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Abstract

City furniture objects hold valuable information about urban traffic and city dynamics, making their integration into 3D city models
essential for enhancing these models. This study implements two methodologies for detecting, classifying, and positioning City
Furniture objects, as well as one approach for their automatic 3D modeling. The first approach uses Mobile Mapping System (MMS)
imagery with YOLO for object detection and classification, coupled with the Line of Bearing (LoB) method for extracting XYZ
coordinates and height. A spatial operation was conducted to determine object orientation. The second approach employs camera-
LiDAR fusion, integrating KPConv for semantic segmentation and connected components for instance segmentation. Classification
is performed using two complementary approaches: using Fast Global Registration (FGR) on point clouds, for lamppost types,
and image-based, projecting point cloud instances to classify traffic lights and signs. This fusion approach leverages image-based
classification models and point cloud accuracy, achieving an RMSE of 0.32 against ground truth data. The point cloud approach
shows promise but requires refinement to improve noise sensitivity in FGR. This study presents a comprehensive workflow from
detection to Level of Detail 4 (LOD4) modeling, combining KPConv and multi-source data to enhance feature detection and
classification for city furniture.

1. Introduction

Identifying and determining the location and shape of city
furniture objects plays a crucial role due to their diverse applic-
ations, including sign maintenance and inventory management
de la Escalera et al. (2003). The objects’ features, such as
their locations and their type, are significant factors Timofte
et al. (2014). The Mobile Mapping System (MMS) provides
accurate spatial referencing and aligns effectively navigation
data with images Amano et al. (2006). While many scholars
focus on leveraging point cloud data for the detection of city
pole-like objects Nurunnabi et al. (2023); Zou et al. (2021),
the deployment of imagery remains relatively less investig-
ated. Images present two main advantages: the lower cost of
acquisition compared to LiDAR systems and the maturity of
semantic analysis and object detection methods for street object
localization, in contrast to the semantic segmentation of point
clouds. However, to enhance results, some methodologies
integrate LiDAR data alongside imagery Mori et al. (2018);
Zhou et al. (2022).

Current research has not fully addressed the complexity
of detecting city furniture objects. Most studies focus primarily
on pole-like structures and do not emphasize accurate posi-
tioning, often employing methods that compromise precision.
Moreover, a comprehensive workflow covering all aspects from
detection to modeling of city furniture objects has not yet been
developed.

In our study, we focused on detecting city furniture ob-
jects using two approaches: one relying solely on images
and another combining both point cloud data and images.
Both approaches follow the main steps: detection, positioning
and modeling using different data types. Additionally, each
approach performance and the quality of results are evaluated.

2. Related Work
The detection, classification, and localization of city furniture
in urban settings using a combination of imagery and point
cloud data have been the subject of extensive research in recent
years. With the integration of novel deep-learning approaches,
this field has seen significant advancements in both efficiency
and accuracy.

2.1 Object Detection and Labeling
Grounding DINO, a pre-trained vision-language model for
object detection, has been instrumental in enhancing automated
labeling of urban data. Liu et al. (2023) demonstrated the
effectiveness of Grounding DINO for automatically generating
precise labels in diverse contexts, which greatly facilitates
subsequent model training by reducing the manual annotation
workload.

The YOLO framework Redmon et al. (2016) has been ex-
tensively used for real-time object detection in urban settings,
thanks to its speed and accuracy. Comparatively, Faster R-CNN
(Ren et al., 2015) offers higher precision for small objects
but at the cost of reduced inference speed, making YOLO
a more suitable option for our real-time requirements. The
combination of Grounding DINO for labeling and YOLO for
detection significantly improved our workflow by leveraging
accurate, automated annotations for training a robust detection
model.

2.2 Position Estimation and Automation
For determining the spatial positions of detected objects, the
line-of-bearing (LOB) approach was effectively utilized by Li
et al. (2022) for estimating the geolocation of urban elements
using multi-perspective imagery. Their work highlights the
utility of LOB for precise localization without the need for
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extensive ground control points. Compared to methods like
Structure from Motion (SfM) as used by Snavely et al. (2010),
which require overlapping imagery for 3D reconstruction, the
LOB approach provides a computationally efficient solution,
particularly in scenarios where image data is limited. In our
work, this methodology was extended ti calculate the Height of
the object and their elevation.

