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Abstract

Whereas emerging learning-based scene representations are predominantly evaluated based on image quality metrics such as PSNR,

SSIM or LPIPS, only a few investigations focus on the evaluation of geometric accuracy of the underlying model. In contrast to only

demonstrating the geometric deviations of models for the fully optimized scene model, our work aims at investigating the geometric

convergence behavior during the optimization. For this purpose, we analyze the geometric convergence of discretized density

fields by leveraging respectively derived point cloud representations for different training steps during the optimization of the scene

representation and their comparison based on established point cloud metrics, thereby allowing insights regarding which scene

parts are already represented well within the scene representation at a certain time during the optimization. By demonstrating that

certain regions reach convergence earlier than other regions in the scene, we provide the motivation regarding future developments

on locally-guided optimization approaches to shift the computational burden to the adjustment of regions that still need to converge

while leaving converged regions unchanged which might help to further reduce training time and improve the achieved quality.

1. Introduction

Based on combining principles of machine learning, image

formation and image synthesis, recently emerging scene rep-

resentations such as Neural Radiance Fields (NeRFs) (Milden-

hall et al., 2020) or 3D Gaussian Splatting (3DGS) (Kerbl et

al., 2023) are designed to optimize a scene representation in

terms of weights of a neural network (in the case of NeRFs)

or primitives like 3D Gaussians (in the case of 3DGS) in a su-

pervised manner to match its predicted scene appearance un-

der certain views to the respectively observed input image data

for the corresponding view configurations. Whereas 3DGS has

been demonstrated to allow efficient, high-quality scene render-

ing for novel viewpoints, it faces limitations regarding compact

scene representation and accurate surface representation due to

the large number of Gaussians needed to accurately represent

a scene as well as the lacking capability of Gaussians to rep-

resent certain geometric characteristics of scenes such as flat

surfaces or sharp edges. In contrast, the use of a neural net-

work within NeRFs to predict local density and view-dependent

color densely in the scene volume allows focusing the weights

to better approximate complex aspects of the scene in a com-

pact scene representation, thereby allowing the derivation of

dense point clouds that capture complex scene features. Unfor-

tunately, training NeRFs comes with long training times ran-

ging from hours to days as well as long inference times for

novel view synthesis. Therefore, several subsequent works fo-

cused on accelerating the training of NeRFs (Deng et al., 2022;

Sun et al., 2022; Chen et al., 2022; Fridovich-Keil et al., 2022),

culminating in approaches with training times in the order of

seconds to minutes as proposed with the Instant-NGP (iNGP)

approach (Müller et al., 2022). Methods like Nerfacto (Tan-
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cik et al., 2023) and Zip-NeRF (Barron et al., 2023) incorporate

techniques from iNGP for training time efficiency, however, ad-

ditionally tackle problems like reducing aliasing.

Whereas local density gives an indication of the local pres-

ence of matter and the respective transparency of that volu-

metric point and, hence, of the geometric structure in a scene,

its combination with view-dependent color information determ-

ines view-dependent scene appearance. Whereas scene repres-

entation and rendering approaches are typically evaluated based

on image-based metrics such as PSNR, SSIM or LPIPS, only a

few approaches focus on evaluations of the geometric accur-

acy of the underlying model (Remondino et al., 2023; Haitz et

al., 2024). When focusing on the inference of geometric scene

structures, we have to take into account that the density inform-

ation may be blurred and, in turn, a decision boundary needs

to be implemented for determining where a ray intersects with

present objects. Since this information can be beneficial for

training, proposal networks can be trained within an end-to-end

approach for receiving potential surface intersections (Barron

et al., 2022; Tancik et al., 2023). In order to extract a point

cloud from a trained NeRF, rays from known poses can then

be constructed for all possible pixel positions of the corres-

ponding image with its camera intrinsics. Depth rendering is

executed by integrating the density, reformulated as weights,

of the ray up to the position where the accumulated weights

reach a certain value, which is set to 0.5 in Nerfstudio (Tan-

cik et al., 2023). In order to get insights on further reducing

training time and improving the achieved quality, we investig-

ate the geometric convergence behavior of discretized density

fields to analyze which scene characteristics are already rep-

resented well within the scene representation at a certain time

during the optimization. The discretization is applied two-fold:

(i) Inferring point clouds as explicit geometric scene represent-
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ations from the NeRF model, and (ii) inferring point clouds at

different training iteration steps s throughout training, whereby

the steps s follow a logarithmic distribution over a range of 30k

steps. We refer to training iteration steps as only steps through-

out the rest of this work. Through a quantitative analysis in the

form of point cloud comparisons in the course of the training

process based on widely used point cloud distance metrics as

well as a qualitative analysis in terms of visualizations of point

clouds and respective deviations at different steps s we provide

a study for the geometric convergence behavior of NeRFs. In

particular, we demonstrate that certain regions reach conver-

gence earlier than other regions in the scene, thereby motivat-

ing the future development of locally-guided optimization ap-

proaches. By this, the overall training time can be reduced with

respect to a certain target metric or the overall quality can be

improved.

2. Related Work

In recent years, neural scene representation and rendering tech-

niques have gained a lot of attention for scene modeling and

novel view synthesis (Tewari et al., 2020; Tewari et al., 2022).

In particular, Neural Radiance Fields (NeRFs) (Mildenhall et

al., 2020) and respective extensions (Tewari et al., 2022) have

been demonstrated to offer a high potential for accurate scene

representation. Major extensions focus on improving render-

ing quality and, hence, also model quality by reducing ali-

asing (Barron et al., 2021; Wang et al., 2022; Barron et al.,

2022; Barron et al., 2023) as well as the acceleration of the

training of the underlying network (Müller et al., 2022; Chen

et al., 2022), enabling the inference of scene models within

seconds (Müller et al., 2022). Further approaches focused on

improving robustness to inconsistencies in the input data (Sa-

bour et al., 2023; Buschmann et al., 2025), handling photo col-

lections taken in-the-wild (Martin-Brualla et al., 2021), hand-

ling large-scale scenarios (Tancik et al., 2022; Turki et al., 2022;

Xiangli et al., 2022; Mi and Xu, 2023; Xie et al., 2023; Xu

et al., 2024; Chen et al., 2024), real-time training with fast

point cloud extraction (Haitz et al., 2023) and the refinement

or complete estimation of camera pose parameters for the in-

put images (Yen-Chen et al., 2021; Wang et al., 2021b; Lin

et al., 2021; Jeong et al., 2021; Bian et al., 2023; Chen and

Lee, 2023). Whereas conventional photogrammetric techniques

still outperform NeRF and respective variants in case of well-

textured and partially textured objects (Remondino et al., 2023;

Hillemann et al., 2024), NeRF approaches outperform conven-

tional approaches for challenging scenarios (Condorelli et al.,

2021; Balloni et al., 2023; Pepe et al., 2023; Llull et al., 2023;

Remondino et al., 2023) including texture-less, metallic, highly

reflective, and transparent objects. Recent NeRF extensions

even allow the detection and appropriate handling of mirror-

ing surfaces in scenes (Holland et al., 2025). Alternatives to

the involvement of a network to predict volumetric fields for

density and view-dependent color information include the rep-

resentation of scenes in terms of implicit surfaces (Wang et al.,

2021a; Wang et al., 2023; Ge et al., 2023) as well as explicit

representations in terms of meshes (Munkberg et al., 2022) or

3D Gaussians (Kerbl et al., 2023).

The aforementioned scene representation and rendering ap-

proaches are typically evaluated based on generating synthes-

ized views from certain test configurations and subsequently

evaluating the quality of the synthesized images using image-

based metrics such as PSNR, SSIM or LPIPS. Thereby, the

reported values typically correspond to the average across the

generated views for the test configurations. Instead, several ap-

plications also rely on the geometric accuracy of the underlying

model. Whereas only few investigations include evaluations of

the achieved geometric accuracy, e.g. (Remondino et al., 2023;

Haitz et al., 2024; Hillemann et al., 2024), these only depict

the final deviations from ground truth models, but not the geo-

metric convergence throughout the training process. Our study

particularly investigates the latter aspect of geometric conver-

gence behavior during the NeRF optimization process. Reach-

ing geometric convergence at different times for different re-

gions would mean that such regions should then not be further

optimized. Similar to seminal works on image denoising based

on deep image priors (Ulyanov et al., 2018), that rely on fitting a

neural network to represent a single image, we demonstrate that

convergence is reached at different timesteps for different re-

gions of the scene. Thereby, our study motivates future develop-

ments on adaptively freezing the optimization of certain regions

that have already converged in the reconstruction and spending

the later optimization steps on refining uncertain regions, sim-

ilar to locally-guided image denoising approaches (Bode et al.,

2022).

