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Abstract

Accurate odometry is essential for Simultaneous Localization and Mapping (SLAM), yet traditional methods relying on geometric
features struggle in feature-poor environments such as tunnels. Our work addresses this issue by leveraging LiDAR reflectance
data to develop a robust odometry technique. This approach generates reflectance images, extracts 3D keypoints, and employs an
IMU-based outlier detection process eventually refined by RANSAC algorithm. Unlike geometry-based methods, our solution can
operate in highly symmetrical environments, producing consistent trajectories even where geometric methods fail. Our evaluations
highlight the capacity of our approach to maintain trajectory coherence in GNSS-denied and geometrically degenerate scenarios.
This robustness underscores its potential for reliable navigation and mapping when traditional SLAM solutions are inadequate.

1. Introduction

An odometer is an essential element in Simultaneous Localiz-
ation and Mapping (SLAM) algorithms that not only tracks a
system’s position within an environment, but also offers mo-
tion estimates for building and updating the map of that en-
vironment. Accurate odometry is therefore vital for effect-
ive SLAM systems, as errors in motion estimation can lead
to significant inaccuracies in estimated system locations and,
consequently, in generated maps, potentially causing the entire
SLAM algorithm to fail. Traditional SLAM techniques with
Light Detection and Ranging (LiDAR) often rely on odomet-
ers that use geometry-based point cloud registration, such as
Iterative Closest Point (ICP) (Besl and McKay, 1992), which
leverage local geometric properties to detect lines and planes
for precise pose computation (Zhang and Singh, 2014).

Although effective in structured environments, these methods
face significant challenges in geometrically degenerate spaces.
In such environments, the absence of sufficient physical struc-
tures reduces the optimization constraints provided by geomet-
ric features, leading to increased odometry drift and potential
failure of the SLAM system (Tuna et al., 2024). For example,
the absence of frontal and posterior walls in tunnels hampers the
accurate estimation of the point cloud pose (Zhang et al., 2016).
To tackle this issue, a common approach consists in augmenting
the point-to-plane ICP method with data from an Inertial Meas-
urement Unit (IMU) within a Kalman filter framework. This ap-
proach, as used in LIO-SAM (Shan et al., 2020) and FAST-LIO
(Xu and Zhang, 2021), is designed for motion compensation
and provides a reliable initial guess for the ICP point-to-plane
optimization algorithm (Chen and Medioni, 1991). However,
while this approach can offer improved robustness, it may suf-
fer from increased error propagation if the ICP algorithm fails
to converge properly. Incorrect point matches due to a lack of
distinctive features can lead to erroneous pose estimates. These
errors, when incorporated into a Kalman filter, can result in in-
correct state updates, degrading the system’s accuracy over time
and potentially leading to the failure of the SLAM algorithm.

A promising approach to overcoming the limitations of geomet-
ric methods is to leverage complementary information, such as

the reflectance or intensity of each point in the cloud. Intens-
ity values depend on reflectance, distance, and the angle of in-
cidence. This additional information, provided by modern 3D
LiDARs alongside range measurements, can enhance pose es-
timation, as demonstrated in various studies (Wang et al., 2021,
Park et al., 2020). For rotating multilayer LiDARs, this signal
can be projected into a dense reflectance image, effectively en-
abling the LiDAR to function as an active camera without the
need for external illumination. This offers significant advant-
ages over conventional cameras, as each pixel in the reflectance
image corresponds directly to a 3D point in the point cloud,
eliminating the need for triangulation or scale estimation. The
resulting reflectance image captures texture information about
the environment, which is particularly useful in geometrically
degenerate scenarios. By mapping LiDAR returns onto a re-
flectance image and extracting image-based features, we can
determine their 3D locations in successive LiDAR scans, en-
abling the computation of the rigid transformation without re-
quiring an initial pose estimate.