2.3 Point Cloud Segmentation
The use of point cloud data for semantic segmentation has
also gained prominence due to its ability to provide accurate
3D information. Thomas et al. (2019) introduced KPConv, a
point convolution approach specifically designed for effective
semantic segmentation of irregular 3D point clouds. Earlier
approaches, such as Qi et al. (2017a,b), pioneered point cloud
processing but struggled with capturing local geometric fea-
tures, an issue that KPConv effectively addressed. KPConv’s
ability to model local dependencies made it particularly useful
for segmenting city furniture objects from dense point clouds.

2.4 Integration of Imagery and Point Cloud Approaches
The integration of both imagery-based detection and point
cloud segmentation provides a more robust framework for city
furniture modeling. Mori et al. (2018); Zhou et al. (2022) high-
lighted that combining data from imagery and LiDAR sensors
improves the detection accuracy of small, occluded objects.
This finding contrasts with purely LiDAR-based methods, such
as those by Nurunnabi et al. (2023); Li et al. (2019), which, al-
though effective for large-scale mapping, involved a large num-
ber of steps using machine learning algorithms.

3. Imagery-based approach
In this part of the paper, we propose an automatic detection,
positioning, and modeling method for CityFurniture using
Mobile mapping System (MMS) Imagery. Which mainly in-
cludes three parts:CityFurniture detection models, LOB-based
detection Models.

3.1 Data Collection and Object Detection
As illustrated in Figure 1, our workflow begins with data collec-
tion, capturing 360 images along urban streets, with each image
accompanied by its corresponding camera position and orient-
ation. The next step involves detecting our key objects of in-
terest, specifically traffic signs, traffic lights, lampposts, and bus
stops. To accomplish this, we utilize YOLOv8 as our primary
detection model, chosen for its maturity and speed, outperform-
ing other models. Successful training of this model requires an
extensive set of labeled images. To generate these, we employ
Grounding DINO Liu et al. (2023), an open-set object detector,
to produce a sufficient quantity of annotated images. These la-
bels were manually reviewed and refined, allowing YOLOv81

models to effectively identify various city furniture elements,
including traffic signs, traffic lights, lampposts, and bus stops.
The models show high performance across all categories, with
bus stops achieving the best detection metrics. Traffic signs,
lampposts, and traffic lights are also detected, with consistently
good IoU, precision, recall, mAP50, and mAP50-95 values.

For certain classes with high variability, such as traffic signs, we
implement a cascaded detection approach, as shown in figure 3.
We start by applying inference on all images in our dataset us-
ing a model designed to detect traffic signs, as shown in (step 2).
Subsequently, cropping is performed to isolate each traffic sign

1 You Only Look Once

individually (step 3). We then run a classification model spe-
cifically trained on Belgian traffic signs on the cropped images
(step 4). Finally, we remap the subclass labels to the original
images to preserve the exact positions of the traffic signs (step
5). This is essential for obtaining the pixel coordinates of the
objects in the original images, which are needed for the localiz-
ation step.
As shown in figure 2, we created a dataset for traffic signs
following the Belgian Traffic Sign Codification. This dataset
includes 63 classes, each containing approximately 50 images.
The dataset was generated by running a general YOLOv8
detection model, previously trained, to identify traffic signs.
We then cropped the resulting bounding boxes and manually
curated the dataset to ensure accuracy and completeness.

3.2 Image Segmentation
To accurately find the pixel coordinates of a detected object,
we need to locate its exact position within the bounding box,
as shown in Figure 4. For objects like traffic lights and lamp-
posts, we use Segment-Anything-Model (SAM) (Kirillov et al.
(2023)) to extract the mask of the object from the bounding box.
After that, we identify the lowest and the highest points of the
mask. This information is then used in the positioning step to
calculate the precise location, elevation and height of the object.

3.3 Positioning and Features Extraction
For the positioning step, we developed an algorithm that uses
a spherical camera orientation system and photogrammetry
equation to calculate the bearing between the camera and the
object. This process was first proposed by Li et al. (2022). The
first step in solving the positioning issue involves understand-
ing epipolar geometry and spherical panorama concepts.

