
Leveraging ontology  
for enhanced queries and analyses of urban point clouds 

Matteo Codiglione, Raniero Beber, Fabio Remondino

3D Optical Metrology (3DOM) unit, Bruno Kessler Foundation (FBK), Trento, Italy 
Email: (mcodiglione, rbeber, remondino)@fbk.eu - Web: https://3dom.fbk.eu 

KEYWORDS: Ontology, urban point cloud, mapping, query 

ABSTRACT: 
Point clouds are widely used in domains such as urban planning, heritage conservation, and forestry. They often present challenges 
related to processing, semantic enrichment, and querying due to their large size and complexity. This paper introduces a general 
ontology-based approach, embedded into a tool named 3Dont, that enhances the semantic structure and usability of point clouds across 
various fields. By representing the individual points of a clouds within an ontology, we enable easy access to dynamic, semantically 
rich, and highly queryable datasets that integrate multi-source and multi-temporal data. This methodology provides a spatially 
consistent and user-friendly representation, allowing for intuitive exploration and analysis through ontology-based queries. The 
approach facilitates data interoperability and high-level feature extraction, offering a versatile tool for diverse 3D data applications. A 
video showcasing the capabilities of the 3Dont tool is available at https://www.youtube.com/watch?v=Nvg2E755JNg. 

1. INTRODUCTION

The management of large 3D datasets, such as point clouds, is 
often highly expensive in terms of processing time and needed 
hardware. In particular, when such datasets regard complex 
urban scenarios, they usually present significant large spatial 
dimensions and lack an efficient way to be explored and 
queried.  Moreover, since such datasets should be an aid to the 
general picture of the “smart city”, they should (1) be available 
for an efficient and intuitive semantic enrichment, (2) be 
explored with expressive and yet highly human readable 
queries and (3) be able to integrate different multi-source and 
multi-temporal data. 
Those needs stem from the specific meanings of the smart city 
concept, where (1) the domain to be modelled is a dynamic 
city, perceived as composed by objects (i.e. houses, trees, etc.) 
rather than single points, (2) the data user can miss specific 
skills in managing complex 3D datasets and (3) the employed 
data are multi-sources and multi-temporal. It’s worth to note 
that similar needs also apply for the heritage sector, with a 
decrease in the centrality of largeness issue balanced by an 
increase of the needed precision and detail. 
A significant amount of urban 3D datasets comes in the form 
of point clouds (Zolanvari et al., 2019; Kölle et al., 2021; Han 
et al., 2024; Nex et al., 2024). Unstructured point clouds, 
enriched with colour or semantic information are a 
fundamental asset for urban planning, management and 
visualization. Semantically enriching point clouds (Zhang et 
al., 2019; Xie et al., 2020; Grilli et al., 2023; Bayrak et al., 
2024) is the first necessary step in that direction, but we argued 
that a lot more could be done to address both a full 
exploitability and query explorability of such datasets. 
Ontology have seen some usage in the urban 3D data field 
(Falquet et al., 2009), but they have never been proposed in the 
spatially-consistent way that we are going to discuss in this 
paper. 

1.1. Paper aims 

In our previous work (Codiglione et al, 2024), we presented an 
intra-domain generalizable and spatially consistent ontology-
based method to transform heritage point clouds from raw data 
into more useful and meaningful information. 
In this work, we aim to extend the scope of this heritage-based 
ontology method to urban point cloud data, generalizing the 
approach for inter-domain applications and tackling the issues 
of object-level modelling, different data integration and multi-

temporal analyses. The core idea is to offer a dynamic, 
semantically rich, easy to query and data-integrating 
alternative representation of an urban (but not only) point 
cloud in the form of a spatially consistent ontology, as well as 
to provide a tool - named 3Dont - to unitarily manage all those 
processes. 

