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Abstract

In a perspective projection, a circular target appears as an ellipse for an oblique view. The ellipse center as a result of the image
coordinate measurement differs from the projection of the circle center. This discrepancy is called eccentricity and may lead to
systematic errors. This contribution discusses four different correction methods that can be applied on the observation or the model
side. The last method includes the determination of the circle radius and thus also offers a possibility to define the scale. The
correction procedures are applied in an experiment with high eccentricities where the remaining error is significantly reduced. In
another experiment, the precision and accuracy of the scale definition is investigated.

1. Introduction

In photogrammetry, circular targets are often used for high ac-
curacy 3D object point coordinate determination applications
due to the good contrast and well established detection meth-
ods. In non-perpendicular views, a circle appears as an ellipse
when it is mapped in a perspective projection. Mathematically,
this can be seen as a conic section of an oblique cone. In this
projection, the center of the ellipse differs from the projection
of the circle center. This deviation is called eccentricity, and it
will lead to systematic measurement errors if the effect is not
taken into account (Lenz and Fritsch, 1988). The error can be
minimized by the usage of small target sizes, nearly perpen-
dicular viewing directions and large target to camera distances.
(Dold, 1996) proposed a simple expression for the eccentricity
using a 2D scheme. He also computed a simulation to analyze
the influence on the parameter estimation in a bundle adjust-
ment. He observed a slight influence on the residuals and the
object coordinates, but a higher influence on the interior and
exterior orientation parameters. (Heikkilä and Silvén, 1997)
presented a four-step calibration procedure including a direct
linear transformation and a compensation of the eccentricity
of circular features. A 3D extension to Dold’s expression was
given by (Ahn et al., 1999). They also discussed the eccent-
ricity correction with known radii and normals of the circles.
(Otepka and Fraser, 2004) proposed an extended bundle adjust-
ment which took the eccentricity into account and where the
implicit parameters of the image ellipses were used as observa-
tions and circle radii and normals are introduced as unknowns.
(Wrobel, 2012) also considered the perspective projections of
circular targets and discussed different approaches for the math-
ematical description. Another approximation of the eccentricity
correction can be obtained by the usage of targets with con-
centric circles shown by (He et al., 2012) based on the idea of
(Kim et al., 2002). (He et al., 2012) showed that the remain-
ing approximation error is neglectable. (Luhmann, 2014) com-
puted the projections of simulated circle contour points and per-
formed an ellipse fit with the projected points to get the ellipse
center as well as the eccentricity. (Matsuoka and Maruyama,
2016) proposed a complex calculation rule to compute the el-
lipse parameters from a given circle center, radius and normal

as well as interior and exterior orientation.

The article at hand describes the eccentricity mathematically
and provides an extension to the collinearity equations for
circles that the can be used easily (less complex than (Ahn et
al., 1999) and (Matsuoka and Maruyama, 2016)), which will be
shown in Section 2. Then in Section 3, four possible correction
methods are discussed. In the fourth correction procedure, the
radii of the circles are part of the model that can be introduced
as unknowns or, secondly, as constants in a bundle adjustment.
This means that they also can be used for the definition of the
scale which is considered in Section 5. The article ends with a
conclusion.

2. Mathematical Description of the Eccentricity

2.1 Computation of the Ellipse Center

(Dold, 1996) shows in his Eq. 2 a calculation for a 2D scheme
that cannot be used directly to compute the error in 3D in gen-
eral. Based on his idea, the formula will be extended to 3D
similar to (Ahn et al., 1999). First, the circle center X⃗C and
its normal n⃗ (with ||n⃗|| = 1) are transformed into the camera
frame:

n⃗cam = RT · n⃗
X⃗C,cam = RT · (X⃗C − X⃗projC)

(1)

where R = rotation matrix of the camera
X⃗projC = projection center of the camera
X⃗C,cam = circle center in camera frame
n⃗cam = circle normal in camera frame

To compute the coordinates of the projected circle center,
Dold’s method is applied to a special diameter. It is the dia-
meter which is the intersection of the circle and the plane
containing the circle center X⃗C,cam, the circle normal n⃗cam

and the optical axis direction (z direction of the camera frame
( 0 0 1 )T ). The illustration in Fig. 1 shows the projection of
a circle (in magenta) into an image where it appears as an el-
lipse (cyan). The diameter of interest is also depicted in orange.
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The direction vector h⃗ of the diameter in the camera frame
is computed by applying the cross product which is valid for
n⃗cam ̸=