However, reflectance images are not easy to handle due to the
strong anisotropy typical of LiDAR configurations, where a
limited number of rows results in images with a high imbalance
between horizontal and vertical resolution. This issue is signi-
ficantly less pronounced in modern 128-line configurations, but
the challenge remains in finding methods and solutions to ef-
fectively leverage reflectance to support odometry and SLAM
in the more commonly used configurations, such as those with
16 or 32 lines.

This study addresses the limitations of conventional geometry-
based SLAM methods by proposing an odometry technique that
relies solely on LiDAR reflectance. The key contributions of
this work are as follows:

• Reflectance-based keypoint extraction and matching. We
present a novel method that uses only the reflectance com-
ponent of LiDAR scans to extract and match keypoints.
This approach serves as an alternative to geometry-based
methods and is particularly effective in environments with
sparse geometric features.
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• Robust 3D outlier detection. We implement a two-stage
outlier detection process that combines IMU data for ini-
tial filtering with the RANSAC (Random Sample Con-
sensus) (Fischler and Bolles, 1987) algorithm. This signi-
ficantly reduces incorrect correspondences, enhancing the
robustness of pose estimation.

• Feature tracking for drift reduction. To mitigate drift dur-
ing consecutive scan alignments, we introduce a feature-
tracking mechanism that aligns new LiDAR scans with a
dynamically updated tracking map. This ensures mid-term
accuracy, even when using low-resolution LiDAR sensors.

• Practical validation. We validate our method using a com-
mercial LiDAR acquisition system and demonstrate its re-
liability with sensors having as few as 32 lines.

2. Related Work

2.1 Geometry-Based LiDAR Odometry

LiDAR-based Simultaneous Localization and Mapping
(SLAM) systems have been extensively studied, leading to the
development of various methods for odometry and mapping.
Among these, the LOAM framework stands out for its real-time
pose estimation and map-building capabilities using edge and
planar features from LiDAR point clouds (Zhang and Singh,
2014). While effective in structured environments, LOAM and
its derivatives, such as LeGO-LOAM (Shan and Englot, 2018),
face challenges in featureless environments due to the lack
of sufficient geometric features for reliable pose estimation.
To overcome these limitations, researchers have proposed
improvements like robust error metrics and advanced data
association techniques. For example, KISS-ICP (Vizzo et al.,
2023) enhances performance in unstructured environments by
directly registering downsampled voxel point clouds using a
robust point-to-point ICP with an adaptive data association
threshold.

Furthermore, algorithms like LIO-SAM (Shan et al., 2020)
leverage IMU data to improve robustness in environments with
limited geometric features, while FAST-LIO (Xu and Zhang,
2021) employs a Kalman filter for efficient scan-to-map align-
ment using raw point clouds instead of extracted features. The
integration of inertial measurements in LiDAR-Inertial Odo-
metry (LIO) methods significantly boosts performance by en-
abling accurate point cloud undistortion due to ego-motion and
providing a reliable initial guess for registration. A notable
advancement in this field is X-ICP (Tuna et al., 2024), which
introduces a localizability-aware constrained optimization ap-
proach. By analyzing alignment strength along principal dir-
ections, it mitigates degeneracy issues in weakly constrained
environments.

2.2 Reflectance and Intensity Integration

Integrating intensity or reflectance information from LiDAR
sensors into odometry and mapping has proven effective in
overcoming the limitations of purely geometric methods. This
integration improves SLAM performance, particularly in geo-
metrically deficient environments, by providing texture-like de-
tails that aid in feature identification.

