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Abstract 
Traditional 3D surveying methods often fall short in complex spaces due to lack of mobility, time constraints and high risk. For this 
reason there is an actual demand for 3D data acquisition tools and methods, particularly suitable for complex and narrow environments, 
due to their capacity for efficiently capturing detailed and accurate spatial information, maybe also automatically. This study presents 
a novel approach for fusing 3D spatial data collected by two separate and independent mobile mapping systems: (1) ATOM-ANT3D 
and (2) MandEye. We propose an innovative fusion technique that combines visual and LiDAR data from asynchronous acquisitions, 
reducing the need for strict temporal and spatial synchronizations between the two systems. We compare the outputs of both systems 
before and after fusion, studying the individual limitations and highlighting the complementary benefits achieved by the proposed 
fusion framework. Results demonstrate improved accuracy of global alignment and spatial completeness of the final point clouds, 
proving the efficiency and flexibility of the proposed approach.  
 
 

1. INTRODUCTION 

With the increasing demand for capturing 3D spatial data, there 
is a growing need for cost-effective and efficient methods for data 
acquisition. Traditional methods, such as photogrammetry and 
static Terrestrial Laser Scanning (TLS), provided highly accurate 
3D spatial data for many years in heritage and architectural 
scenarios (El-Hakim et al., 2007; El-Hakim et al., 2008; Fassi et 
al., 2011; Remondino, 2011). Recently, Mobile Mapping 
Systems (MMS), either with LiDAR sensors, cameras (visual) or 
an integration of both sensors, offer a promising alternative 
combining affordability, flexibility and reduced acquisition 
times, making them versatile and suitable for a wide range of 
applications, even in complex scenarios (Nocerino et al., 2017; 
Di Stefano et al., 2021; Elhashash et al., 2022). Coupled with 
real-time data processing capabilities (generally called SLAM – 
Simultaneous Localization and Mapping), data collection 
becomes more effective and post-processing requirements are 
generally reduced, therefore speeding up surveying processes 
and enhancing the quality of generated 3D data (Torresani et al., 
2021; Będkowski, 2024; Perfetti et al., 2024).  
While existing literature have often extensively compared the 
characteristics of LiDAR- and visual-based point clouds 
(Kadobayashi et al., 2004; Bayram et al., 2015; Dietmaier et al., 
2019; Trybała et al., 2023a), an advantageous and underexplored 
opportunity lies in the fusion of these data modalities at raw data 
level. By integrating LiDAR and photogrammetric data, the 
resulting hybrid approach can potentially benefit from the best 
qualities of both methods. However, since such systems usually 
rely on the relative positioning methods, not using the global 
reference, they are prone to long-term drift of the trajectory. 
When registering the 3D data coming from independent SLAM-
based acquisitions, this issue often prevents achieving an 
accurate global alignment of two-point clouds, even despite their 
locally high quality and compliance. 
 

1.1 Paper’s Aim 

This study focuses on the fusion and quality evaluation of 3D 
spatial data generated by two portable and hand-held Mobile 
Mapping Systems (MMS) based on different sensing modalities: 
• ATOM-ANT3D (Elalailyi et al. 2024), the new version of the 

ANT3D (Perfetti et al, 2024) multi-camera mobile mapping 
system based on multi-view (5) fish-eye cameras (Figure 1a); 

• MandEye system (Figure 1b), a LiDAR-based portable 
SLAM system (Będkowski, 2024; Trybała et al., 2023b).  

 

a)  b)  
Figure 1. The two portable handheld surveying systems: 
ATOM-ANT3D (a) and MandEye (b). 

 
With the goal of employing data fusion techniques to portable 
mobile mapping systems, the paper aims to identify and mitigate 
sensor weaknesses. Therefore, we pursue a more reliable hybrid 
approach that can improve the overall 3D data quality in terms of 
reciprocal compliance of the two datasets, global accuracy and 
completeness of the final 3D reconstruction. No ground control 
points (GCPs) are used for constraining or optimizing any 
solution. The 3D reconstruction’s scale relied solely on the 
known rigid baselines between ATOM-ANT3D cameras and the 
metric range measurements of LiDAR in MandEye. The 
assessment is carried out through comparisons with a high-
quality ground truth TLS point cloud. 
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2. RELATED WORKS 