(
0 0 1

)T :

h⃗ = n⃗cam ×
n⃗cam ×

(
0
0
1

)
||n⃗cam ×

(
0
0
1

)
||
=

( ncam,x·ncam,z
ncam,y·ncam,z

−n2
cam,x−n2

cam,y

)
√

n2
cam,x + n2

cam,y

(2)

Thus, the opposite circle points on this diameter are:

X⃗C±R,cam = X⃗C,cam ±RC · h⃗ (3)

where RC = radius of circle

After this, the circle points X⃗C+R,cam and X⃗C−R,cam are pro-
jected into the image:

x⃗C±R,cam = x⃗p − c

ZC±R,cam
·
(
XC±R,cam

YC±R,cam

)
(4)

(a)

(b)

Figure 1. Projection of a circle (magenta) into an image results
as ellipse (cyan). Projected circle center differs from ellipse
center with ||⃗ϵ||. The diameter of interest is colored orange.

(a) shows the 3D projection, (b) shows the corresponding image.

The ellipse center x⃗ell,c is then obtained by averaging the pro-
jected circle points at the ends of the diameter:

x⃗ell,c =
1

2
· (x⃗C+R,cam + x⃗C−R,cam) (5)

Inserting and simplifying yields

xell,c = xp − c · XC,cam · ZC,cam +R2
C · ncam,x · ncam,z

Z2
C,cam −R2

C · (n2
cam,x + n2

cam,y)

yell,c = yp − c · YC,cam · ZC,cam +R2
C · ncam,y · ncam,z

Z2
C,cam −R2

C · (n2
cam,x + n2

cam,y)
(6)

where
(
xell,c, yell,c

)T = ellipse center in image
c = principle distance
xp, yp = principle point coordinates

Eq. 6 is simple to use and shows how to compute the ellipse
center coordinates with a given exterior image orientation, inner
orientation as well as circle center, radius and normal. In the
following, it is called extended collinearity equation for circles.

If Rc = 0 (circle = point) or if n⃗cam =
(
0 0 1

)T (per-
pendicular view), Eq. 6 will lead to the collinearity equations
for points (standard pinhole model), resulting in the projected
circle center coordinates

(
xC,c, yC,c

)T :

xC,c = xp − c · XC,cam

ZC,cam

yC,c = yp − c · YC,cam

ZC,cam

(7)

2.2 Eccentricity Calculation

The eccentricity error is computed by the difference of the el-
lipse center and the projected circle center:

ϵ⃗ =

(
xC,c

yC,c

)
−
(
xell,c

yell,c

)
(8)

Eq. 8 can now be used to calculate the eccentricity for different
scenarios. An example is demonstrated in Fig. 2 where a planar
grid of 5× 5 circles with 20 mm radius is defined with a grid
size of 60 mm. The assumed projection center of the camera
(2048× 2048 px, pixel size: 5.5 µm, focal length: 12 mm) has a
horizontal distance of 120 mm and vertical distance of 330 mm
to the centroid. The optical axis points to the centroid and has
an angle of ≈ 20◦ to the plane’s normal. The computed ellipses
are plotted and the eccentricities are shown as a vector field. In
this case the deviations reach values of up to 3.3 px.

2.3 Eccentricity Approximation

In addition to Sec. 2.2, this section shows an approximation of
the eccentricity because it will be applied in a later section. The
denominator in Eq. 6 can be transformed with the assumption
Z2

C,cam ≫ R2
C :

Z2
C,cam −R2

C · (n2
cam,x + n2

cam,y) ≈ Z2
C,cam (9)

Eq. 6 becomes simplified as follows where the fraction is split:
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(a)

(b)

Figure 2. Example for eccentricity: (a) grid of circles (with
centers and normals) and camera orientation, (b) image with

projected ellipses and eccentricities as vector field.

xell,c ≈ xp − c · XC,cam

ZC,cam︸ ︷︷ ︸
=xC,c

− c ·R2
C · ncam,x · ncam,z

Z2
C,cam︸ ︷︷ ︸

=ex≈ϵx

yell,c ≈ yp − c · YC,cam

ZC,cam︸ ︷︷ ︸
=yC,c

− c ·R2
C · ncam,y · ncam,z

Z2
C,cam︸ ︷︷ ︸

=ey≈ϵy

(10)

The left parts of the right hand side are the coordinates of the
projected circle center x⃗c,c and the right parts are summarized
in ex ≈ ϵx and ey ≈ ϵy that represents an approximation for
the eccentricity.