3. Methodology

In this study, we investigate the geometric convergence beha-

vior during the NeRF optimization process. Thereby, we intend

to analyze whether convergence is reached earlier for certain re-

gions in the scene than for other regions, which could motivate

future locally-guided geometric optimization.

3.1 Neural Radiance Fields

Given a set of N input images with corresponding camera

parameters (i.e. camera intrinsics and pose), Neural Radi-

ance Fields (NeRFs) (Mildenhall et al., 2020) aim at novel

view synthesis by optimizing an underlying continuous volu-

metric scene function. Using a feed-forward network to pre-

dict view-dependent radiance c(x,d) ∈ R
3 and volume density

σ(x) ∈ R for a given spatial 3D location x ∈ R
3 and the view

direction d ∈ R
3, the color observed in a particular pixel in the

image is obtained by integrating along the respective viewing

ray r(t) = o + td in the volume, where the origin o of the

ray coincides with the projective center of the camera. For this

integration, the conventional NeRF approach (Mildenhall et al.,

2020) exploits the sampling of K ∈ N positions t1, ..., tK ∈ R

along the ray (Max, 1995). This allows optimizing the underly-

ing neural network based on a loss function that penalizes the

deviations of the synthesized images from their corresponding

reference images, where the original formulation leverages the

mean squared error between the rendered color Ĉ(r) and the

corresponding color C(r) from the input image for a batch of

camera rays.

3.2 Geometric Convergence of NeRFs

In order to early detect geometrically converged scene struc-

ture at training time for a NeRF model, we investigate spatial

changes at different subsequent training steps. For this pur-

pose, we use point clouds as a discrete geometric scene rep-

resentation, derived from the NeRF model as described in the

following. The highest training signals in the form of back-

ward gradients usually occur within the first 10% of the training

steps. Therefore, we extract point clouds at a higher frequency

in the beginning phase of the training, achieved through an em-

pirically determined log10-based distribution of write-out-steps
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S. We follow the median-based method in Nerfstudio (Tancik

et al., 2023) for depth rendering and subsequent point cloud

extraction. Therefore, weights wi along each ray are created

based on the density σi at each sampled position i on the ray

with a distance δi between neighboring samples according to:

wi = (1− exp(−δiσi)) · exp

(

−

i−1
∑

j=1

δjσj

)

(1)

Based on the computed weights at each sample position i, the

median position is utilized as the depth d at pixel position (x, y).

Given this depth estimate obtained per ray, we can backproject

the color information to a 3D point, thereby creating a colored

point cloud P . As implemented in the original NeRF (Mild-

enhall et al., 2020), depth per pixel can also be obtained via

expected depth, which is based on the actual volume rendering

procedure and computes the weighted sum of sample-point dis-

tances along the ray, divided by the total weight. The expected

depth is also available in Nerfstudio (Tancik et al., 2023) as an

alternative to the median depth computation.

In our experiments, however, the median and expected depth

methods showed similar deviations with respect to a reference

scan (e.g. as provided in the Tanks and Temples datasets (Knap-

itsch et al., 2017)) for the overall point cloud. We observed the

median-based depth estimation to be slightly more robust than

the approach based on expected depth, which motivated us to

focus on using the median-based approach.

In order to compare the progression of the geometric conver-

gence over training time, we calculate point-to-point distance

metrics. The point cloud P , generated from the optimized

NeRF, is set as the reference point cloud to which the inter-

mediate point clouds Qs are compared. For that matter, the

distance metrics are calculated from Qs to P . We utilize the

mean L2 distance dL2 as well as the median and standard de-

viation (std). Besides that, we also compute the Chamfer and

Hausdorff distances dc and dh for comparison:

dL2(Qs,P) =
1

|Qs| · |P|

∑

x∈Qs

∑

x
′∈P

∥x′ − x∥2 (2)

dc(Qs,P) =
1

|Qs|

∑

x∈Qs

min
x
′∈P

∥x− x
′∥+

1

|P|

∑

x
′∈P

min
x∈Qs

∥x′ − x∥

(3)

dh(Qs,P) =
1

2
max
x∈Qs

∥x− NN(x,P)∥+

1

2
max
x
′∈P

∥x′ − NN(x′
,Qs)∥

(4)

with

NN(x,P) = arg min
x
′∈P

∥x− x
′∥. (5)

Equations (2)-(5) are referenced in (Williams, 2022) and (Zhou

et al., 2018), from which the software implementations were

used for our comparisons.

