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Abstract

This paper presents a novel multi-stereo camera system for robust indoor localization, leveraging point cloud data and temporal
fusion techniques. The system integrates three synchronized stereo cameras to capture point clouds from multiple angles, enhancing
coverage and improving point cloud density in complex indoor environments. By combining data from different perspectives and
accumulating point clouds over time, the method mitigates the limitations in the short range of point clouds derived from stereo
cameras, ensuring broader coverage for effective localization. To manage the computational complexity of large-scale point clouds
and reduce noise in accumulated data, voxelization is applied to downsample the point clouds while preserving key geometric
features. The localization process is driven by a predictive point cloud odometry method, refined through the Iterative Closest Point
(ICP) algorithm. Experimental results demonstrate the system’s ability to achieve accurate localization within a pre-built LiDAR
map. This study highlights the feasibility of using low-cost stereo camera systems as an alternative to LiDAR-based solutions for
indoor localization.

1. Introduction

Indoor localization is a critical component in a variety of ap-
plications, ranging from robotics and autonomous navigation
to augmented reality and indoor mapping. Traditional methods
often rely on high-cost sensors like LiDAR to generate dense
and accurate point clouds for localization. However, the use of
low-cost sensors, such as stereo cameras, offers a more acces-
sible alternative, though it comes with significant challenges,
including limited range, coverage, and accuracy.

Despite the affordability and accessibility of stereo cameras,
their use in large indoor environments, particularly for accu-
rate point cloud localization, presents considerable difficulties.
In large indoor environments, a single stereo camera may not
provide the necessary detail, particularly when objects are dis-
tant, often resulting in the capture of primarily ground points,
which are insufficient for robust point cloud localization. These
challenges call for creative solutions that can fully leverage the
capabilities of stereo cameras while overcoming their inherent
limitations.

The field of indoor localization has seen significant advance-
ments with the integration of stereo vision and point cloud tech-
nologies, particularly in applications like autonomous naviga-
tion in robotics. One of the most straightforward approaches
for point cloud localization is to use the same type of data for
both the pre-built map and subsequent measurements for local-
ization tasks (Suzuki et al., 2010; Ruchti et al., 2015). Tech-
niques like Iterative Closest Point (ICP) (Segal et al., 2009) are
widely employed for point cloud registration because of their
effectiveness in aligning point cloud data.

In recent years, there has been a growing interest in using low-
cost sensors such as stereo cameras for localization, offering

an accessible alternative to high-cost LiDAR systems. Given
the high costs associated with LiDAR systems, recent research
has increasingly focused on leveraging more cost-effective al-
ternatives, such as stereo cameras, to achieve comparable local-
ization results while reducing expenses (Caselitz et al., 2016;
Xu et al., 2017). For instance, Han et al. (2019) developed
a method that enhances stereo camera localization by incorpo-
rating constraints from pre-existing LiDAR maps, effectively
improving accuracy in complex environments. In line with this
trend, the work by Kim et al. (2018) explores the integration
of stereo cameras for localization within 3D LiDAR maps. Our
previous work (Mortazavi et al., 2023) demonstrated that accu-
mulating LiDAR scans allows for the creation of a denser and
more detailed representation of the environment, which signifi-
cantly enhances global localization accuracy. Accumulation, in
this context, refers to combining consecutive or overlapping Li-
DAR scans to increase the level of detail in the resulting point
cloud. Building on this idea, our current research aims to inves-
tigate whether similar aggregation strategies can be applied to
point clouds generated from stereo cameras, thereby achieving
cost-effective and accurate localization.

This paper proposes a novel multi-stereo camera system de-
signed to enhance point cloud localization within indoor maps.
We build upon earlier ideas of mounting stereo cameras to a
forklift (Kuzminykh et al. 2023), but simplify the setup by a
considerable amount. The system employs three stereo cameras
facing different directions for having a wide field of view, col-
lecting data from the front, left, and right perspectives. By com-
bining the point clouds generated from these cameras and inte-
grating data across multiple timestamps, the system achieves a
wider coverage area and improved point cloud density (Figure
1). Another key reason for merging these point clouds is to ad-
dress the limitations posed by the short range of point clouds
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derived from stereo cameras. In some instances, there may be
no objects in the immediate vicinity of one camera, but by in-
tegrating data from cameras facing different directions, we can
ensure that sufficient environmental features are captured from
other angles. This increases the likelihood of having adequate
data for accurate localization within the map. In addition, the
reliability of point clouds generated by stereo cameras can be
significantly improved, enabling low-cost options to become
effective for high-accuracy indoor localization. This enhanced
point cloud is then utilized within our localization approach to
accurately position within the pre-built map.

