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ABSTRACT 

While deep models have advanced the 3D data analysis and demonstrated impressive results, they often struggle to generalize to new 

classes that are absent from the training dataset. Recently, open-vocabulary and zero-shot models have addressed this problem. 

However, these models are still relying on some data for training and fine-tuning for specific tasks. This requirement limits them to 

real-world applications. In this research, we propose an open-vocabulary method for point cloud segmentation, which does not require 

additional training data beyond the images and point cloud from the survey scene. By using the capabilities of the power of 2D open-

vocabulary models and geometric features from the 3D data, combined with an XGBoost-guided region growing algorithm, our 

approach segments the queried objects directly in 3D scenes. We evaluate our method on 3D benchmark datasets, such as Replica and 

ScanNet, showing its practicality and scalability to real-world scenarios with limited data. 

1. INTRODUCTION

Scene understanding is one of the most important aspects in 

photogrammetry, remote sensing and computer vision 

(Fooladgar, et al., 2015; Heipke et al., 2020). The goal is 

normally to extract semantic information, such as object 

location or identification, from images or 3D point cloud. This 

ability has many possible uses in robotics, autonomous 

driving, territorial monitoring, smart city applications, 

augmented reality, etc. Traditionally, methods for 

understanding 3D scenes relied heavily on geometric and 

sensor-specific features (Weinmann, et al., 2017; Grilli and 

Remondino, 2020). While these methods are still effective in 

case of small annotation sets or projects with uncommon 

classes, we have witnessed the rise of deep learning methods, 

in particular for 3D point cloud segmentation, with models 

such as PointNet (Qi, et al., 2016), KPConv (Thomas et al., 

2019), and Point transformer (Zhao et al., 2021). However, 

despite their success, these models face challenges in 

generalizing across diverse object classes due to the limited 

range of training (2D and 3D) data. In response to these 

limitations, zero-shot learning techniques have been 

developed. In image processing, models like MDETR 

(Kamath, et al., 2021), CLIP (Radford, et al., 2021) or 

Grounding DINO (Liu, et al., 2023) are beginning to combine 

text and vision. Recently, zero-shot learning approaches have 

been applied to 3D data such as point clouds. mainly by using 

large-scale pre-trained Vision-Language Models (VLMs) to 

increase performance in previously unexplored classes. These 

models (Chen et al., 2023; Ding et al., 2023; Huang et al., 

2024; Zhang et al., 2023) successfully transfer knowledge 

from 2D to 3D understanding, allowing for the segmentation 

and recognition of unusual items in 3D space. For instance, 

OpenScene (Peng, et al., 2022) proposes a zero-shot approach 

for 3D scene understanding that co-embeds dense 3D point 

features with image pixels and text in the CLIP feature space. 

However, these approaches often require some level of 

training and lack generalization to diverse data types. For 

example, OpenScene requires training the 3D model on 

projected CLIP space features. Similarly, OpenMask3D 

(Takmaz, et al., 2023), a model for open-vocabulary 3D 

instance segmentation, uses Mask3D (Schult, et al., 2022) for 

class-agnostic masks identification and retrieves semantic 

information via CLIP. Beside some current limitations and 

challenging, the tasks of querying and accessing 3D point 

clouds can lead to multiple interesting applications.  

1.1. Paper aims 

In this paper, we present a novel, training-free method for 

open-vocabulary 3D point cloud segmentation. Our approach 

integrates Vision-Language Models with traditional geometric 

features and Extreme Gradient Boosting (XGBoost) (Chen and 

Guestrin, 2016) techniques, allowing effective segmentation 

without dataset-specific training. This makes it an adaptable 

and cost-effective solution for querying and inspecting a wide 

range of 3D datasets.  

2. RELATED WORKS

2.1. 3D point cloud analysis 

3D point cloud analysis includes detecting and segmenting 

objects within a scene and understanding their relationships. 

Traditionally, these methods rely on geometric features that 

are derived from the spatial arrangement and relationships of 

the points cloud. These features are used with the classical 

clustering methods like DBSCAN, RANSAC, and random 

forest, that cluster the point into meaningful groups (Ni et al., 

2017; Czerniawski et al., 2018; Grilli and Remondino, 2020; 

Zhou et al., 2022; You et al., 2024). With the rise of deep 

learning, researchers have begun to use deep models on point 

clouds, and some models, such as PointNet (Qi et al., 2017), 

have shown promising results in point cloud classification. 