ϵ⃗ ≈ e⃗ =
c ·R2

C · ncam,z

Z2
C,cam

·
(
ncam,x

ncam,y

)
(11)

The approximation in Eq. 11 shows the dependencies of the
eccentricity e ≈ ϵ.

• e is proportional to the principle distance: e ∼ c,

• e is proportional to the squared radius: e ∼ R2
C ,

• e is inversely proportional to the squared z coordinate in
the camera frame: e ∼ Z−2

C,cam,

• e can be eliminated for a perpendicular view:
ncam,x = ncam,y = 0.

3. Eccentricity Correction Methods

This section shows four different correction methods for the ec-
centricity. The first two are applied on the observation side and
the last two on the model side. An observation-side correction
means that an offset is added to the observed ellipse center to
eliminate the systematic error when using the pinhole model.
In contrast to this, a model-side correction modifies the pinhole
model so that the output of the mapping process is the ellipse
center instead of the projected circle center.

3.1 Image Coordinate Correction with Radius and Nor-
mal

The correction in this section is applied on the observation side
using Eq. 11 (or Eq. 8) where the normal directions and the radii
of the circular targets must be known. In case of a space resec-
tion or a bundle adjustment, the interior and exterior orienta-
tions can be obtained without eccentricity correction in a first
step. After this, the corrections are computed with the results
of step one. The corrections can also be updated in further iter-
ations. This method is suitable for special cases such as planar
test fields, where the normals can be obtained by a plane fit.
Another possibility is the use of a test field with target groups
of at least three coplanar targets so that the normals can be cal-
culated as triangle normals that was also proposed by (Ahn et
al., 1999).

3.2 Correction with Concentric Circle Targets

(He et al., 2012) proposed a procedure where the eccentricity
can be corrected approximately with the help of the measure-
ment of the ellipse centers of two concentric circles and the
knowledge of their radii. The correction is also derived here us-
ing the approximation of Sec. 2.3. For concentric circles, Eq. 11
only differs in the radii Rc,1 and Rc,2, and the following system
can be set up:

x⃗ell,c,1 ≈ x⃗C,c − e⃗1

x⃗ell,c,2 ≈ x⃗C,c − e⃗2

ex,1
ex,2

=
ey,1
ey,2

=
R2

C,1

R2
C,2

or e⃗1 =
R2

C,1

R2
C,2

· e⃗2
(12)

The third equation is inserted in the first and then, the first two
equations are solved for x⃗c,c. The solution is

x⃗C,c ≈ x⃗ell,c,1 +
x⃗ell,c,2 − x⃗ell,c,1

1− (
RC,2

RC,1
)2

(13)

With Eq. 13, the projected circle center can be estimated with
the two ellipse center measurements and the knowledge of the
ratio of the radii. The right term in Eq. 13 represents the ap-
proximation for the eccentricity correction for the first ellipse
measurement, see Eq. 14. Note that the correction can be com-
puted without the knowledge of the circle normal.

ϵ⃗1 ≈ e⃗1 =
x⃗ell,c,2 − x⃗ell,c,1

1− (
RC,2

RC,1
)2

(14)
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Fig. 3 shows an example with two ellipse measurements (red
and green) and the corrected point (blue cross) that represents
the projected circle center. In the center of the circular target, a
black cross was printed that can also be seen.

Figure 3. Eccentricity correction with ellipse measurements of
two concentric circles, inner ellipse and their center in red, outer

ellipse in green, corrected coordinate in blue.

3.3 Model-side Correction with Normal and Radius

Another way to take the eccentricity into account is the adaption
of the pinhole model. For this correction on the model side,
the standard pinhole model is replaced with Eq. 1 and Eq. 6
so that the ellipse center from the circle projection is computed
directly. Just like in Sec. 3.1, the circle normal and radius have
to be known and there are only special cases, where the normals
can be estimated, see Sec. 3.1.