The key contributions of this work include:

1. The design and implementation of a multi-stereo camera
setup for improved point cloud generation.

2. The development of a temporal fusion technique that com-
bines point clouds across time, using methods such as ICP.

3. The integration of the enhanced point cloud into a local-
ization approach, with an experimental evaluation demon-
strating the effectiveness of the proposed system in achiev-
ing robust indoor localization within a pre-built map.

2. Methodology

2.1 Dataset and Experimental Setup

Two datasets were created for development and demonstration
of our experimental system: a reference point cloud by Li-
DAR and video streams, consisting of color and depth infor-
mation, by our multi-stereo camera setup. The point clouds and
video streams were captured indoors within an area of around
160m× 130m in between the construction phase and the offi-
cial begin of the fair ”Hannover Messe 2024” in Hanover, Ger-
many. The data shows the interior of a fair hall, including the
facility, presentation booths, roll-up banners and more. Occa-
sionally, dynamic objects such as working staff were recorded;
however, the data is primarily composed of static geometry.

Given the well-known characteristics of the two sensor types,
LiDAR data provides higher precision, accuracy, and range per
frame, while stereo depth data, though limited in depth range
and accuracy, offers the advantage of capturing color informa-
tion and achieving a higher data density within the field of view,
as well as a higher frame rate.

In the following, we refer to the point cloud collected by Li-
DAR after a full rotation of the sensor as a frame. Similarly,
the recorded color and depth image data captured by our cam-
era setup at a single time instance, as well as the corresponding
extracted point cloud, are also referred to as frames.

2.1.1 LiDAR-Based Reference Map : The LiDAR data was
collected using a Velodyne Puck LITE, a mechanical, spinning
LiDAR sensor equipped with 16 vertically aligned laser emit-
ters. The sensor was mounted on a photography tripod, which
was secured to a push cart to maintain a consistent sensor height
throughout the data collection. Data was collected for 9 min-
utes, starting from an entrance to the hall and moving at a steady
pace through the environment, eventually returning to the start-
ing point to facilitate loop closure optimization during later pro-
cessing. Due to the absence of suspension on the push cart and
the rigid tripod setup, the mounted sensor experienced signifi-
cant vibrations, which could potentially affect the quality of the

Figure 1. Points collected by the front camera (green) and by the
left and right cameras (red, blue). The front camera has only

ground points in its field of view and range.

Figure 2. Captured scene via LiDAR, showing a steel pole
(top-left), two presentation booths (center), roll-up banners

(bottom-right) and a moving person (bottom).

collected data. The captured point cloud stream was processed
using standard SLAM techniques to generate a comprehensive
point cloud representation of the area of interest. While ubiq-
uitous coverage of the entire hall was not intended, the region
of interest for our experiments was adequately covered. Data
collection and processing were performed using LidarView and
CloudCompare, resulting in a point cloud that appears reason-
ably accurate, with no obvious deformations or visible artifacts.
The point cloud primarily consists of spatial positions with cor-
responding laser return intensities (Figure 2).

2.1.2 Stereo Camera Setup for Localization : The multi-
stereo data was collected using a setup of three Intel RealSense
D455 cameras, which estimate depth through stereo vision with
the support of an infrared (IR) dot pattern projector. The cam-
eras were mounted on a custom-designed, 3D-printed platform
to facilitate seamless data integration (Figure 3). When mounted
on the platform, all three cameras were aligned in a common
plane. The camera setup consists of three cameras: one fac-

Figure 3. Three stereo depth cameras with baseline b attached to
a portable, hand-holdable platform, excluding cables that would

be at the bottom.
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ing forward and two positioned on the left and right sides. The
side cameras are rotated by approximately ±87◦ relative to the
front camera, a configuration determined by the specifications
to achieve a seamless field of view. The front camera is po-
sitioned with a stereo baseline b of 95mm. The side cameras
are shifted by (3/2)b to the sides and (1/2)b towards the back
relative to the front camera. This arrangement was chosen to fa-
cilitate easy and ergonomic usage of the sensor platform rather
than for data collection considerations. If the side cameras were
positioned further apart, the gaps in their overlapping fields of
view with the front camera would increase. This would lead to a
higher likelihood of capturing unconnected geometries, compli-
cating the registration of frames between cameras. Maintaining
overlapping fields of view is crucial for our localization pro-
cess, as it enables effective integration and accurate alignment
of point cloud data from multiple perspectives.