Since then, a variety of models have been developed, 

highlighting improved performance (Phan et al., 2018; Hu et 

al., 2020; Shinohara et al., 2020; Zhao et al., 2021). Recent 

models, such as Mask3D (Schult et al., 2023), take advantage 

of the transformer’s architecture to become the state-of-the-art 

in object segmentation. However, one significant limitation of 

these models is their reliance on fixed labels from training 

data, which limits their adaptability across different object 

classes and reduces robustness when encountering novel or 

untrained categories. 

2.2. Open vocabulary in images 

Open vocabulary models aim to overcome the limitations of 

the classic deep models by detecting or segmenting the novel 

classes during the test. In computer vision, these models are 

bridging between the language and vision (Lu et al., 2019; Li 

et al., 2022; Jia et al., 2021; Singh et al., 2022). A notable 

example is CLIP (Radford et al., 2021), which uses two 

different encoders to create a shared embedding space between 
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images and text, connecting the vision and language. Some 

other models use a different strategy, combining encoded 

features from images and text. For example, Grounding DINO 

(Liu et al., 2023) employs two encoders for image and text, 

combining their features via a fusion module that selects 

relevant queries from an image. Another example is YOLO-

World (Cheng et al., 2024), which is an improvement on open-

vocabulary object detection from the YOLO series (Redmon, 

2016; Redmon and Farhadi, 2018; Ao Wang, 2024). 

 

2.3. Open vocabulary in 3D scenes 

By the success of open vocabulary models in images, 

researchers started to explore how to adapt these methods for 

point cloud segmentation. However, due to the scarcity of data 

and the large size of point clouds, directly applying image-

based approaches is inadequate. As a result, open vocabulary 

methods for point clouds are leveraging power from image-

based open vocabulary models and applying it to the 3D world. 

One approach is distilling the information from vision-

language models (VLMs) into the point cloud (Delitzas et al., 

2023; Zhang et al., 2023; Huang et al., 2024). Notable example 

OpenScene (Peng et al., 2023), which uses OpenSeg (Ghiasi 

et al., 2022), an open-vocabulary image segmenter, to extract 

text-based representations from images. These representations 

are then projected onto 3D points, allowing a 3D model to be 

trained on these points. Other methods are creating 3D masks 

from point clouds and then aligning these masks with language 

information extracted from the corresponding images, 

establishing a link between 3D structures and text descriptions. 

For instance, OpenMask3D (Takmaz et al., 2023) employs 

Mask3D (Schult et al., 2023) to generate agnostic object masks 

and then uses CLIP to project text features onto these masks. 

Similarly, Open3DIS (Nguyen et al., 2024) expands on this 

idea, refining both mask proposals and mask classifications 

with image data, leading to a better performance. Although 

open-vocabulary methods perform outstandingly in scene 

understanding, several limitations need to be addressed. Even 

if the methods do not necessarily require annotated data, they 

still need relevant training samples for the training. In addition, 

when applied to the unique survey scenes that differ 

significantly from common 3D datasets, these methods often 

produce poor results, struggling to generalize beyond the 

training data. As a solution for this limitation, we propose our 

method, which requires no additional training data and suitable 

for any 3D scene. 

 

3. METHODOLOGY 

 

The proposed method assumes to have a point cloud of a 

surveyed scene, an image dataset representing the scene and 

the corresponding camera poses (dashed box in Figure 1). 

Given these input data, to achieve our aim, the following steps 

are executed: 

• Search the object(s) of interest through a query: The 

approach utilizes the YOLO-World (Cheng et al., 2024) 

and Grounding DINO (Liu et al., 2023) open-vocabulary 

object detection model to perform image queries. 

Generates precise bounding box for the target object (e.g., 

a sofa). 

• Extract the object's mask: The bounding box is fed into 

the Segment Anything Model (SAM) (Kirillov, et al., 

2023; Ren, et al., 2024) to extract the object mask around 

the target object. The mask is passed through a simple 

kernel to shrink it and prevent any misprojection of pixels 

around the object. 

• Projection in 3D: Given the scene's point cloud and the 

camera parameters, the pixels within object's mask are 

projected onto the 3D points. The process involves:  

▪ Voxelization: Such discretization process simplifies 

and enhances the efficiency of subsequent processes.  