3.4 Extended Bundle Adjustment

The fourth procedure, that takes the eccentricity into account,
follows the idea of an extended bundle adjustment similar to the
method of (Otepka and Fraser, 2004). They used the implicit el-
lipse parameters of the image measurements to obtain the circle
center coordinates, the normal and the radius as unknowns in a
bundle adjustment. In the article at hand, the extended bundle
adjustment is performed in a different way where in addition to
the ellipse center coordinates, the semi-minor and semi-major
axes lengths are used as observations. The lens distortion can
also be considered. In contrast to Section 3.3, this algorithm is
not limited to special cases because the circle normals as well
as the circle radii belong to the unknowns that are computed
in the bundle adjustment so that only initial values have to be
obtained.

With the method of (Matsuoka and Maruyama, 2016), the coef-
ficients of the implicit ellipse form are computed that fulfill
the following equation for the image ellipse contour points
(xQ, yQ) (Eq. 15, Eq. 16, Eq. 17 and Eq. 18 adopted from (Mat-
suoka and Maruyama, 2016) and partly adapted).

pxx · x2
Q + pyy · y2

Q + pcc · c2 + 2 · pxy · xQ · yQ
+2 · pxc · xQ · c+ 2 · pyc · yQ · c = 0

(15)

The coefficients are calculated using the normal and the circle
center in the camera frame after applying Eq. 1:

pxx = (n2
cam,x + n2

cam,y) · Y 2
C,cam

+ 2 · ncam,y · ncam,z · YC,cam · ZC,cam

+ (n2
cam,x + n2

cam,z) · Z2
C,cam − n2

cam,x ·R2
C

pyy = (n2
cam,x + n2

cam,y) ·X2
C,cam+

+ 2 · ncam,x · ncam,z ·XC,cam · ZC,cam

(n2
cam,y + n2

cam,z) · Z2
C,cam − n2

cam,y ·R2
C

pcc = (n2
cam,x + n2

cam,z) ·X2
C,cam

+ 2 · ncam,x · ncam,y ·XC,cam · YC,cam

+ (n2
cam,y + n2

cam,z) · Y 2
C,cam − n2

cam,z ·R2
C

pxy = ncam,x · ncam,y · (Z2
C,cam −R2

C)

− ncam,x · ncam,z · YC,cam · ZC,cam

− ncam,y · ncam,z ·XC,cam · ZC,cam

− (n2
cam,x + n2

cam,y) ·XC,cam · YC,cam

pxc = ncam,x · ncam,z · (R2
C − Y 2

C,cam)

+ ncam,x · ncam,y · YC,cam · ZC,cam

+ ncam,y · ncam,z ·XC,cam · YC,cam

+ (n2
cam,x + n2

cam,z) ·XC,cam · ZC,cam

pyc = ncam,y · ncam,z · (R2
C −X2

C,cam)

+ ncam,x · ncam,y ·XC,cam · ZC,cam

+ ncam,x · ncam,z ·XC,cam · YC,cam

+ (n2
cam,y + n2

cam,z) · YC,cam · ZC,cam

(16)

The implicit ellipse parameters are then transformed to the para-
metric form. The ellipse center coordinates are expressed in
Eq. 17. Note that inserting Eq. 16 into Eq. 17 and simplifying
leads to Eq. 6.

xell,c = xp − c · pyy · pxc − pxy · pyc
pxx · pyy − p2xy

yell,c = yp − c · pxx · pyc − pxy · pxc
pxx · pyy − p2xy

(17)

The semi-major and semi-minor axes and the inclination are

w = ((xell,c − xp) · pxc + (yell,c − yp) · pyc + pcc · c) · c

â =

√
−2 · w

pxx + pyy −
√

(pxx − pyy)2 + 4 · p2xy

b̂ =

√
−2 · w

pxx + pyy +
√

(pxx − pyy)2 + 4 · p2xy
(18)

φ =
1

2
· arctan2(2 · pxy, pyy − pxx)