Starting and ending at the same position as the LiDAR dataset,
we recorded data for two minutes while moving through the
scene with the hand-held camera platform. The recording dura-
tion was limited due to storage constraints. Since the platform
lacks stabilization and is operated manually, the camera footage
exhibits some shakiness; however, we maintained a smooth and
steady movement as much as possible. Although the area cov-
ered in this run is smaller than that of the LiDAR dataset, it
includes enough geometric variation to serve the purpose of our
study.

The cameras recorded data using the Intel RealSense Viewer at
HD resolution and 30 frames per second (FPS), with the high-
est quality depth settings applied. This recording session took
place half an hour after the LiDAR run, leading to slight differ-
ences between the datasets, particularly in non-static objects.

2.2 Data Fusion and Processing

Our approach towards localization of the camera data is driven
by the aspiration of collecting real-time, spatio-temporal data
with high coverage and for low implementation cost. Com-
bining low-cost sensors with low-cost edge computers, such
as Raspberry Pi or NVIDIA Jetson Nano, provides the hard-
ware basis for applications with the said goal. Nevertheless,
the limitations of low-cost stereo depth cameras in terms of
range and precision, as well as the computational constraints
of these edge devices, necessitate a more advanced and inte-
grated system architecture. A viable strategy involves distribut-
ing computational tasks between local and external resources.
In this paper, we focus specifically on the logical separation of
the localization algorithm while excluding considerations of the
physical distribution of local and external computations.

2.2.1 Data Fusion : The recorded video streams are pro-
cessed using the Intel RealSense SDK, including the provided
post-processig filters. These recordings are synchronized at the
software level and converted into streams of point clouds, de-
rived from the corresponding color and depth information. At
each time instance, each stream generates its most recent point
cloud, which is transformed based on the respective sensor loca-
tion to form a stream of fused point clouds. Only fused frames
containing new data from all three cameras are utilized. Con-
sequently, to maintain software-level synchronization, frames
from individual cameras may be dropped when necessary. This
resulting stream of fused frames, along with the generated ref-
erence map, constitutes the primary input data for our work.
To expand the coverage area and improve localization perfor-
mance, fused frames are accumulated as the platform’s move-
ment is estimated. For this purpose, each subsequent frame is

(a)

(b)

Figure 4. Single frame (a) and 30 accumulated frames (b).
While accumulation increases coverage and provides more

structural detail for localization in a reference map, it can also
amplify alignment errors over time due to sensor noise. .

registered using ICP and its transformed points are appended
to the initial frame. Each following frame and its correspond-
ing data are then registered and appended to the progressively
accumulated point cloud, while continuously tracking the es-
timated movement of the platform (Figure 4). After a certain
number of accumulation steps, the current accumulated point
cloud is passed to the subsequent processing stages of the sys-
tem, while the accumulation process is restarted with the next
set of frames. This overall fusion and accumulation procedure
is implemented using the Open3D library.

An interesting aspect of this process is the determination of the
number of frames to be accumulated. In initial implementa-
tions, a fixed number of frames is used; however, a more so-
phisticated approach would involve dynamically adjusting this
number based on the velocity of the sensor platform. Addition-
ally, various forms of supplementary information and methods,
such as IMU data and visual odometry, could be incorporated
to further refine the process.