(a) (b)

(c) (d)

Figure 1. Sample images of the four training datasets with

number of images in braces: (a) Barn (410), (b) Caterpillar

(383), (c) Storefront (1030) and (d) Vegetation (463).

4. Experiments

For the experiments, we use two scenes (i.e. Barn and Cater-

pillar scenes (see Figures 1(a) and 1(b))) from the Tanks and

Temples dataset (Knapitsch et al., 2017) as well as two scenes

(i.e. the Storefront and Vegetation scenes (see Figures 1(c) and

1(d))) from the Nerfstudio dataset (Tancik et al., 2023). Camera

poses and intrinsics for all scenes were obtained via the imple-

mentation of Structure-from-Motion in COLMAP (Schönber-

ger and Frahm, 2016). Furthermore, we train the Nerfacto

model with default parameters and set the number of training

steps to 30k. All results are based on the subset of intermedi-

ate steps S = {78, 240, 499, 1073, 10123, 29999}, whereby

29999 denotes the last step and therefore corresponds to the

reference point cloud P . At each intermediate step s, a point

cloud Qs is generated from the Nerfacto model according to

the procedure described in Section 3.

5. Results

The results of the previously described experiments are shown

qualitatively in Figures 2-9 as screen captures of point clouds

and color-encoded point cloud distances, respectively. For

quantitative comparison, we provide respective results for the

distance metrics represented by Equations (2)-(4) in Tables 1-

4. Note that we omit step 29999 in the tables since both point

clouds are identical in that case.

mean median Chamfer Hausdorff

#steps distance std distance distance distance

78 0.02357 0.02796 0.01462 0.02810 0.38339

240 0.01630 0.02197 0.00813 0.02069 0.37498

499 0.01421 0.02167 0.00625 0.01780 0.37986

1073 0.00758 0.01265 0.00351 0.01046 0.37078

10123 0.00118 0.00152 0.00078 0.00221 0.34503

Table 1. Distance measures between the reference point cloud of

the Barn scene and the point clouds obtained for different steps.

6. Discussion

For all quantitative results in Tables 1-4 the observation can be

drawn, that the distance of the point clouds derived for sub-

sequent steps s ∈ S reduces with respect to the reference point
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(a) (b) (c)

(d) (e) (f)

Figure 2. Extracted point clouds for the Barn scene at steps s: (a) 78, (b) 240, (c) 499, (d) 1073, (e) 10123, (f) 29999. Subfigure (f)

shows the point cloud after the last training step.

(a) (b) (c)

(d) (e) (f)

Figure 3. Differences in L2 distance from Qs to P at steps s of the Barn scene: (a) 78, (b) 240, (c) 499, (d) 1073, (e) 10123, (f)

29999. Red color indicates high differences, green low differences. Note that the last subfigure shows a self-comparison and is

depicted for completeness only.

cloud derived from the fully trained NeRF. Within the first 1000

steps, the scene geometry undergoes a comparatively larger

change than in the following 9000 steps, meaning the geomet-

mean median Chamfer Hausdorff

#steps distance std distance distance distance

78 0.03245 0.04609 0.01595 0.04576 0.54157

240 0.02309 0.03774 0.00989 0.03378 0.55355

499 0.02022 0.03252 0.00861 0.02691 0.53502

1073 0.01358 0.02381 0.00490 0.01877 0.51768

10123 0.00227 0.00556 0.00099 0.00415 0.37694

Table 2. Distance measures between the reference point cloud of

the Storefront scene and the point clouds obtained for different

steps.