The conversion from pixel coordinates (x, y) to spherical co-
ordinates (ϕ, λ), as shown in Figure 5, is given by:

ϕ =
(
x− w

2

)
· 2π
w

(1)

λ =

(
y − h

2

)
· π
h

(2)

The conversion from spherical coordinates (ϕ, λ) to Cartesian
coordinates (x, y, z) is given by:

x = r cos(λ) cos(ϕ) (3)
y = r cos(λ) sin(ϕ) (4)

z = r sin(λ) (5)

The transformation from image space coordinates to world co-
ordinates is given by:xw

yw
zw

 = s ·R ·

 xc

yc
−zc

+

xcam

ycam

zcam

 (6)

R = Rz(yaw) ·Ry(pitch) ·Rx(roll)

where s is the depth coefficient, R is the rotation mat-
rix, (xc, yc, zc) are the image space coordinates, and
(xcam, ycam, zcam) are the camera position coordinates in
the world frame.
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Figure 1. Imagery based methodology

Figure 2. Traffic Sign Classification Model dataset

3.4 Line of bearing and vertical angle calculation

• Bearing

Because the s depth factor is unknown for us in a single
image the soly information that we want is the bearing and
vertical angle as in surveying problem . The bearing , b,
corresponding to the direction camera-object can be ex-
pressed by Equation (7):

bearing = arctan

(
yc − ycam

xc − xcam

)
(7)

• Vertical Angle

V = arctan

(
(−zc)− zcam√

(xc − xcam)2 + (yc − ycam)2

)

Line of Bearing/azimuth is represented by l, as shown in Equa-
tion (3):

l = (xcam, ycam, zcam, bearing)

To address the positioning step, we drew inspiration from
the LOB constrained method which essentially calculates the
bearing line between the camera and the object, followed by
an elimination algorithm to retain only the actual object, as
illustrated in Figure 6 described in Li et al. (2022). However,
we developed our own code, adding a component that utilizes
the calculated vertical angle to determine the elevation and
height of the object, based on the known positions of the top
and bottom pixels.

3.5 Orientation Calculation
Orientation is a tricky characteristic to determine accurately
from images alone. Therefore, we have decided to adopt a
different approach. Given that the orientation of most urban
objects is highly predictable (e.g., lampposts are typically per-
pendicular to the road, traffic signs face the same or opposite
direction as the road), we can generalize this principle to other
city furniture such as traffic lights, buses, and bus stops.
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Figure 3. Cascaded Detection approach

Figure 4. Resulting output from SAM based on the bounding
box from the object detection

Figure 5. Transformation from pixel coordinates to polar
coordinates

Figure 7. Results of the orientation calculation.

Figure 6. Ghost Node

4. LiDAR-Camera fusion approach
4.1 Semantic Segmentation
The LiDAR-camera fusion approach, presented in Figure 8,
starts with the semantic segmentation of 3D point clouds using
a trained KPConv model on Toronto3D dataset Tan et al.
(2020); ?. The pole class, which in Toronto3D incorporates all
vertical city furniture objects including traffic signs and lights,
is successfully segmented with an Intersection-over-Union
(IoU) of 78.4%.

4.2 Instance Segmentation
The second step in the process is instance segmentation, where
we use Label Connected Components (LCC) algorithm to
separate individual objects of the pole class, assigning each a
unique identifier.

4.3 Classification Approach
Afterward, we proceed with a classification step constrained
by height to differentiate between lampposts and other city
furniture before performing further analysis.

For the lampposts, we apply a point cloud-based method using
Fast Global Registration (FGR) and Iterative Closest Point
(ICP) algorithms to calculate Fitness and Root Mean Square
Error (RMSE) metrics with a pre-defined city furniture objects
database. First, we identify the unique object models present
in the dataset. Then, we perform FGR for coarse alignment,
followed by refinement with ICP between each instance and
the existing references, classifying the objects based on the
highest Fitness value.

For other city furniture shorter than lampposts, we employ an
image-based methodology. First, we run a projection algorithm
to convert 3D bounding boxes into 2D images, projecting onto
the four closest images as shown in the step named reprojec-
tion to 2D images in Figure 8. We then train a YOLOv8 model
for the classification task focusing on traffic signs and lights as
explained earlier in the image-based approach.

5. 3D Modeling
For the 3D modeling process, we provide a workflow to gener-
ate a CityJSON model from the extracted points, incorporating
the position and 3D geometry template. The orientation,
calculated during the feature extraction step, was then applied
to modify the transformation matrix accordingly.