The main purpose of this data fusion and accumulation is to
provide a denser point cloud with higher coverage for global
localization in a reference map. The quality of the accumu-
lation process, in particular, is influenced by several factors:
First, the registration of point clouds is designed with perfor-
mance considerations in mind, as this part of the system is in-
tended to run on an edge device. Second, the stereo data, which
serves as input for the process, often includes significant sensor
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noise and occasional distortions due to factors such as observed
geometry and lighting conditions. These issues can cause the
accumulating point cloud to decrease in precision over time as
more data is appended. Given a selected moment in a stereo
camera recording with minimal movement and observing a flat
surface, the registration process contributes less to the overall
error. In this scenario, the measured Root Mean Square Error
(RMSE) at the flat surface increases from 4.63 cm to 5.76 cm
after accumulating 30 frames. Repeating this evaluation on an-
other flat surface, but this time with movement involving both
translation and rapid rotation of the sensor platform, the mea-
sured RMSE increases from 3.59 cm to 8.82 cm. This result
indicates how the sensor platform’s movement, combined with
more complex geometries observed by the cameras, affects the
registration process. This trade-off between higher density and
coverage leads to a decrease in precision. However, it can also
mitigate the impact of distortions in a single frame by averag-
ing them out with frames recorded immediately before or af-
ter, although this effect can occur in the opposite direction as
well. As demonstrated later, voxelization of the data is effec-
tive for achieving precise localization. Manual measurements
of the maximum deviation between the recorded points and the
actual geometry indicate an upper limit of approximately 30
cm, which aligns with our preferred voxel size.

2.2.2 Voxel Representation : In addition to frame accumu-
lation, voxelization plays a crucial role in optimizing the point
cloud data for more efficient localization. Voxels can be consid-
ered as the 3D equivalent of pixels in a two dimensional (2D)
space. Similar to the 2D case, voxels are placed on a 3D grid
with uniform spacing in all dimensions. Analogous to a 2D
square pixel representation, a voxel corresponds to a 3D cube
(Chajdas, 2015). Voxel-based representation finds extensive use
across various applications, such as finite-element simulations,
object detection, classification, 3D reconstruction, localization,
trajectory planning, and computer graphics rendering (Koketsu
et al., 2004; Pantaleoni, 2011; Agus et al., 2010; Ma et al.,
2021; Mao et al., 2021; Xie et al., 2018). The application of
voxel representation can be attributed to its advantageous prop-
erties, including uniform resolution and a regular grid structure
of independent cells, which simplifies complex computations
and data handling (Chajdas, 2015).

In the context of stereo camera data, voxelization allows us to
downsample the point cloud while maintaining key geometric
features, thereby improving processing speed and reducing sen-
sor noise. By applying a voxel grid filter, the system ensures
that only essential points are retained, contributing to more ro-
bust and accurate localization results. In our approach, vox-
elization is applied after the data fusion process to the accu-
mulated point clouds. A voxel grid filter is used to retain only
the mean point within each voxel, ensuring that the most repre-
sentative points are preserved, leading to improved localization
accuracy. Additionally, the map itself is voxelized, ensuring
consistency between the point clouds and the map during the
localization process. The structured grid of voxels simplifies
subsequent computations, and voxel-based models are widely
utilized in autonomous systems for representing and navigating
unexplored environments (Oleynikova et al., 2017).

2.3 Localization Approach

The localization approach is best described as a predictive point
cloud odometry method, which leverages a constant velocity
model to estimate a system’s motion between consecutive point

clouds. This approach offers a balance between computational
efficiency and localization accuracy, making it suitable for real-
time applications with limited computational resources.

The process begins with an initial position and corresponding
transformation matrix, known from the starting point of the
system. The constant velocity model is then used to predict
the next transformation matrix based on the assumption that the
system’s translational and rotational velocities remain constant
between consecutive time steps. This initial prediction provides
an estimate of the system’s next pose.

However, real-world motion is rarely perfectly linear or con-
stant, leading to discrepancies between the predicted pose and
the real movement. To correct these deviations, the system em-
ploys the Iterative Closest Point (ICP) algorithm, which aligns
the newly captured point cloud with the pre-built reference map.
ICP iteratively adjusts the transformation matrix by minimizing
the difference between corresponding points in the current point
cloud and the reference map. This refinement process ensures
that the system maintains accurate localization, even when the
initial prediction deviates from the actual path. This combina-
tion of predictive modeling and iterative refinement forms the
core of the localization approach.