1.2. Novelties in 3D data management 

The innovation we aim to bring in 3D data management is 
multifold. The first one leads to better 3D data inspection. A 
traditional standard tool for 3D data inspection allows a 
semantic inspection by selecting/activating a scalar-field and 
then fixing a certain range over its values. It is generally not 
possible to perform cross-inspections over more scalar-fields 
and it is not possible to perform syntactical queries. We aim to 
provide those possibilities in such a way that the dataset could 
be fully explored with queries which can map the logic 
structure of the questions the user needs to ask. The second 
innovation is the semantic enrichment of a geospatial dataset. 
At the present time most solutions rely on (i) machine learning 
approaches or (ii) manual annotations. These approaches have 
their upsides, but they both lack the possibility to link the 
semantic information contained in the dataset with expert 
domain knowledge (e.g. physical-chemical properties of 
materials). Moreover, machine learning solutions lack in 
explainability, while annotation-based solutions are time-
consuming and subjective to operator expertise. Our ontology-
based approach aims to tackle these issues, allowing for 
explainable, knowledge-based and automatic high-level 
features generation. 

2. THE ONTOLOGICAL APPROACH

2.1. Ontology concept 

Formal ontology, originally born as a branch of analytic 
philosophy, has found its applied usage in the project of 
semantic web and as a useful framework for organizing data 
with a knowledge-based approach (Grimm, 2009). Nowadays 
structured data sharing and semantic interoperability have 
become essential for advancing scientific research across 
various domains. RDF (Resource Description Framework) 
ontologies (W3, 2024) provide a robust framework for 
representing knowledge in a way that both humans and 
machines can interpret. An RDF ontology defines a set of 
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concepts and their relationships within a particular domain, 
enabling consistent data annotation, integration, and reasoning 
(this is the case for the so-called “domain ontologies”) or on a 
more general level, directly tackling the issue of data 
integration and interoperability (this is the case for 
“foundational ontologies”). By utilizing a subject-predicate-
object model, RDF ontologies create a flexible yet formal 
structure for encoding complex information, facilitating 
seamless data exchange and analysis. Through the formal 
definition of classes, properties and constraints, the ontology 
offers a shared vocabulary that can be easily extended and 
reused across different research directions. Ontologies 
comprise: 

a) a hierarchical tree of classes; 
b) a set of properties and relationships; 
c) a set of individuals with populate the classes and bear 

properties and relationships; 
d) a set of inferential rules which aim to extend knowledge 

and check for inconsistency (Hmida et al, 2012). 
 
2.2. Ontology-based approaches to 3D data 

Flotyńsky and Walczak (Flotyńsky et al, 2017) reported a 
taxonomy of some existing ontology-based approaches to 3D 
data. Even if the article is now some years old, the 
classification scheme can still be considered representative. 
The first main subdivision lies between modelling-oriented 
approaches and representation-oriented approaches. The first 
category comprises approaches (Kalogerakis et al, 2006; De 
Floriani et al, 2007; Papaleo et al, 2007; Kapahnke et al, 2010) 
which utilizes ontologies with the aim of driving a 3D 
modelling activity. The approaches in the second category, to 
which our proposed method belongs, aim to provide a 
semantic representation of 3D data by leveraging an ontology 
as a part of their pipeline. This second category is then split 
into two branches. The first one regards the “concrete” 
approaches (Kalogerakis et al, 2006; Bille et al, 2004; 
Falcidieno et al, 2004; Albertoni et al, 2005), which work on 
extremely low-level geometrical features and focuses on the 
general domain of the 3D data in their generality. The second 
one, to which our method belongs, comprises the “conceptual” 

approaches (Pittarello et al, 2006; Otto, 2005; Gutierrez et al, 
2007), which are more domain-specific and aim to higher-level 
features. Although different in terms of domains, our approach 
shares some peculiarities with Gutierrez et al. (2007). Both aim 
to extract higher-level features on the basis of lower-level 
ones, to obtain the latter by connecting domain knowledge to 
the 3D data and to use these features to directly enrich the 3D 
model. Main differences are the kind of concerned 3D data (we 
deal with point clouds),the way in which these data are handled 
(as a proper “ontology-based representation” for us, without 
intermediate external layers) the specific focus of the 
approaches (we aim to a representation able to sustain multi-
source and multi-temporal data import) and the generalization 
possibilities (our approach is “generally specifiable”, since our 
tool is able to manage different domain-specific ontologies). 
 