Methods such as Intensity-SLAM (Wang et al., 2021) and I-
LOAM (Park et al., 2020) incorporate intensity information into
a weighted ICP framework, enhancing LiDAR odometry per-
formance in large-scale environments. More recent approaches,
like RI-LIO (Zhang et al., 2023) and COIN-LIO (Pfreundschuh
et al., 2024), improve robustness by integrating photometric er-
ror minimization into an Iterative Kalman Filter. Guadagnino
et al. (Guadagnino et al., 2022) leverage SuperPoint, a CNN-
based keypoint detector and descriptor, for real-time LiDAR
odometry. This self-supervised neural network extracts and
matches salient points from intensity images, enabling robust
odometry without relying on hand-crafted features. Similarly,

Du and Beltrame (Du and Beltrame, 2023) propose a com-
prehensive SLAM pipeline that combines intensity information
with geometric features to enhance localization and mapping in
environments prone to geometric degeneracy. Both methods fo-
cus on intensity-based feature extraction and outlier rejection.
Guadagnino et al. utilize RANSAC and robust optimization
techniques, while Du and Beltrame validate correspondences
through ORB feature extraction and matching scores. How-
ever, neither approach leverages IMU data for improved feature
matching robustness.

Our method distinguishes itself by incorporating IMU data
to filter out unaligned correspondences before applying
RANSAC. This preprocessing step reduces the number of
RANSAC iterations needed, enhancing the system’s robustness
and efficiency. The IMU-based filtering ensures that only well-
aligned correspondences proceed to the next stage, streamlining
the overall process.

This approach is particularly important because we use a track-
ing map to maintain feature continuity by searching for previ-
ously detected features within a specified radius in the current
image. While this technique effectively captures intermittently
visible features, especially in low-resolution reflectivity images,
it also generates a significant number of outliers. The abund-
ance of outliers arises from the inclusion of features that may
not consistently match across frames. To handle this, IMU fil-
tering plays a crucial role in discarding the majority of these
outliers, after which RANSAC is applied to further refine cor-
respondences and ensure robust odometry.

Unlike most existing systems designed for high vertical resolu-
tion LiDARs (64 or 128-line sensors), our system is optimized
for reliability even with lower vertical resolution sensors (e.g.,
32-line LiDAR). By combining robust feature detection using
SIFT with IMU-based filtering, we significantly enhance spa-
tial localization accuracy and overall odometry robustness.

3. Method

Our method employs a feature-based approach that utilizes
LiDAR sensor reflectivity data to generate reflectance images,
from which features are extracted. Each LiDAR scan is aligned
with a tracking point cloud to enable continuous feature track-
ing and minimize cumulative drift. To enhance odometry ro-
bustness, features from the newly acquired LiDAR scan are
matched with those in a pre-existing map. However, this pro-
cess introduces a significant number of outliers. To mitigate
this issue, we apply a two-stage outlier detection strategy to
efficiently filter incorrect correspondences, followed by robust
point-to-plane optimization to refine the alignment.

The following subsections provide a detailed explanation of our
method, including reflectance image generation, 3D keypoint
detection from LiDAR scans, two-stage outlier detection, pose
estimation, and feature tracking. Each component plays a crit-
ical role in improving the robustness and reliability of the odo-
metry system.

3.1 Image Generation

To generate a reflectance image, we leverage the point cloud’s
grid structure provided by the LiDAR encoder. Unlike conven-
tional projection methods, which can lead to the loss of points,
our approach retains all data points. The resulting image di-
mensions correspond to the number of LiDAR beams for height
and the number of points captured in a full rotational sweep for
width.

Due to the uneven distribution of reflectivity values, we apply
histogram equalization to enhance the image. Analysis reveals
that reflectivity values above 127 constitute less than 1% of the
data (Figure 1). To address this imbalance, we clip values ex-
ceeding 127 to 255 and stretch the 0–127 range to span the en-
tire interval from 0 to 255. This adjustment significantly im-
proves the visual quality of the reflectance image, enhancing
contrast and detail representation (Figures 2).
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Our equalization technique is compatible with various LiDAR
systems, including Ouster, Hesai, and Velodyne.

Figure 1. This histogram illustrates the frequency distribution of
reflectance values over an entire acquisition comprising 17,000

scans across various types of environments.

Figure 2. Reflectance images from the HESAI PandarXT 32
sensor. Top raw reflectance, bottom equalized reflectance.