▪ Ray casting: Rays from the camera's viewpoint are 

projected into the 3D space using the Open3D library 

(Zhou, et al., 2018); ray intersections with the voxel 

grid are determined identifying which voxels are 

impacted by the passing-through rays.  

▪ Voxel labeling: Intersected voxels are labelled 

assigning tags from the 2D image masks.   

▪ Point labeling: Each point contained in the labelled 

voxel receives the same label. 

▪ Refining the projection: To ensure projection 

accuracy, DBSCAN is applied to the projected points, 

with only the largest cluster retained. 

• Label assigning and cluster merging: For each point, the 

semantic label with the highest detection confidence 

across projections is assigned. Nearby clusters with 

identical semantic labels are then merged to refine the 

segmentation. Following this, DBSCAN is applied to the 

labeled points to further cluster them, and an instance ID 

is assigned to each cluster. 

• Geometric feature calculation for each point. 

• 3D object refinement: The projected points normally do 

not represent the entire queried object. Therefore, 

leveraging on geometric features and a clustering method, 

similar points are added to create a more complete 

representation. The following steps are performed for each 

semantic Cluster for example ith  is Si: 

• Creating data: The color and features of each point is 

considered as the input data. For training, we only used the 

points that a mask is projected on. The ground truth is a 

binary array whether the label is Si or not.  

 

 
Figure 1. The proposed pipeline with its input data (dashed box) and different steps: extracted masks of desired objects using an 

open-vocabulary tool; projection onto the point cloud; geometric features; fitting the features on XGBoost; region growing with the 

XGBoost. 
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• Create and train a model: We used XGboost, which is a 

scalable machine learning system for tree boosting. The 

model trained and fitted to the training data. 

• Region growing for each cluster with semantic label Si we 

do the following (see Algorithm 1):  

▪ Choose a Point: A point is the cluster is chosen. 

▪ Picking Nearest Neighbors: Pick the K nearest 

neighbors of the chosen point that are not yet part of 

the cluster.  

▪ Predict Semantic Label: The model is used to predict 

the label for each of the neighbors. 

▪ Expand the Cluster: If more than half of these 

neighbors are predicted to belong to Si, these points are 

added to the cluster. 

▪ Repeating: Repeating this process for each point in the 

expanded cluster until no additional points can be 

added. 

• Merging extended clusters: As the final step, extended 

clusters with the intersection are merged and the bigger 

ones with higher confidence score from the detection are 

considered as the final semantic label. 

 

a) b)  

Figure 2: The Replica1 (a) and ScanNet2 indoor scenes used 

for the evaluation of the proposed methodology. 

 

4. EXPERIMENTS SETUP 

 

Datasets. The method was evaluated on two indoor datasets - 

the Replica1 (Straub, et al., 2019) and ScanNet2 (Dai, et al., 

2017). Replica is a high-resolution synthetic dataset designed 

for 3D scene understanding. It contains detailed indoor 

environments with various object classes and ground truth 

annotations. Our method was evaluated on the scenes: room0, 

room1, room2, office0, office1, office2, office3, office4. For 

each scene the RBG images (8-10 images per scene), 

corresponding camera parameters, and the point cloud are 

used. We aimed to segment 48 objects that can be found within 

these scenes. In addition, an experiment was conducted on the 

ScanNetv2 validation set, which consists of 312 scenes. In this 

experiment, in contrast to Replica, about 150 images per scene 

are used to segmenting 20 objects that are defined in the 

dataset. Due to the low quality of data, floor is detected by 

RANSAC and excluded from the ScanNet’s scenes. 

2D Models. For object detection, we utilize YOLO-World and 

Grounding DINO, though it can be substituted with any open 

vocabulary or even close-set object detectors. In the 

experiment on ScanNet, only YOLO-World is used, since in 

initial testing this model has shown a better performance on 

the ScanNet images. For detection confidence, 0.45 is used for 

YOLO-World and 0.4 for Grounding DINO. For 

segmentation, the Segment Anything Model (SAM) with the 

default ViT-H SAM model is used. 