For applying lens distortion correction, first, the four points at
main axes are computed:

xell,c±a = xell,c ± cos(φ) · â
yell,c±a = yell,c ± sin(φ) · â
xell,c±b = xell,c ∓ sin(φ) · b̂ (19)

yell,c±b = yell,c ± cos(φ) · b̂

After this, lens distortion correction is computed for the ellipse
center x⃗ell,c and the four points at the ends of the main axes
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x⃗ell,c±a and x⃗ell,c±b with the model of (Brown, 1971) repres-
ented by the function distortionCorrection:

∆x⃗ell,c,dist = distortionCorrection(x⃗ell,c)

∆x⃗ell,c±a,dist = distortionCorrection(x⃗ell,c±a) (20)
∆x⃗ell,c±b,dist = distortionCorrection(x⃗ell,c±b)

The lens distortion corrected semi-major and semi-minor axes
lengths are then computed as the half distances between the el-
lipse points at the axes. For the ellipse center, it is obvious.

x⃗ell,c,dist = x⃗ell,c +∆x⃗ell,c,dist (21)

adist =
1

2
· ||x⃗ell,c+a +∆x⃗ell,c+a,dist

− x⃗ell,c−a −∆x⃗ell,c−a,dist|| (22)

bdist =
1

2
· ||x⃗ell,c+b +∆x⃗ell,c+b,dist

− x⃗ell,c−b −∆x⃗ell,c−b,dist|| (23)

All in all, the ellipse center and the main axes can be computed
as a function (Eq. 1 and Eq. 16 to Eq. 23) of the exterior and
interior orientation as well as the circle parameters:


xell,c,dist

yell,c,dist
adist

bdist

 = f⃗

(
X⃗projC ,R, c, xp, yp, X⃗C , RC , n⃗,

lens distortion coefficients

)
(24)

The measurement of the ellipse center and the main axes are
considered as observations so that the parameters in the func-
tion can be estimated in a bundle adjustment by minimizing the
residuals between the measurements and the computed values
of Eq. 24. The Jacobian matrix can be calculated with numer-
ical derivations by central differences applied to Eq. 24.

4. Experimental Tests

The procedures of Section 3 has been applied and compared in
an experiment with a planar test field of concentric circles of
different sizes.

4.1 Experimental Setup

A planar test field of 20 concentric circles was created with a
vector graphics software (Fig. 4). Tab. 1 shows the coordinates
as well as the small and large radii. The Z coordinate of the
circles was ZC = 0 so that the circle normals were ( 0 0 1 )T .

A bundle of twelve images was recorded with an AVT Mako
G-419C camera (2048× 2048 px and 5.5 µm pixel size) with a
lens of 12 mm focal length. The image orientations are shown
in Fig. 5.

Figure 4. Test field of circular targets of different size.

XC in mm YC in mm RC,i in mm RC,o in mm
0 0 15 30
0 67 15 30
0 134 15 30

67 0 15 30
67 67 15 30
67 134 15 30
134 0 15 30
134 67 15 30
134 134 15 30
201 0 15 30
201 67 15 30
201 134 15 30
33.5 33.5 3 6
33.5 100.5 3 6

100.5 33.5 3 6
100.5 100.5 3 6
167.5 33.5 3 6
167.5 100.5 3 6
234.5 33.5 3 6
234.5 100.5 3 6

Table 1. Circle coordinates and small and large radii of the
planar test field.

Figure 5. Experimental setup. Image orientations and planar test
field of concentric circles with centers and normals.

Initial values for the exterior orientation in Fig. 5 were ob-
tained by space resections of each image and assuming an ideal
distortion-free camera with a principle distance of 12 mm. The
eccentricities reached values of up to 6 px (for inner rings, 23 px
for outer rings) in the oblique images (computed with Eq. 14).
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4.2 Simulation

To check the algorithms and to estimate the influence of the ec-
centricity, simulations were performed with the different mod-
els. For each image, the image coordinates of the ellipse centers
were computed with Eq. 6 inserting the initial values of the ex-
terior orientation (Fig. 5) and assuming a distortion-free lens
with 12 mm principle distance. These image coordinates were
then used as observations without additional artificial noise for
a bundle adjustment (BA) with the different procedures shown
in Sec. 3. The BA was computed as a free net adjustment where
all circle centers were unknowns as well as the exterior and in-
terior orientation (including lens distortion correction). Seven
constraints were introduced for the free net adjustment:∑

i

dX⃗C,i =
∑
i

X⃗C,i × dX⃗C,i = 0⃗ (25)∑
i

X⃗T
C,i · dX⃗C,i = 0

where X⃗C,i = center of the ith circle
dX⃗C,i = correction vector for X⃗C,i from BA