mean median Chamfer Hausdorff

#steps distance std distance distance distance

78 0.04264 0.07927 0.01462 0.04964 0.79381

240 0.01197 0.03617 0.00393 0.01809 0.78457

499 0.00808 0.02697 0.00266 0.01333 0.76313

1073 0.00595 0.02074 0.00198 0.00975 0.74919

10123 0.00155 0.00346 0.00092 0.00284 0.74306

Table 3. Distance measures between the reference point cloud of

the Caterpillar scene and the point clouds obtained for different

steps.

mean median Chamfer Hausdorff

#steps distance std distance distance distance

78 0.04122 0.05307 0.01909 0.06979 0.70703

240 0.02737 0.04150 0.01045 0.05273 0.52334

499 0.01957 0.03351 0.00705 0.03866 0.50020

1073 0.01540 0.03134 0.00531 0.02987 0.50358

10123 0.00340 0.00606 0.00198 0.00613 0.39375

Table 4. Distance measures between the reference point cloud of

the Vegetation scene and the point clouds obtained for different

steps.

ric convergence behavior is not linear. Changes between steps

10123 and 29999 mostly correspond to noise removal and slight

adaptation of scene surfaces.

For the Barn scene, Table 1 depicts that almost all distance val-

ues decrease over training time. Steps 240 and 499 show a

small increase in the Hausdorff distance. As the difference is

comparably small, this can be attributed to the strong geomet-

ric variation that occurs in the early training phase, because the

values then again drop further as training progresses. From the

quantitative results of Table 1, the conclusion can be drawn that

most geometric change happens within the first 1000 training

steps to varying degrees. The qualitative results in Figures 2

and 3 reflect the quantitative results. As mentioned above, from

step 78 to 1073, the scene is represented barely recognizable

at first (cf. Figure 2(a)), then with a lot of wave-like surface

approximation, until at step 1073 (cf. Figure 2(d)) the scene

becomes pronounced in geometry. An interesting observation

is that between step 10123 and the last step there seem to be

only few visible changes, even though the former represents the

training progress at only around 30%. In Figure 3, the point-to-

point L2 distances are visualized, from which the mean, std and

median metrics in Table 1 are derived. Similar observations can

be obtained for the other considered scenes as becomes visible

from the Figures 4-9.

Generally, we can identify an initial rapid evolution from a very

noisy representation across the whole scene to a low-frequency

representation of the most significant structure of the underly-

ing scene. In the following steps, the noise is gradually removed

whereas significant scene structures get more and more refined.

From the visual depictions, it seems as if the scene parts around

more significant edges and boundaries seen from multiple views

tend to converge earlier.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Extracted point clouds for the Storefront scene at steps s: (a) 78, (b) 240, (c) 499, (d) 1073, (e) 10123, (f) 29999. Subfigure

(f) shows the point cloud after the last training step.

(a) (b) (c)

(d) (e) (f)

Figure 5. Differences in L2 distance from Qs to P at steps s of the Storefront scene: (a) 78, (b) 240, (c) 499, (d) 1073, (e) 10123, (f)

29999. Red color indicates high differences, green low differences. Note that the last subfigure shows a self-comparison and is

depicted for completeness only.

7. Conclusion

In this paper, we have investigated the geometric convergence

behavior of NeRFs during the optimization of the underlying

neural network in the training stage. For this purpose, we have

derived discretized density fields in terms of point clouds cor-

responding to specific training iteration steps.

The comparison of those point clouds allows reasoning about

which scene characteristics have reached convergence within

the scene representation at a certain time step during the op-

timization. Since certain regions in the scene reach conver-

gence earlier than other regions, future developments will be

dedicated to locally-guided optimization to shift the computa-

tional burden to the adjustment of regions that need to converge

further while leaving already converged regions unchanged.

Thereby, a further reduction of training time may be achieved

as well as an improvement of the resulting quality.
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Figure 8. Extracted point clouds for the Vegetation scene at steps s: (a) 78, (b) 240, (c) 499, (d) 1073, (e) 10123, (f) 29999. Subfigure

(f) shows the point cloud after the last training step.
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Figure 9. Differences in L2 distance from Qs to P at steps s of the Vegetation scene: (a) 78, (b) 240, (c) 499, (d) 1073, (e) 10123, (f)

29999. Red color indicates high differences, green low differences. Note that the last subfigure shows a self-comparison and is

depicted for completeness only.
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