Region Growing method. As input to the XGBoost model, 

we used the color of each point along with features such as 

linearity, planarity, omnivariance, anisotropy, eigenentropy, 

verticality, sphericity, flatness, compactness, curvature 

change, and shape index. To calculate these features, we first 

determine the maximum-minimum distance between one pair 

 
1 https://github.com/facebookresearch/Replica-Dataset  

of points, then compute the features for three radii: 1.5, 5, and 

10 times this distance. These values were selected based on 

dataset quality and initial testing. In the region-growing 

algorithm, 5 neighboring points are checked for each point 

(k=5), and for the XGBoost threshold, 0.96 is applied. 

Metrics. Our method is evaluated for both semantic 

segmentation and instance segmentation, following the 

evaluation procedures of ScanNet. For semantic segmentation, 

the Intersection over Union (IoU) is calculated for each 

semantic mask. For instance segmentation, the average 

precision (AP) is calculated. According to ScanNet evaluation 

method, AP scores are averaged over the overlap range of [0.5 

∶ 0.95 ∶ 0.05] at mask overlap levels of 50% and 25%. 

 

Algorithm 1 - Region Growing Algorithm 

Require: Point cloud 𝑃  ∈  𝑅𝑁×3 

Require: Feature vector 𝑋  ∈  𝑅𝑁×𝑟 

Require: Initial points indices 𝐼  =  {𝑖1, … , 𝑖𝑚} 

Require: Trained model 𝑀  
Require: Number of neighbors 𝐾  
Require: Confidence threshold 𝜃  
Ensure: Cluster of points 𝐶  
 Function RegionGrowing(P, X, I, M, k, 𝜃 ) 
  tree ←  KDTree(P) 

  C ←  I {Initialize cluster with initial points} 
  Q ←  I {Queue of points to process} 
  While Q ≠ ∅ do 
   P ←  Q.pop(0)  {Dequeue point} 

   (d, N) ←  tree.query(P[p], k + 1) 
   N ←  N[1:] {removing the chosen point from neighbors} 

   Conf ←  M.predict_proba(X[N]) [:, 1] {Get the 
confidence} 

   valid_N ← { 𝑛𝑖   ∈  𝑁   ∣∣  𝑐𝑜𝑛𝑓[𝑖] > 𝜃 𝑎𝑛𝑑 𝑛𝑖  ∉  𝐶 }   
   if |𝑣𝑎𝑙𝑖𝑑_𝑁| ≥

𝑘

2
 then 

    C ←  C ∪ valid_N 
    Q ←  Q ∪ valid_N 
   end if 
  end while 
 return C 
 end function=0 

 

 

5. RESULTS AND DISCUSSION 

 

The proposed method is evaluated for both semantic and 

instance segmentation, focusing mainly on comparison with 

the projected mask as baseline. As reported in Table 1 and 2, 

our method shows notable improvements in segmentation 

across various objects categories, particularly for larger or 

more distinct objects like sofas and benches. 
As mentioned, few images per scene are used for the 

experiment. Remarkably, testing with only 2-3 images still 

achieved effective segmentation. This highlights that the 

method is effective in scenarios with limited 2D images. 

Additionally, as the approach leverages foundation models, it 

is adaptable to various pre-trained 2D models, making it 

suitable for specific tasks where a pre-trained 2D model is 

available. As an additional evaluation, the model was tested on 

semantic segmentation using the ScanNet validation dataset, 

indicating great performance without requiring training, as 

shown in Table 3. It highlights the approach's adaptability to 

diverse data. Moreover, since the method does not require 

training, extensive or similar datasets are no longer required. 

It performs well with only the desired scene images, making it 

efficient and flexible to a variety of scenarios. As reported in 

Figures 3 and 4, the proposed method performs well across 

various scenarios and objects and the refinement process allow 

to detect object quite completely. 

2 http://www.scan-net.org/ 
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Evaluation on Replica 

model metric Projection Refinement Δ 

G
ro

u
n

d
. 

D
IN

O
 𝐴𝑃 0.0 0.06 +0.06 

𝐴𝑃50 0.01 0.13 +0.12 

𝐴𝑃25 0.01 0.25 +0.24 

𝐼𝑜𝑈 0.14 0.22 +0.08 

Y
O

L
O

-

W
o
rl

d
 𝐴𝑃 0.01 0.02 +0.01 

𝐴𝑃50 0.02 0.06 +0.04 

𝐴𝑃25 0.04 0.21 +0.17 

𝐼𝑜𝑈 0.10 0.21 +0.11 

Table 1. Results of semantic and instance segmentation on 

the Replica dataset, with some selected objects. The 

proposed method is the column Refinement. Evaluations 

are conducted using YOLO-World and Grounding DINO. 