 

3. METHODOLOGY 
 
The ontological representation is developed within an ad hoc 
python tool - named 3Dont - which manages all the different 
processes (import of the point clouds and possible rasters 
layers, semantic rules application, object-based level 
generation, etc.). This tool automatically parses the selected 
ontology in order to recognize object-level structures and map 
classification scalar-field on ontology’s set of classes. This 
feature grants a practical generality to our ontological 
approach to 3D data. This generality develops in two different 
layers: (i) the tool is able to manage different domain 
ontologies; (ii) every domain ontology can be populated with 
whichever dataset relates to the concerned domain. Moreover, 
the tool also grants the execution of external semantic 
inferential rules, which has been preferred over the 
traditionally employed reasoner-based SWRL (Semantic Web 
Rule Language) reasoning. This is due to the limiting aspects 
of OWA (Open World Assumption) which characterizes most 
of the traditional ontology’s reasonings. We then rely on a 
Virtuoso Open Source Edition local server for indexing the 
elements of the ontological representation and for querying. 
Results can be visualized in any point cloud viewer, such as 
Cloud Compare (2024). 

 

 
Figure 1. Schematization of the proposed ontology-based approach. 
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3.1. Structure of our domain ontologies 

To be compatible with our approach and our 3Dont tool, 
domain ontologies have to be modelled according to a certain 
defined structure. We are not going to present every technical 
detail, but we will display the general structure.  
The domain ontologies have four main class branches: 
i. Points: a class whose subclasses contain points as 

individuals and represent the various classes of the 
ontologies. Every class is annotated with an ID number 
and a mereological tag, both useful for parsing and 
mapping. In this branch we would find, for example, 
“Building_points” as the superclass of “Column_points”.  

ii. Macro-Objects: a class whose subclasses contain 
individuals standing for the macro-objects and represent 
the various typologies to which macro-object can belong. 
In this branch we would not find “Type_Building” as the 
superclass of “Type_Column”, but rather 
“Type_Building_Part”, since, while a column point is also 
a building point, a column is definitely not a building. The 
IDs are present here too, allowing for identification of 
correspondences between the two branches. 

iii. Acquisitions: this branch contains individuals standing for 
the single imported records of the various properties. It 
enables for metadata attribution to single acquisitions and 
therefore for multi-temporal analyses. 

iv. Predicates: while some properties can assume a certain 
value over a numerical range (i.e. “temperature”), some 
others are better conceived as relations between 
individuals (i.e. “being made of”). The object predicates to 
which predicates can refer are modelled as individuals 
within this branch. We would here find individuals such as 
“marble”. This allows for the attribution of properties (i.e. 
“solubility”) to these predicates, enriching the implicit 
knowledge concerning them. 

The structures between macro-objects are realized by mean of 
object relationships, while the data properties represent both 
the low-level and object-level numerical features. 
 
3.2. The 3Dont pipeline  

The proposed method relies on an ad-hoc python tool which 
manages the whole workflow and performs the following 
steps: 
1. Modelling of a domain ontology using Protégé (Protégé, 

2024) dedicated to a specific scenario (e.g. urban, heritage, 
forestry, etc.). This includes: 
• Definition of a hierarchical tree of classes (e.g. Surfaces, 

Objects, Immovable Objects, Movable Objects, etc.), a 
set of materials, relationships and properties; 

• Definition of a set of python external semantic 
inferential rules (e.g. rules for Flooding Risk Index or for 
macro-objects’ average temperature calculation, etc.). 

2. Pre-processing of the point cloud, i.e.: 
• Selection of the concerned domain ontology; 
• Mapping of the classification semantic information into 

the ontology’s set of classes; 
• Point aggregation for each class in order to generate 

macro-objects instances (e.g. Building 1, Building 2, 
Tree 1, etc.). 

3. Importing the point cloud within the ontology, i.e.:  
• Generation of a duplicate of the ontology which will be 

populated by the points of the point cloud; 
• Generation of an individual for each point and for each 

macro-object; 

 
1 https://github.com/3DOM-FBK/USAGE_Geospatial  

• Institution of part-whole object relationships between 
such macro-objects, generating a mereological tree. 
(mereological = “concerning part-whole relationships”); 

• Institution of object relationships between points and 
objects they belong to; 

• Application of geometrical inferential rules about 
macro-objects spatial relations and dimensions (e.g. 
Object A is on Object B); 

• Upload of the ontology within a local multi-functional 
database engine (Virtuoso Open Source Edition) 
provided by OpenLink Software. 