2.3.1 Constant Velocity Model : The constant velocity
model assumes that the system’s motion between consecutive
time steps remains constant in both translation and rotation.
This assumption simplifies the process of estimating the next
pose, reducing the need for additional motion sensors such as
IMUs or wheel encoders. This is particularly advantageous in
low-cost systems where computational resources and hardware
are limited.

Mathematically, the model uses the previous two poses to pre-
dict the next pose. The pose at time t is represented by a ho-
mogeneous transformation matrix Tt , combining both rotation
and translation:

Tt =

[
Rt tt
0 1

]
(1)

where Rt and tt represent the robot’s orientation and position,
respectively. To predict the pose at this time step Tpred,t, we uti-
lize the relative transformation observed between the previous
two time steps:

Tpred,t =

[
R⊤

t−2Rt−1 R⊤
t−2(tt−1 − tt−2)

0 1

]
(2)

This approach (Thrun et al., 2005), leverages the assumption
that the system’s velocity remains unchanged, providing a com-
putationally efficient method to estimate the next pose. While
this method is commonly used in applications such as visual
odometry and SLAM, it requires refinement to correct for any
deviations from the constant velocity assumption. In our sys-
tem, this refinement is achieved through ICP, which iteratively
aligns the predicted point cloud with the reference map.

2.3.2 ICP Refinement : For refinement, the predicted trans-
formation matrix, derived from the constant velocity model, is
used as the initial transformation matrix in the point-to-point
ICP algorithm. This approach iteratively aligns the newly com-
bined point cloud from the stereo cameras with the pre-built
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map by minimizing the point-to-point distances. This align-
ment process corrects any deviations in the predicted transfor-
mation, thus enhancing localization accuracy.

In our system, we employ the point-to-point variant of the ICP
algorithm. This variant minimizes the Euclidean distance be-
tween corresponding points in the two point clouds. While
point-to-plane ICP is often more efficient for environments with
planar surfaces (such as flat walls or floors), point-to-point ICP
is better suited for environments with diverse and irregular struc-
tures, like the interior of a fair hall, where objects such as booths,
banners, and varying structures are present.

The refinement process starts with the predicted transformation
and iteratively updates it through ICP by minimizing the fol-
lowing error function:

T =
∑

(p,q)∈K

∥p−Tq∥2 (3)

Where:

• T is the transformation matrix (rotation and translation)
being optimized,

• p are points from the reference map (LiDAR point cloud),

• q are points from the newly captured point cloud (stereo
camera data),

• K is the correspondence set, representing pairs of points
(p,q) between the reference map and the new point cloud.

The approach, originally formulated by Besl and McKay (1992),
provides a robust method to iteratively reduce the localization
error. Once the ICP refinement is complete, the resulting trans-
formation matrix is used to predict the next set of frames, en-
suring continuous and precise localization.

3. Experimental Results

To demonstrate the effectiveness of the proposed multi-stereo
camera system for indoor localization, data was collected over
a two-minute period, during which the system continuously col-
lected and processed point cloud data.

Initially, point clouds from the three stereo cameras, facing dif-
ferent directions, were merged to enhance environmental cov-
erage and density. This spatial fusion ensured that sufficient
structural information was captured from different perspectives,
even when certain cameras had limited or no visible features
due to the short range of stereo vision. To further improve ro-
bustness and detail, temporal fusion was performed by aggre-
gating 30 consecutive frames captured over one-second inter-
vals, resulting in dense point clouds suitable for accurate local-
ization tasks.

In the context of improving both the accuracy and efficiency of
the localization process, the point clouds generated by a stereo
camera were downsampled to a resolution of 30 cm. This down-
sampling was crucial for two main reasons: 1) it simplified the
point cloud by reducing the density of points, which can have
the effect of smoothing out small-scale variations and inconsis-
tencies in the data, and 2) it significantly accelerated the local-
ization process by decreasing the number of points that needed
to be processed.

For the localization process, each temporally accumulated point
cloud was aligned with a pre-built map using our predictive
point cloud odometry method. The method employed a con-
stant velocity model to generate an initial pose estimate, which
was then refined through the point-to-point ICP algorithm. This
iterative refinement corrected deviations and ensured accurate
alignment between the measured data and the map. Following
each localization step, the refined pose was used to predict the
position of the subsequent merged point cloud, facilitating con-
tinuous localization throughout the data collection period.