Eleven different scenarios were performed that are listed in
Table 2. For five cases, only the inner rings of concentric circles
were used as input, for five other cases, only the outer rings of
concentric circles. Scenario M7 works with the corrected image
coordinates calculated with both rings. In case of M10 and M11

(Sec. 3.4), the circles normals and radii were also introduced as
unknowns.

ID Model Input
M1 Standard pinhole model w/o ecc. corr. inner rings
M2 Standard pinhole model w/o ecc. corr. outer rings
M3 Obs.-side corr. of Sec. 3.1 with Eq. 11 inner rings
M4 Obs.-side corr. of Sec. 3.1 with Eq. 11 outer rings
M5 Obs.-side corr. of Sec. 3.1 with Eq. 8 inner rings
M6 Obs.-side corr. of Sec. 3.1 with Eq. 8 outer rings
M7 Observation-side correction of Sec. 3.2 both rings
M8 Model-side correction of Sec. 3.3 inner rings
M9 Model-side correction of Sec. 3.3 outer rings
M10 Model-side correction of Sec. 3.4 inner rings
M11 Model-side correction of Sec. 3.4 outer rings

Table 2. Scenarios of bundle adjustments.

The following quantities are used to evaluate the different meth-
ods:

• RMSBA: RMS of the residuals of the image coordinates
of the ellipse centers after BA to show the influence on the
model fit,

• c: estimated principle distance to show the influence on
the interior orientation,

• RMSST−C : RMS of the residuals of the parameter estim-
ation of a similarity transformation between the a priori
and a posteriori circle centers to show the influence on the
circle centers,

• RMSST−P : RMS of the residuals of the parameter estim-
ation of a similarity transformation between the a priori
and a posteriori projection centers to show the influence
on the exterior orientation.

Table 3 shows results of the different scenarios. The stand-
ard pinhole model without eccentricity correction (M1, M2)
showed the highest residuals of the image coordinates. The
outer rings M2 resulted in the highest deviations as the four
times higher RMSBA compared to the inner rings M1 with
the halved radii. The effect on the interior orientation is re-
vealed by the difference to the a priori principle distance of
12 mm. The RMSST−C of M1 and M2 was four times smal-
ler than RMSST−P so that there was a higher influence on
the exterior orientation than on the circle coordinates. When
the observation-side correction with the approximated eccent-
ricity was applied (M3, M4), the RMSBA was halved and the
other deviations were even smaller than the half. Thus, the er-
ror could not be fully removed. The exact correction terms (M5,
M6) should be preferred . They, as well as the other correction
models, resulted in zero deviations that showed that the mod-
els work. Note, that no additional noise has been added. Only
M7 shows a slightly non-zero RMSBA of 0.002 px due to the
approximation, but much smaller than M3 and M4. Some re-
maining errors of M3 and M4 seem to be eliminated by the
coordinate difference calculation in M7.

RMSBA c RMSST−C RMSST−P

in px in mm in mm in mm
M1 0.169 12.04 0.15 0.60
M2 0.668 12.14 0.60 2.49
M3 0.089 12.00 0.02 0.16
M4 0.359 12.05 0.08 0.95
M5 0.000 12.00 0.00 0.00
M6 0.000 12.00 0.00 0.00
M7 0.002 12.00 0.00 0.00
M8 0.000 12.00 0.00 0.00
M9 0.000 12.00 0.00 0.00
M10 0.000 12.00 0.00 0.00
M11 0.000 12.00 0.00 0.00

Table 3. BA results of different models for simulations with 12
larger and 8 smaller concentric circles.