4. Importing rasters within the ontology, i.e.: 
• Import of the raster-encoded values within the ontology, 

in the form of point-level property values or 
relationships with materials; 

• Application of the semantic inferential rules (1b) on the 
basis of the newly integrated data in order to generate 
high-level properties; 

• Upload of new data in the local Virtuoso quad-store. 
5. Querying the ontology using two complementary 

approaches, i.e.: 
• Use a SPARQL-based query system: 
• Write a SPARQL query leveraging the ontology explicit 

vocabulary; 
• Execute the query on the local indexed Virtuoso quad-

store; 
• Project the query results over the original point cloud 

using a scalar-field-like visualization; 
• Select a point-level property of the ontology (e.g. 

Temperature); 
• Use a certain value of the property to generate a point 

cloud with such values as a scalar-field; 
• Visualize the results e.g. within Cloud Compare. 

The framework is realized ensuring that: 
i. An ontology can be easily modified, e.g. adding new 

classes or properties, similarly to its rule file, e.g. including 
new inferential rules; 

ii. For every available populated ontology, multiple rasters 
(with their encoded properties and semantic information) 
can be imported, linked to the point cloud and query; 

iii. Raster data are imported considering their meaningful 
metadata (e.g. acquisition date) and a user-defined tag 
(useful for queries). This allows for multiple imports of the 
same property and multi-temporal analyses. 

 
3.3. Evaluation datasets 

We applied our methodology on three different datasets: 
1. The USAGE dataset1 (Beber et al., 2023) over the 

municipality of Ferrara (Italy) which comprises: 
• A LiDAR point cloud semantically enriched in 5 classes 

by FBK-3DOM research unit); 
• A RGB ortophoto; 
• Two summer thermal images, one acquired during day 

and one during night time; 
• A landcover raster layer with surface material 

information, derived from hyperspectral images. 
2. The YTU3D dataset2 (Bayrak et al., 2023) which 

comprises a classified (45 classes) UAV-based 
photogrammetric point cloud of the Yildiz Technical 
University (YTU) campus in Istanbul (Turkey). 

3. The Temple of Neptune (Paestum, Italy) dataset which 
comprises a classified (10 classes) terrestrial and UAV 
photogrammetry point cloud of the Paestum’s Temple 
(Grilli and Remondino, 2019). 

 

2 https://github.com/3DOM-FBK/ytu3d  
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a)  b)  

c)  d)  

e)  f)  
Figure 2. Ferrara dataset: Original (a) and RGB point cloud (b); Query results for points with day temperature greater than 50°C 
(c);  Query results for points which temperature difference between day and night is greater than 20°C (d); Query results for point 
made of red tile, which are part of a building and which day temperature is greater that 50°C (e); Query results for building with an 
average day temperature greater than 50°C (f). 
 

4. RESULTS AND DISCUSSION 
 
Visual results of the developed urban-based ontology method 
to query and visualized enriched point clouds are shown in 
Figure 2-3 (Ferrara dataset) and Figure 4 (YTU3D dataset). 
For Ferrara, results show the integration of multi-source and 
multi-temporal data, the high-level features generation and the 
object-level properties generation. For YTU3D, we obtained 

results regarding the object-level organization and the 
mereological structure generation.  
Moreover, to show the robustness ad replicability of the 
proposed methodology, 3Dont has been applied to the Temple 
of Neptune dataset: Figure 5 shows visual results of queries 
related to single construction elements.  
As pointed out, traditional ontology aims to tackle the issues 
of interoperability, data exchange and semantic description. 
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This is done or by broadly describing a specific domain (i.e. 
domain ontologies), therefore prioritizing the semantic 
description, or by specifying the general relationships and 
types of entities which characterize human comprehension of 
the world, and as such focusing on the interoperability issue 
(foundational ontologies). The presented approach utilizes 
ontologies in their domain-specific declination but aims to 
provide them with spatial consistency. We also saw that our 
approach can be classified as a “representation-oriented” and 
“conceptual” ontology-based approach to 3D data, but that it 
presents traits which make it different from approaches of the 
same branch. The core idea of our ontology-based approach is 
to consider the points of a point cloud as the individuals of an 
ontology. For each sector (heritage, urban, etc.), we model an 
empty ontology to be used as a schema and for each imported 
3D point cloud we generate a point populated duplicate of such 
ontology. Such point populated ontology can be considered as 
an informed representation of the imported 3D point cloud. 
This representation is:  
• semantically conceptualized, since the empty domain 

ontology is meant to model expert knowledge of the field 
(comprising semantic information, such as materials 
physical-chemical properties - Figure 3b - and a hierarchical 
structure of classes, which defines the reciprocal relations 
within different kinds of entities);  