The last column (Δ) highlights the improvement achieved 

by the refinement step.  In the averaged results, objects that 

are not detected by the models are excluded from the table. 

 

Segmentation results for selected objects in Replica 

object model Projection Refinement Δ 

bench 

Ground. 

DINO 
0.12 0.23 +0.11 

YOLO-

World 
0.28 0.64 +0.36 

chair 

Ground. 

DINO 
0.09 0.20 +0.11 

YOLO-

World 
0.09 0.25 +0.16 

clock 

Ground. 

DINO 
0.26 0.43 +0.17 

YOLO-

World 
0.20 0.39 +0.19 

picture 

Ground. 

DINO 
0.21 0.25 +0.04 

YOLO-

World 
0.22 0.36 +0.14 

pillow 

Ground. 

DINO 
0.11 0.16 +0.05 

YOLO-

World 
0.22 0.32 +0.10 

sofa 

Ground. 

DINO 
0.08 0.24 +0.16 

YOLO-

World 
0.22 0.54 +0.32 

Table 2. Objects’ segmentation performances for 

Grounding DINO and YOLO-World models, comparing 

results between the baseline projection method and our 

proposed refinement step. Performance is evaluated using 

the IoU metric. The last column (Δ) illustrates the 

improvement achieved by the proposed refinement.  

 

Some dependencies and challenges of the proposed approach 

are: 

Dependence on 2D models: The method is dependent on 2D 

models. If the 2D model fails to detect or incorrectly 

recognizes an object, false semantic information will be 

mapped to the point cloud and create an error in segmentation. 

As shown in Figure 5, an example of false detection and 

resulting errors in the final segmentation. Therefore, a strong 

and reliable 2D model is required. Furthermore, the target 

object must be visible in the images for segmentation, 

otherwise the object will not be detected by model. 

Projection accuracy: Compared to common point cloud 

segmentation methods, we exclude the depth information in 

our projections, resulting in some missed projections. 

Inaccurately projected points may cause problems. For 

example, if a projected mask for a "chair" overlaps with 

another object, such as a "table", a portion of the table may be 

mislabelled as a chair during refinement. 

Quality of point cloud data: High-quality point clouds are 

recommended, as detailed and well-defined geometric features 

improve refining accuracy. Refinement is less effective with 

low-quality data, for instance in our test small objects like wall 

plugs were problematic. In these cases, even a minor 

misprojection can cause huge segmentation errors. 

Variety of object detection: The method performs best when 

a variety of objects are queried and detected, as the refinement 

relies on distinguishing between different objects' features. 

With a limited scope of objects, the method may over-segment 

and include unintended areas. 

 

 

6.  CONCLUSIONS 

 

In this work, we introduced a training-free method for open-

vocabulary object segmentation in 3D point clouds. By 

leveraging the abilities of open-vocabulary foundation models 

for images and geometric features from point clouds, we 

developed an XGBoost-based region-growing method that can 

detect and segment any desired object in a 3D scene. Unlike 

other common methods, this approach does not require depth 

information or additional training data, making it highly 

adaptable for different scenarios, especially when there is a 

single survey scene. Furthermore, the method can use any 2D 

detector, whether open-set or closed-set, enhancing its flexibility 

and adaptability. However, the performance is highly dependent 

on the 2D detector and projection, which can pose challenges in 

cases of missed detection or incorrect projections due to camera 

calibrations. As a future direction, this approach could be 

explored with outdoor and LiDAR data. 
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Figure 3. Results on a scene from the Replica dataset showing the 3D scene with projected labels from the images (top) the refined 

queried 3D scene after proposed method (bottom). 
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Figure 4.  Results using the ScanNet dataset showing a robust performance across diverse environment, including an indoor room, 

an outdoor bench and a shower. 

 

 

a)  b)  c)  

Figure 5. The impact of errors in the 2D model on 3D segmentation. The 2D model (left) misclassifies a bin as a desk, leading to 

incorrect labeling in the final 3D segmentation (right). Both the bin and the adjacent desk are assigned the same label (pink), 

highlighting the propagation of errors from 2D to 3D models. 
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