Different results were be obtained when only the first twelve tar-
gets of equal size in Table 1 with the larger radii were used. The
results are revealed in Table 4. The deviations of the standard
pinhole model without eccentricity correction (M1, M2) were
significantly smaller. The other scenarios behave similar to the
first simulation but there was an underestimation of c without
eccentricity correction. The systematic eccentricity errors seem
to be much better compensated by the exterior orientation para-
meters, as can also be seen from Fig. 2.

RMSBA c RMSST−C RMSST−P

in px in mm in mm in mm
M1 0.022 11.99 0.01 0.19
M2 0.089 11.95 0.02 0.78
M3 0.006 11.98 0.00 0.09
M4 0.026 11.93 0.00 0.37
M5 0.000 12.00 0.00 0.00
M6 0.000 12.00 0.00 0.00
M7 0.001 12.00 0.00 0.00
M8 0.000 12.00 0.00 0.00
M9 0.000 12.00 0.00 0.00
M10 0.000 12.00 0.00 0.00
M11 0.000 12.00 0.00 0.00

Table 4. BA results of different models with simulated image
coordinates for the 12 larger equal sized concentric circles.

It can be concluded that the eccentricity error of circular tar-
gets on a planar test field should lead to much higher deviations
when the targets are not of the same size. In the present case
with a planar target field, this can be explained by correlations
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between target eccentricity parameters and camera exterior ori-
entation parameters. This, however, only holds in case of a
planar target field and can thus not be generalized.

4.3 Bundle Adjustment with Real Image Measurements

In this section, the same scenarios of the simulations from the
prior section were performed with the real image measure-
ments. The star operator (Luhmann et al., 2020) was used to
measure the image ellipses. The results of the different BAs (as
free net adjustments) are shown in Table 5 for the 20 concentric
circles of Fig. 5. Again, the RMS of the image ellipse center
residuals RMSBA after BA is shown as well as the principle
distance and the RMS of the residuals of the parameter estim-
ation of a similarity transformation between the a priori and a
posteriori circle centers RMSST−C . The a priori circle centers
can be assumed as target values neglecting printing errors.

There is a high degree of consistency between the RMSBA as
well as RMSST−C of the simulation and the real image data.
For the analysis of the inner rings, the RMSBA was 0.168 px
without correction (M1) and it was reduced to 0.057 px and
0.055 px with M5 and M8. The RMSBA of the extended BA
M10 was slightly higher with 0.067 px. The influence on the
circle centers RMSST−C was also reduced to almost one third
compared to M1. The differences of the principle distances
were smaller than in the simulation. There was a small reduc-
tion when applying the correction but the values were varying
for the tests with the inner rings. The error reduction for the
outer rings was even stronger due to the quadratic error be-
havior. The lowest RMSBA was 0.092 px with M9 and also
RMSST−C was decreased to 0.07 mm. The differences of
c were similar to the simulations. The correction with both
rings M7 reached a RMSBA of 0.055 px and a RMSST−C

of 0.07 mm. Thus, it was similar to the other methods. Thus,
the simulation results were confirmed.

RMSBA c RMSST−C

in px in mm in mm
M1 0.168 12.17 0.17
M2 0.646 12.29 0.61
M3 0.098 12.14 0.08
M4 0.341 12.17 0.10
M5 0.057 12.15 0.07
M6 0.111 12.17 0.07
M7 0.055 12.14 0.07
M8 0.055 12.15 0.07
M9 0.092 12.17 0.07
M10 0.067 12.16 0.07
M11 0.120 12.14 0.07

Table 5. BA results of different models with 12 larger and 8
smaller concentric circles.

Just as with the simulation, the case of equal sized targets was
considered by using only the first twelve targets of Table 1, see
Table 6. For the inner rings, there was even a slight increase in
RMSBA and a slight reduction for the outer rings after applica-
tion of the corrections. The estimated principle distances varied
only slightly, making it difficult to see influences on the interior
orientations. The RMS of the similarity transformations of the
circle centers RMSST−C showed no significant changes. The
results match the simulation, where also only small changes
were computed for these three quantities. RMSST−P were not
computed here due to the unknown target values of the exterior
orientations, where larger deviations would be expected.