• dynamic, since it generates the object-based level on the 
basis of the point-based one - Figure 4 and 5 - and, moving 
from the low-level features, it produces some useful high-

level ones (such as object-level properties or the ones we 
called “dispositional indexes” - see the flooding risk index 
in Figure 3d and the heating propension index in Figure 3c);  

• user-friendly, since it can rely both on a scalar-field-like 
visualization tool (e.g. Figure 3) and on a SPARQL-based 
query system which can leverage the ontology well-defined 
structure and vocabulary (Figure 3 and 4); 

• homogeneous, which means that data coming from different 
sources (i.e. RGB orthophotos, thermal images, 
hyperspectral-based material classification rasters, etc.) and 
from different times can be collected within the same 3D 
data ontological representation (e.g. Figure 2) - using points 
and macro-objects as referential joins and under the same 
property-based ontological structure, which allows for 
complex queries (see Figure 2e) and for multi-temporal 
analyses (Figure 2d). 

• explainable, since every entity within the ontology (points, 
objects, properties, relationships) is explicitly defined, it can 
be inspected and the rules are accessible, modifiable and 
algorithmically generate high-level understandable features 
from low-level ones. 

This last aspect is the main deviating point with respect to AI-
based approaches. Moreover, our ontologies detach from the 
traditional ones as they describe a “world of points and objects 
in space and time”, and the properties and relationships 
comprised in them aim to model attributes and relations of 
such points.

 

a)  b)  

c)  d)  
Figure 3. Ferrara dataset: Scalar-field-like view of thermal acquisition during day (a); Scalar-field-like view of specific heat capacity 
(b); Scalar-field-like view of Heating Propension Index (c); Scalar-field-like view of Flooding Risk Index (d). 
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a)  b)  

c)  d)  

e)  f)  
Figure 4. YTU3D dataset: Query results for movable objects (a); Query results for buildings (b); Query results for building number 
1 (c); Query results for building number 2 (d); query result for the roof of building number 1 (e); Query results for the roof pipelines 
on the roof of building number 1 (f). 

 
 

5. CONCLUSIONS AND FURTHER RESEARCH 
 
The paper presented the general features and some initial 
results of 3Dont, an ontology-based tool to organize, query and 
visualize semantically enriched and integrated geospatial data. 
In a nutshell, the core strengths of the proposed method are: 
• the high human readability of data and the high 

controllability of the rules which generate the high-level 
features; 

• the low-level expert knowledge that can be represented 
within the ontology, both in the form of materials’ physical-
chemical properties and in the form of explicit relationships 
between classes; 

• the high conceptual richness that can be expressed in the 
queries and the ease to visualize the results; 

• the possibility to utilize the ontology-based representation as 
a “collector” of heterogeneous data coming from different 
sources; 

• the highly intuitive way in which points are organized in 
simple or nested macro-objects, which can provide a support 
for likewise intuitive queries. 

• the high generality of the approach, which can be applied to 
all sort of 3D data as long a dedicated domain ontology is 
available. 

A demo of the developed methodology is available in this 
video: https://www.youtube.com/watch?v=Nvg2E755JNg 
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a)  b)  

c)  d)  
Figure 5: Query results on the Neptune Temple dataset for column number 49 (a), shaft of column number 49 (b), capital of column 
number 49 (c); and echinus of the capital of the column number 49 (d). 
 

The presented methodology is a proof-of-concept research 
work, it does not undermine its technological validity. In 
particular, what should be brought forth as future work is: 
• more complete domain ontologies, collaborating with 

domain experts, to reach further generalizations; 
• a wider range of inferential rules;  
• an implementation of an LLM-based query system to allow 

users to inspect the dataset with natural language queries 
which get automatically translated into SPARQL queries;   

• the implementation of machine learning-based method to 
generate missing low-level features, particularly for cases 
where few raw data are available; 

• a dedicated visualization tool able to read and write directly 
on the populated ontology, making possible visual 
inspection (both for point and object-level information) and 
manual annotation of the ontology-encoded point cloud. 

Nevertheless, the method has no structural limits neither in 
which properties get addressed by the rules nor in how the 
rules are actually written. 
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