a sensible improvement in terms of
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Figure 6. Left: Visualization of ground truth (red) and reconstructed (green) point clouds. Middle: Euclidean distances histogram.
Right: Graphical visualization of distances on the reconstructed model (increasing distance values from red to blue).

Figure 7. 3D reconstruction results (i.e., of fake and real human body parts) with the proposed multi-view stereo pipeline.

Average Euclidean Distance Hausdorff Distance Chamfer Distance Runtime GPU memory
COLMAP 1mm 11.3mm (1.4mm)2 ∼ 115sec ∼ 1GB

Ours 0.9mm 9.6mm (1.3mm)2 ∼ 40sec ∼ 1GB

Table 1. 3D reconstruction’s experimental evaluation.

accuracy of the reconstruction and runtime.
Preliminary tests show that our method can The quantitative
evaluation has been performed on a test set of 30 different ac-
quisitions of fake limbs (arm and leg) that have been appropri-
ately 3D printed, of which we have the 3D CAD models (used
as ground truth).
Some qualitative results of our approach are shown in Fig. 7.

7. Conclusions

In this paper, we introduced a custom-built low-cost 3D recon-
struction system capable of extracting 3D models of small and
medium objects. Human limbs, which are the main target for
the 3D reconstruction of the proposed device, represent a crit-
ical challenge for classical MVS systems due to the repetitive
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pattern of the skin. We proposed a pyramidal approach to im-
prove over COLMAP, a robust MVS framework, and to reduce
the time required to extract the mesh of the scanned object.
In order to reduce costs and human intervention we propose an
automatic calibration system which can extract with good preci-
sion the camera parameters needed to perform an accurate MVS
reconstruction. The layout of the checkerboards was chosen,
through empirical tests, in order to maximize the number of
corners projected in each camera and coverage. The proposed
method, however, allow to perform calibration with different
layouts which can be adjusted accordingly to the disposition of
the cameras. Quantitative and qualitative performance evalu-
ation for both automatic calibration and mvs approaches, that
includes a comparison with a state of the art method, shows the
effectiveness of the proposed framework.
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