RMSBA c RMSST−C

in px in mm in mm
M1 0.048 12.13 0.08
M2 0.076 12.11 0.08
M3 0.052 12.13 0.08
M4 0.060 12.09 0.08
M5 0.054 12.15 0.08
M6 0.074 12.17 0.08
M7 0.056 12.14 0.08
M8 0.053 12.15 0.07
M9 0.063 12.17 0.07
M10 0.074 12.16 0.08
M11 0.125 12.12 0.07

Table 6. BA results of different models for the 12 larger equal
sized concentric circles.

5. Scale Definition by Radii of Circles

As shown in Section 3.4, the radii of the circles are part of the
model that can be introduced as unknowns or, secondly, can
be used as constants as they are often known in practice. This
means that they can also be used for the definition of the scale.

In order to investigate the precision and accuracy of the scale
definition by given radii of circular targets, the experimental
setup of Fig. 6 was used. A test field of coded and uncoded cir-
cular targets with radii of 5.0 mm was prepared. The radii were
defined in a vector graphics software and printing errors were
neglected. In order to check the distances, two scale bars with a
higher accuracy were integrated at the edges of the test field: a
horizontal one in the upper part of Fig. 6a and a vertical one in
the right part of Fig. 6a. The radii of the scale bar target circles
were measured with a slide gauge with 5.1 mm. A bundle of
twelve images was recorded using a Nikon D300 camera and a
Nikkor lens of 20 mm focal length with orientations as shown
in Fig. 6b.

The experimental data was then processed using the algorithm
of Section 3.4 with unknown radii and secondly with fixed radii.
To evaluate the precision, the version with the unknown radii
was analyzed. One parameter for the evaluation was the mean
resulting standard deviation of the 212 estimated circle radii
mean(σR,BA) from the stochastic model of the bundle adjust-
ment (BA). Furthermore, the scattering of the 212 estimated
circle radii (of the same target size) was expressed by the em-
pirical standard deviation sR that could be considered as a more
representative precision quantity. Table 7 shows the results.
Again, the RMS of the image ellipse center residual RMSBA is
depicted. Note that there was slight change in scale of the radii
due to the free net adjustment with a scale condition so that the
mean estimated radius was 5.014 mm instead of 5.000 mm. The
relative precision was 0.0014.

RMSBA mean(R) mean(σR,BA) sR sR/R
in px in mm in mm in mm
0.030 5.014 0.0045 0.0072 0.0014

Table 7. Precision analysis of the radii determination in the BA.

To evaluate the accuracy, the radii in the BA were fixed to define
the scale and two scale bars were used to compare the estimated
and the given distances. Note that there only six constraints of
the free net adjustment were applied:

∑
i

dX⃗C,i =
∑
i

X⃗C,i × dX⃗C,i = 0⃗ (26)
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(a)

(b)

Figure 6. (a) test field with two scale bars; (b) image
orientations, circles (targets) and two scale bars as black lines.

Table 8 reveals the results of the comparison of the distances of
the two scale bars. The deviation was about 1 mm and the rel-
ative error was approximately two thousandths. The RMSBA

remained unchanged with 0.030 px.

Scale bar 1 Scale bar 2
Target distance 576.210 mm 577.614 mm
Estimated distance 577.187 mm 578.627 mm
Deviation/difference -0.977 mm -1.013 mm
Relative error 0.0017 0.0018

Table 8. Accuracy analysis of the scale definition by radii.

The experiment showed that this method for scale definition is
not suitable for high-accuracy measurements, but can be used
for applications with lower accuracy requirements.

6. Conclusion

The article at hand shows different correction methods for the
eccentricity effect of circular targets in perspective projection.
The methods were tested in an experiment with a planar test
field of concentric circles where the eccentricity reached val-
ues of up to 6 pixels. For the analysis of all targets with dif-
ferent sizes, the eccentricity error was verified by the RMS of
the image residuals and similarity transformations of the circle
centers. This error was strongly reduced by applying the correc-
tions. When only equal sized targets were used, it was difficult
to see influences and the effect of corrections due to correlations
between target eccentricities and exterior orientation paramet-
ers.

The presented method of the extended bundle adjustment also
offers the possibility of a scale definition by given target radii.

This approach was tested in a further experiment where a rel-
ative accuracy of two thousandths (for a target radius to object
dimension ratio of 1:115) was reached. The method is only suit-
able for applications with lower accuracy requirements. Future
work could investigate the influence of the target size.
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