3.2 3D keypoint detection

One advantage of representing a point cloud within a grid
data structure is its natural interpretation as a four-channel im-
age. The first three channels correspond to the 3D coordin-
ates x, y, z, while the fourth channel represents the reflectance
value. This format allows us to apply conventional feature de-
tectors, such as SIFT (Lowe, 2004), within the image domain
to extract features and determine their corresponding 3D posi-
tions. The result is a sparse 3D point cloud where each point has
an associated 2D image location, 3D coordinates, and a feature
descriptor.

A key challenge with this approach is accurately mapping the
2D features detected in the image to their corresponding 3D
points in the point cloud. This difficulty arises from the limited
resolution of the image and the inherent sparsity of the point
cloud. Although each pixel in the image has a one-to-one cor-
respondence with a 3D point in the cloud, SIFT outputs feature
coordinates in floating-point format. As a result, a single fea-
ture may correspond to up to four nearby pixels, each linked to a
different 3D point, creating ambiguity in the matching process.

To address this issue, we employ bilinear interpolation to com-
pute a synthetic point. This synthetic point is derived by com-
bining the information from the four candidate 3D points as-
sociated with the nearest 2D pixels. The weights assigned
to each 3D point are based on the relative areas between
the SIFT feature location and the corresponding pixel centers.
This weighted interpolation provides an approximate 3D posi-
tion that balances contributions from the surrounding candidate
points, ensuring a more accurate representation of the detected
feature in 3D space.

3.3 Outlier Detection and Pose Estimation

To compute a robust pose for each point cloud Ct, accurate data
association with the tracking point cloud is crucial. To achieve
this, we first filter correspondences using IMU data. Specific-
ally, gyroscope readings are utilized to calculate the relative ro-
tation between the previous point cloud Ct−1 and the current

one Ct. By integrating the angular velocity data, we align the
current scan with the tracking point cloud, enabling the effect-
ive identification and removal of misaligned correspondences
as outliers.

To integrate the gyroscope data, we incrementally compute the
rotation matrix Rk using the angular velocity vector ωk at each
IMU timestamp k, as follows:

Rk = Rk−1Exp(ωkδt) (1)

where Rk−1 represents the orientation at the previous IMU
timestamp k − 1, ωk is the angular velocity at timestamp k,
and δt is the time interval between consecutive IMU measure-
ments. For each point cloud Ct, acquired over a time interval
[t0, tn], we compute the relative rotation ∆R by interpolating
between the initial and final orientations, Rt0 and Rtn , derived
from IMU readings.

For a given time t ∈ [k1, k2], where k1 and k2 represent two
consecutive IMU timestamps that include t, the orientation Rt

is interpolated between the known orientations Rk1 and Rk2 as
follows:

Rt = Rk1 ·Exp

(
t− tk1

tk2 − tk1

Log
(
R−1

k1
Rk2

))
(2)

where:

• Exp : R3 → SO(3) computes a rotation matrix from an
axis-angle representation.

• Log : SO(3) → R3 extracts the axis-angle representation.

This interpolation allows us to compute the rotation at
timestamps t0 and tn.

The relative rotation ∆R is then obtained by inverting Rt0 and
multiplying it by Rtn .

Next, we establish correspondences between Ct and the track-
ing point cloud using the SIFT descriptor to match keypoints.
We evaluate the quality of each correspondence using cosine
similarity. For each pair of keypoints, we compute the cosine
of the angle between their corresponding ray vectors, given by:

cos(θij) =
pi · qj

∥pi∥∥qj∥
(3)

where pi and qj are the vectors of the corresponding points.
Cosine similarity values close to 1 indicate strong alignment,
while values below a threshold suggest outliers. To determ-
ine this threshold, we analyze the angular error of the IMU us-
ing ground truth data from the from the acquisition system (see
Sec.4). Given the IMU-estimated rotation RIMU and the ground
truth rotation RGT, the rotation error Rerror is calculated as:

Rerror = RGT ·R−1
IMU. (4)

The angular error θerror is derived from the logarithmic map of
the rotation error:

ωerror = Log(Rerror), θerror = ∥ωerror∥. (5)

Using the error distribution, we set a threshold at θthr = µ+3σ
(where µ is the mean and σ is the standard deviation). The cor-
responding cosine threshold γ = cos(θthr) defines the similar-
ity criterion to filter outliers.
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To further refine the correspondences, we employ the RANSAC
(Fischler and Bolles, 1987) algorithm for robust alignment. In
each iteration, we randomly sample three correspondences to
compute the pose transformation for Ct using the Umeyama
algorithm. The transformation with the highest inlier count,
defined by a proximity threshold τ , is selected.

Once we determine the inlier correspondences, we refine the
relative pose by minimizing the point-to-plane error using non-
linear ICP with a robust cost function. We employ the Geman-
McClure robust function ρ to reduce the influence of outliers.
The objective function is given by:

min
R,t

N∑
i=1

ρ
(
||n⊤

j (Rpi + t− qj) ||2
)
, (6)

where N is the number of inlier correspondences between the
current point cloud and the tracking point cloud, R and t are
the rotation matrix and translation vector that define the relat-
ive pose transformation we seek to refine, pi represents a point
in the current point cloud Ct, qj is the corresponding point in
the tracking point cloud, nj is the normal vector at the point
qi in the tracking point cloud, ρ(·) is the Geman-McClure ro-
bust function, which helps to reduce the influence of outliers by
diminishing the contribution of large residuals.

3.4 Feature Tracking

The low resolution of the point cloud, combined with the 2D
floating-point coordinates provided by SIFT, poses a challenge
in accurately determining the corresponding 3D positions of
features. To address this issue, we use interpolation to estimate
feature locations. However, these estimates may still have in-
accuracies, especially for features detected at greater distances
from the sensor. To mitigate this, we adopt a temporal tracking
approach, which facilitates the refinement and convergence of
their spatial positions through successive observations. After
computing the pose of the point cloud, we use all the detec-
ted features for updating the tracking cloud. For each corres-
pondence, we check whether the detected features in the cur-
rent point cloud are close to their tracked counterparts. If they
fall within a defined threshold, the features detected in Ci are
used to update the spatial positions of the tracked features, im-
proving accuracy and consistency over time. Any features that
do not match closely with existing tracked points are added to
the tracking cloud as new features, representing potentially new
detections that have not been previously observed.

Additionally, if a feature goes undetected for k consecutive
clouds, it is removed from the tracking cloud. This approach
accommodates cases where features may go undetected in a few
scans due to low resolution or occlusions. By allowing brief de-
tection gaps, we reduce the likelihood of prematurely discard-
ing relevant features. This adaptive tracking process ensures
that the tracking point cloud remains robust and dynamically
updates, retaining newly detected features while preserving a
consistent set of tracked points essential for reliable pose es-
timation and mapping.

4. Data Collection

4.1 Gexcel Heron System

The Gexcel HERON system, developed in collaboration with
the Joint Research Center of the European Commission, is
a SLAM-based mobile mapping platform designed for high-
precision 3D scanning in a variety of environments, both indoor
and outdoor. The platform can be equipped with one or two
HESAI Pandar XT32 3D LiDAR sensors, a commercial-grade
IMU, and a camera (see Fig. 3).

Figure 3. HERON mobile mapping system

The HERON system’s odometry leverages IMU data, capturing
both angular velocities and linear accelerations, which are crit-
ical for motion compensation during point-cloud acquisition.
By integrating IMU readings with geometric ICP through an
extended Kalman filter, the system can effectively align point
clouds, even during sensor movement.