Firstly translating the 3D model from the initial format to
CityJSON, the model required modifications to be used as a
‘Geometry Template. Figure 9 below illustrates the sequence
of operations performed to prepare this basic CityJSON model.
The first task involved merging the geometry while ensuring
the correct application of textures to different surfaces. The
second task was applying scale homogenization, rotating along
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Figure 8. Combined Methodology

Figure 9. Merge geometry to one geometry object

the X-axis, and translating the model to the origin. All these
adjustments were executed through an algorithm.

For the Generation of the Final CityJSON model of the City
Furniture Object, we used the CityJSON Geometry Templates
Mapper, developed within GeoScITY Lab. The basic command
required the following inputs: a shapefile containing the detec-
ted objects from the positioning step, and an OBJ file to serve
as a template for generating the final CityJSON geometry. The
shapefile includes attributes such as orientation,height (corres-
ponding to the Z-coordinate), and classification (CITYFUR-
NITURE). The local rotation along the Z-axis is used to set the
orientation of the objects. The output is a CityJSON file with
the geometries of the objects, incorporating their positions, ori-
entations, and attributes as defined by the input shapefile and
template OBJ file. The entire process is detailed in Figure 10,
which outlines the CLI command algorithm. We introduced
several modifications, such as replacing the SHP file with a
GeoParquet file and using a pre-prepared CityJSON file con-

taining the template, instead of directly utilizing the OBJ file.

Figure 10. CLI command detailed structure

6. Experimental Results and Discussions

6.1 Data Collection and Research Area
In this Paper, we use two different Dataset, The first dataset, as
shown in Figure 11, we used is collected by the MMS of the
DrivenBy company in Liège City in Belgium. The system is
equipped with a Ladybug panoramic camera, GNSS, and IMU.
The image stream data output by the Ladybug panoramic cam-
era is read and spliced to form a panoramic image with a 360°
viewing angle, stored in a general picture format with an 8192
× 4096-pixel resolution. Along with the trajectory information
(latitude, longitude, and elevation), the data includes camera
orientation details (roll, pitch, and yaw).
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Figure 11. Liège MMS Trajectories

The second dataset we use, as shown in Figure 12, is col-
lected by the MMS of the GlobeZenith Company in Arlon
City In Belgium.The system is equipped with a Panorama 360°
camera, GNSS, Leica TRK700 Evo with two LIDAR scan-
ners Z+F 9020 and IMU. The image stream data output by the
camera is read and spliced to form a panoramic image with a
360° viewing angle, stored in a general picture format with an
7040×3520-pixel resolution. Along with the trajectory inform-
ation (X,Y and elevation) in ESPG 31370, the data includes
camera orientation details (phi, omega, kappa).

Figure 12. Arlon MMS Trajectories

6.2 Object Detection and segmentation
The success of the Object Detection Task relies on the per-
formance of the metrics used to evaluate our trained models. In
this case, we trained four models in the initial step for a general
object detection task.

Specifically, we trained four models for detecting four types of
objects: lampposts, traffic lights, traffic signs, and bus stops, as
shown in Table 1, using labeled data prepared by us from Liège
and Arlon Dataset, as shown in Table 2. However, for classes
with multiple subclasses, such as traffic signs and lampposts,
we employed a cascade detection and classification approach to
effectively differentiate between the various subclasses.

Table 1. Performance metrics for direct object detection models.

Bus Stop Lamppost Traffic Light Traffic Sign
IOU 0.850 0.810 0.780 0.830
Precision 0.974 0.853 0.885 0.880
Recall 0.909 0.838 0.896 0.875
mAP50 0.942 0.909 0.946 0.927
mAP50-95 0.685 0.648 0.737 0.552

Table 2. Number of images used to trained to trained the model

Bus Stop Lamppost Traffic Light Traffic Sign
Number of labels 421 1365 1823 300
Number of classes 1 3 1 1

For object classes like traffic signs and lampposts, which
have numerous subclasses, we applied a cascade detection and
classification approach. This method allows us to differentiate
between 50 types of traffic signs and 9 types of lampposts,
ensuring more accurate subclass identification within these
categories.

The Table 3 presents the metrics of the classification model
trained.

Table 3. Top-1 and Top-5 Accuracy Metrics for the Traffic Sign
and Lamppost Classification Model.

City Furniture type num of classes Accuracy Top 1 Accuracy Top 5
Traffic sign 61 0.99054 0.99369
Lamppost 9 0.985 1

After applying inference using the trained object detection and
classification models, the table 4 presents the number of images
in which objects have been detected.