To generate the ground truth trajectory, we initially used the ICP
algorithm to align each frame with the pre-built map. How-
ever, due to the presence of noisy or distant objects not well-
captured by the stereo cameras, the ICP algorithm often mis-
aligned frames by attempting to match all points globally, in-
cluding unreliable features, instead of focusing on closer, more
reliable structures. To improve accuracy, we manually refined
the transformations of each frame, emphasizing alignment with
nearby features. While this approach introduces some subjec-
tivity, it allowed us to obtain a more reliable trajectory for our
evaluation given our current constraints.

The outcomes of this approach are illustrated in Figure 5, which
shows the alignment results at two different time instances dur-
ing the data collection. The colored points represent the merged
point clouds from the stereo cameras, while the gray points de-
pict the pre-built map. These visualizations demonstrate the
effectiveness of the point cloud fusion and localization process,
highlighting the accurate alignment achieved through our ap-
proach. The dense and comprehensive nature of the merged
point clouds contributed to consistent alignment precision, val-
idating the system’s capability to achieve reliable indoor local-
ization in real-world scenarios. The trajectory plot in Figure 6
illustrates the strong alignment between the estimated trajectory
(red line) and the ground truth (blue line), highlighting the con-
sistent and accurate localization achieved throughout the pro-
cess.

3.1 Translation and Rotation Error Analysis

To evaluate the accuracy of the localization approach, both trans-
lation and rotation errors between the estimated positions and
the ground truth positions have been computed. The translation
error has been calculated as the Euclidean distance between the
estimated and ground truth positions for each timestamp. This
calculation has been performed by comparing the translation
vectors extracted from the homogeneous transformation matri-
ces representing the pose at each timestamp. The histogram of
translation errors (Figure 7 - left) reveals that the majority of
translation errors are concentrated around 13 cm, with a stan-
dard deviation of 10 cm. This clustering indicates consistent
small deviations from the ground truth, while occasional larger
errors beyond 40 cm are likely due to challenges in feature-less
areas or remaining sensor noise. However, these instances are
relatively rare, suggesting that the system is robust for most in-
door environments.

For rotation errors, the angular deviation between the estimated
and ground truth rotation matrices has been computed. The his-
togram of rotation errors (Figure 7 - right) shows that the major-
ity of rotation errors are clustered around 1.01 degrees, with a
standard deviation of 1.58 degrees, indicating strong rotational
accuracy throughout the localization process. Occasional out-
liers in both translation and rotation errors can be attributed to
factors such as limited distinguishable features, sensor noise,
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(a)

(b)

Figure 5. Localization results showing the alignment of the
merged point cloud with the pre-built map in two different

locations.

Figure 6. Comparison of the estimated trajectory (red) and the
ground truth (blue)

and the accumulation of minor deviations over time. Despite
these, the system remains robust, with the majority of errors
well-controlled due to temporal fusion, and ICP refinement.
The close alignment of the estimated and ground truth trajec-
tories (Figure 6) confirms the system’s reliability and accuracy
in large indoor spaces.

Figure 7. Histograms of translation (left) and rotation (right)
errors derived from ground truth comparisons.

4. Conclusion

This study presents a novel multi-stereo camera system design-
ed to enhance indoor localization by generating robust point
clouds in large indoor environments. The proposed system suc-
cessfully integrates point clouds from multiple stereo cameras,
facing different directions, and applies temporal fusion tech-
niques to overcome the limitations of stereo cameras, such as
short range and limited coverage. The experimental results
demonstrate the effectiveness of this approach, showing that the
temporal data fusion significantly improves the density of point
clouds, making low-cost stereo cameras a viable alternative to
high-cost LiDAR systems for indoor localization.

The integration of the enhanced point clouds into a predictive
point cloud odometry method further validated the system’s abil-
ity to achieve accurate and continuous localization within a pre-
built map. Future work could focus on enhancing the fusion
process to be more dynamic and adaptive, allowing for the se-
lection of an optimal number of frames based on the movement
and environmental conditions. Additionally, efforts could be
made to further improve sensor robustness and reduce compu-
tational overhead in real-time applications. This research high-
lights the potential of low-cost stereo cameras in high-precision
indoor localization for applications in areas such as robotics,
indoor mapping, and augmented reality systems.
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