Equipped with low vertical resolution 32-line LiDAR sensors,
the HERON system is particularly well-suited for testing the
robustness of the reflectance-based odometry proposed in this
study. Data is collected in environments with pre-existing high-
precision, millimeter-level maps generated by a static terrestrial
laser scanner. These static maps allow the HERON system to
operate in tracking mode, aligning each LiDAR scan precisely
to produce an accurate trajectory. This setup provides an ideal
benchmark for evaluating the performance of the reflectance-
based odometry across complex and varied environments.

4.2 Data Acquisition

Two datasets were collected for the purpose of conducting real-
world experiments: Underground Parking and Tunnel. The Un-
derground Parking dataset was captured using two Hesai Pandar
XT32 mid-range LiDAR sensors and an Xsens IMU. In this
setup, a secondary LiDAR was mounted obliquely, allowing the
HERON system to effectively capture both ground and ceiling
surfaces. This configuration enabled the evaluation of the odo-
metry system using only the horizontal LiDAR (Lite) and the
combination of both sensors (Twin).

The Tunnel dataset was designed to test odometry performance
in a challenging, feature-poor environment. It involved travers-
ing an 800-meter-long tunnel characterized by repetitive struc-
tural patterns and limited geometric features, posing a rigorous
test for geometry-based odometry methods. To establish a high-
accuracy reference map for this dataset, the tunnel was surveyed
using a FARO Focus static laser scanner (TLS). Multiple over-
lapping TLS scans were captured along the tunnel and aligned
using ICP to create a cohesive reference model, as shown in
Fig. 4. Additionally, TLS scans were conducted at both the en-
trance and exit of the tunnel and georeferenced to align with an
absolute reference frame. This setup ensured that the HERON
system operated in tracking mode with precise alignment to the
static map, providing a reliable ground-truth trajectory for per-
formance evaluation.

5. Experiments

In this section, we present the experimental evaluation of our
odometry algorithm across various environments and datasets,
using distinct LiDAR sensors and acquisition methods. The
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Figure 4. The trajectory acquired using the HERON odometry system aligned with TLS static scans (blue points). The highlighted
segment corresponds to a region where HERON’s geometric odometry fails to compute the pose accurately due to the regular tunnel

geometry, which lacks distinctive features.

primary data source is the Gexcel HERON mobile mapping sys-
tem, supplemented by tests on two public datasets: the Newer
College Dataset (Zhang et al., 2021) and the ENWIDE Dataset
(Pfreundschuh et al., 2024), both captured with the Ouster-128
sensor.

5.1 Performance on Gexcel HERON Dataset

In the Underground Parking dataset, which is tested with both
Lite and Twin configurations, significant improvements were
observed when using both LiDARs (Twin configuration) com-
pared to a single horizontal LiDAR (Lite configuration). The
oblique LiDAR provided additional geometric constraints by
capturing both ground and ceiling features, effectively reducing
vertical drift. This improvement is evident in the Absolute Tra-
jectory Error (ATE) metrics: translational ATE decreased from
1.926 (Lite) to 0.697 (Twin), while rotational ATE dropped
from 0.158 to 0.114 rad. Similarly, the mean translational and
rotational errors improved from 2.737% to 1.531% and from
0.085 to 0.064 degrees per meter, respectively, underscoring the
impact of enhanced geometric constraints on pose estimation
accuracy (see Table 1).

In the Tunnel dataset, the reflectance-based odometer exhibited
higher translation errors due to a sparse feature tracking map,
which failed to provide sufficient constraints for accurate posi-
tioning. Small incremental errors accumulated over time, chal-
lenging positional accuracy in this feature-poor environment.
Notably, in the water-drainage tunnel, the presence of steps in-
troduced abrupt changes in the LiDAR’s field of view (FoV).
These rapid FoV changes hindered the odometer’s ability to
establish robust correspondences between tracked features and
keypoints in successive LiDAR scans, leading to increased pose
estimation errors.