Table 4. Inference result

Liège Arlon
Number of images 23836 734
Lammpost single 12046 272
Traffic Light 961 246
Traffic Sign 6165 283
Bus Stop 638
Lammpost double 31

6.3 Positioning results
The XY positions of the extracted objects were compared to
a baseline data extracted from the PICC dataset, which is the
3D digital cartographic reference for Wallonia, and MMS point
cloud data. Table 5 presents the calculated positioning devi-
ation. A total of 579 points were analyzed, resulting in a mean
error of 0.27 meters, which is the average positional discrep-
ancy between the datasets. The RMSE of 0.32 meters quan-
tifies the overall variation in positional differences. Figure 13
illustrates the detection of lampposts.

Metric Value
Mean error 0.27 m
RMSE 0.32 m

Table 5. Positioning error.

Figure 13 presents the result of lamppost detection in Liège
Dataset. It shows the identified lampposts, with the top-right
image serving as an example, where 100% of the existing lamp-
posts have been successfully detected
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Figure 13. Lampposts positions.

The Figures 14, and 15 illustrate examples of the results from
the positioning step. The traffic lights shown in the figures are
accurately detected at the intersection, with all existing lights
successfully identified in the Liège dataset. Additionally, the
prohibited traffic sign along the street in Outremeuse, Liège, is
also correctly identified.

Figure 14. Traffic Light Positioning

Figure 15. Result of C1 detection from the MMS imagery

6.4 3D modeling results
The 3D modeling process takes as input the position, the ori-
entation and the height of each detected object. The orienta-
tion and height attributes are calculated in the feature extraction
step. Figures 7 show the results of the orientation calculation
process and Figure 16,17 and 18 present the final 3D models
contain the various types of detected models lampposts , bus
stop ans traffic sign .

Figure 16. Final CityJSON model.

Figure 17. Bus Stop Detection

Figure 18. C43: Driving over the indicated speed forbidden

7. Discussion
This study explored two methodologies for detecting, and clas-
sifying CityFurniture Object: The imagery-based approach and
the camera-LiDAR fusion approach. And one approach for
automatically modeling city furniture objects Imagery-based
methodology leveraged YOLOv8 models for high-precision ob-
ject detection, supplemented by a cascade classification system
to manage complex subclassifications. Photogrammetry and
stereoscopic geometry techniques were used for accurate object
localization, while the Segment Anything Model (SAM) further
refined object boundaries, enhancing precision. The camera-
LiDAR fusion methodology employed KPConv for semantic
segmentation, Label connected component for instance seg-
mentation, Fast Global Registration (FGR) for Lamppost Clas-
sification providing a robust means of identifying city furniture,
and Back projection to 360 Imagery for traffic sign and traffic.
However, FGR’s sensitivity to noise and difficulty handling out-
liers limited its effectiveness in noisy environments, requiring
future improvements. A key feature of this work was the use of
the CityJSON format, which facilitated efficient automation of
the feature extraction process via geometry templates and CLI
code. This enabled accurate extraction of key attributes such as
height, orientation, and type, improving 3D modeling. Overall,
both methodologies demonstrate strong potential for improving
urban object detection. This study provides an innovative and
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highly effective framework for city furniture modeling, estab-
lishing a strong foundation for future developments in urban
analytics and intelligent systems.

8. Conclusion
As conclusion, this study focused on the automatic detection,
localization and modeling of city furniture objects. Addi-
tionally it compared two different approaches: imagery-based
approach and LiDAR-camera fusion approach, based on three
key metrics: accuracy, detection rate, and classification quality.

Accuracy: Theoretically, the LiDAR-camera fusion approach
provides higher positioning accuracy since it directly determ-
ines the position of objects. In contrast, the imagery-based
approach achieves good accuracy, particularly in XY coordin-
ates.

Detection rate: We observe that the imagery-based approach
has a higher detection rate, primarily because objects appear
in multiple images, increasing the likelihood of detection.
This redundancy makes it difficult for an object to be missed.
On the other hand, the LiDAR-camera fusion approach is
more sensitive to occlusions and filtering processes; a single
observation can be easily overlooked, making this approach
more prone to omission and requiring more careful processing.

Classification quality: In both approaches, using images to
classify city furniture objects directly or after projection from
3D point cloud, traffic signs and traffic lights were accurately
detected. However, using solely the point cloud approach to
classify lampposts by FGR/ICP registration is critical. Without
proper filtering, the algorithm struggles with noise, which could
hinder the classification quality.
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