This analysis suggests that a hybrid strategy — combining a
dense local map and geometric features to maintain alignment
with the pre-built map, while leveraging reflectance-based fea-
tures to constrain the ICP optimization - could enhance robust-
ness. Such a strategy would address the limitations of relying
solely on geometric or reflectance-based methods.

Despite these challenges, the reflectance-based odometer suc-
cessfully completed the Tunnel dataset trajectory using a 32-
line sensor without critical failures. This outcome demon-
strates the system’s resilience in maintaining functionality
under challenging environmental conditions and with low-
resolution sensors. For a qualitative comparison of trajectories,
see Fig. 5.

5.2 Performance on Newer College Dataset

The Newer College Dataset provides a diverse set of scenarios
specifically designed to assess odometry robustness in complex
environments. The dataset is captured using a handheld device
equipped with synchronized LiDAR and IMU, mirroring the
configuration of the HERON system. A high-precision ground-
truth trajectory is obtained by aligning each LiDAR scan with
a reference map generated using a Leica BLK360 laser scan-
ner. This alignment, performed with the Iterative Closest Point
(ICP) algorithm, ensures minimal drift and offers a reliable ref-
erence path for evaluating odometry performance.

The errors presented in Table 2 for the Newer College Dataset
emphasize the critical role of reflectance features in odometry
performance. These findings are consistent with those from the
Gexcel HERON Dataset, showing that higher vertical resolution
LiDARs, with more lines, not only capture a greater number
of points but also produce more detailed reflectance features.
These features act as robust constraints for point cloud align-
ment, significantly improving pose estimation accuracy (see
Fig. 6).

In the Cloister scenario, the Absolute Trajectory Error (ATE)
for translation is 1.056 m, with a rotational error of 0.032 rad.
The relative translation error stands at 1.024%, while the aver-
age rotational error is 0.014°/m. These results underscore the
benefit of abundant and consistent reflectance features, which
enable better alignment and reduce drift. The structured envir-
onment of the Cloister provides reliable reflectance cues that the
odometry system leverages for accurate trajectory estimation.

Performance on the Math Institute dataset surpasses that of the
Cloister dataset, largely due to the open and well-structured en-
vironment. This setup ensures that reflectance-based features
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Dataset ATE Tra.
(m)

ATE Rot.
(rad)

Avg. Tra.
(%)

Avg. Rot.
(deg/m)

Tunnel 18.384 0.258 17.558 0.048
Underground Lite 1.926 0.158 2.737 0.085
Underground Twin 0.697 0.114 1.531 0.064

Table 1. We report the relative translational error and the relative rotational error using the KITTI (Geiger et al., 2013) metrics,
calculated between the ground truth trajectory and the estimated trajectory. Additionally, we show the absolute trajectory error for

translation in meters and for rotation in radians.

(a) (b) (c)

(d) (e) (f)

Figure 5. Comparison of ground truth and estimated trajectories for the Gexcel HERON dataset in different configurations: (a)
Underground Lite Heron, (b) Underground Twin Heron, (c) Tunnel Heron, (d) Top view Underground Lite Heron, (e) Top view

Underground Twin Heron, (f) Top view Tunnel Heron. The ground truth trajectory is shown in blue, and the estimated trajectory is
depicted in dashed orange.

remain visible and consistently trackable over extended peri-
ods, enhancing odometry robustness and resulting in higher ac-
curacy and stability.

Notably, these trajectories were derived from uncalibrated re-
flectance images due to the Ouster LiDAR operating with out-
dated firmware, which added complexity to pose estimation.

5.3 Performance on ENWIDE Dataset

The ENWIDE Dataset, specifically designed to tackle odometry
challenges in GNSS-denied environments, features diverse se-
quences recorded in both indoor and outdoor settings, with a
focus on geometrically degenerate environments. Data is col-
lected using a handheld Ouster OS0 128 (Rev D) LiDAR, oper-
ating at 10 Hz, coupled with an integrated IMU capturing data
at 100 Hz.

High-accuracy ground truth positioning is provided by a Leica
MS60 Total Station. Positional data is obtained via a prism
mounted on the LiDAR, offering an approximate positional ac-
curacy of 3 cm. This setup is synchronized with the sensor data
to establish a reliable reference trajectory.

Despite the challenges posed by sparse prior maps and com-
plex environments, our method consistently estimates a reliable
trajectory. This consistency is crucial in GNSS-denied environ-
ments, where relative positioning accuracy suffices for applic-
ations such as navigation and mapping. However, the ground
truth in the ENWIDE dataset provides only positional data, lim-
iting a comprehensive assessment of rotational or full pose ac-
curacy. Consequently, the analysis focuses on the positional
consistency of the estimated trajectory.

Figure 7 compares the ground truth trajectory with the traject-
ory estimated by our reflectance-based odometry. Although
some drift is evident, the method accurately captures the overall
path structure and maintains consistency even in geometrically
degenerate sections, such as the tunnel. Notably, in the tunnel’s
highly symmetrical environment, traditional odometry methods
relying on geometric features fail to generate a trajectory. In
contrast, our method not only produces a trajectory but ensures
its consistency with the ground truth.

While the sparse prior map affects numerical performance, the
ability of our method to estimate a consistent trajectory under-
scores the potential of reflectance-based odometry in GNSS-
denied environments, especially when reliable georeferencing
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Dataset ATE Tra.
(m)

ATE Rot.
(rad)

Avg. Tra.
(%)

Avg. Rot.
(deg/m)

Cloister 1.056 0.032 1.024 0.014
Math-Easy 0.312 0.024 0.673 0.013

Table 2. We report the relative translational error and the relative rotational error using the KITTI metrics. Additionally, we show the
absolute trajectory error for translation in m and for rotation in rad.

(a) (b)

(c) (d)

Figure 6. Comparison of ground truth and estimated trajectories for the Newer College dataset: (a) Top view Math, (b) Top view
Cloister, (c) Perspective view Math, (d) Perspective view Cloister. The ground truth trajectory is shown in blue, and the estimated

trajectory is depicted in dashed orange.

is unavailable. This result highlights the robustness of the pro-
posed approach, which maintains trajectory coherence under
challenging conditions. Moreover, in scenarios where tradi-
tional methods struggle, such as highly symmetrical environ-
ments, our approach delivers reliable results, confirming its
suitability for complex real-world applications.

Figure 7. Comparison of trajectories for the ENWIDE Tunnel
dataset: (a) Ground truth trajectory, (b) Estimated trajectory.

6. Conclusion

In this paper, we introduce a novel LiDAR-based odometry
method that leverages sensor reflectivity data to enhance the

robustness and accuracy of pose estimation. By represent-
ing the point cloud as a reflectance image, applying SIFT for
keypoint detection, and incorporating feature tracking, our ap-
proach effectively reduces cumulative drift and improves align-
ment accuracy. A two-stage outlier detection strategy — com-
bining IMU data and cosine similarity filtering, followed by
RANSAC-based refinement — plays a pivotal role in filtering
incorrect correspondences, enabling robust point-to-plane op-
timization.

Experimental evaluations on diverse datasets, including Gex-
cel HERON, Newer College, and ENWIDE, demonstrate the
adaptability of our method in various environments. Despite
challenges posed by cumulative errors in sparse feature maps,
the system reliably maintains a consistent trajectory, even in
GNSS-denied settings and geometrically degenerate scenarios.

Future work will focus on refining the feature matching pro-
cess, particularly in environments with sparse or inconsist-
ent reflectance features. We also aim to enhance reflectance-
based odometry by integrating geometric features to mitigate
drift caused by tracking cloud sparsity. Additionally, combin-
ing local map-based and reflectance-based odometry—using
reflectance-derived features as constraints could further im-
prove the robustness of SLAM systems. This hybrid approach
would enhance alignment between new scans and previously
built maps, leading to a more resilient and reliable pose estima-
tion framework.
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