Sensor integration and data fusion has long been studied, 
especially in SLAM and mobile mapping systems (MMS) to 
enhance the accuracy of spatial data collection. LiDAR multi-
sensor fusion have witnessed developments on both data and 
approaches levels. For example, data coupling methods occur 
both on the front-end (raw data fusion) and back-end (error 
coupling and optimization) (Xu et al., 2022). Multi-sensor 
integration has become essential for reliable state estimation in 
SLAM applications. By leveraging the complementary strengths 
of different sensors, these frameworks improve the robustness 
and accuracy of SLAM systems, offering enhanced performance 
across a variety of conditions and addressing the challenges of 
drift, scale and environmental variability effectively. Zhu et al. 
(2024) demonstrated the different combinations of sensors fusion 
between visual, LiDAR and inertial measurement unit (IMU), 
analysing each approach and the methods used for fusing the data 
in each category.  Zhao et al. (2023) demonstrated point clouds 
registration of image-based and LiDAR techniques through 
Robust Point Matching using Learned Features (RPM-Net) (Yew 
& Lee, 2020) for improving the 3D reconstruction. Cao et al. 
(2018) used thermal consistency in a multi-modal approach to 
fuse information from depth and thermal images to improve the 
3D thermal reconstruction. Wei et al. (2024) fused point clouds 
generated by LiDAR-inertial SLAM with RGB and thermal 
cameras through post-processing to produce enriched 3D maps. 
Kumar et al. (2020) integrates data between aligned LiDAR and 
camera sensors at a low-level to improve vehicle to object depth 
estimations for navigation and obstacle avoidance. 
Although such methods can leverage the advantages of different 
sensors, using them jointly to improve the positioning quality, 
they rely on acquiring the data simultaneously, providing time 
synchronization and pre-calibrated fixed sensor rigs. Such 
constrains make them less flexible compared to more common 
scenarios, where the different devices acquire data independently 
and not exactly at the same time, additionally following slightly 
varying trajectories. A data fusion method free of these 
constrains, despite being more challenging, could potentially 
allow to complementarily use even different MMSs or achieve 
better alignment of the spatial data acquired periodically, e.g., for 
monitoring purposes. 
Sammartano and Spanò (2018) investigated the repeatability of 
3D surveys performed with the GeoSLAM Zeb LiDAR-based 
SLAM device. They demonstrated the variability between the 
data acquisitions performed in two directions and evaluated the 
quality of the internally optimized trajectories. Moreover, the 
work also tackled the problem of fusing such data with point 
clouds of other source, e.g., TLS or drone-based surveys. In the 
case of rigidly registering such point clouds in larger area, the 
authors encountered a visible influence of the drift, degrading the 
alignment of the SLAM-based 3D reconstruction to other point 
clouds. Despite they show that the issues can be addressed at the 
local level, no solution was proposed for obtaining a correct 
global alignment of the full datasets. Medici et al. (2024) 
explored possibilities of fusing TLS and photogrammetry at 
different levels, i.e., raw data, intermediate processing steps or 
results. Although the proposed methods are relevant to the case 
studies in this work, the aforementioned work used high-quality 
data, from a comprehensive survey, which greatly reduced the 
non-rigid discrepancies between LiDAR and vision-based 3D 
reconstructions, in contrast to drift-prone low-cost SLAM 
systems.  
 

3. PROPOSED FUSION APPROACH 

The idea here is to introduce a novel approach for fusing data 
generated by the two different MMSs (LiDAR- and image-
based), mitigating the requirement of temporal and spatial 
synchronization of both systems during the acquisition. The 
method adds flexibility as it allows a more practical and 
adaptable approach for real-world applications, without requiring 
a fixed rigid setup between different systems/sensors. The 
overview of the proposed method is presented in Figure 2.  
 

 
Figure 2. Diagram outlining the scheme of the proposed 
framework. 
 
Given the initial 3D sparse point cloud of the complete survey 
site from both systems, a co-registration of both is performed 
using iterative closest point (ICP). As we demonstrate later in 
Section 5.3, such a global alignment does not yield good quality 
results, as both point clouds have varying local densities, 
completeness, noise and are not evenly influenced by a natural 
drift of a SLAM method. 
To solve this, we leverage spatial proximity-based subsampling 
of camera and LiDAR frames to establish links between them. 
First, the initial LiDAR trajectory is subsampled, taking 1 LiDAR 
frame (oriented according to the initial SLAM output) out of 
every 500 frames. For these poses, closest camera positions are  
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Figure 3. A graph demonstrating the spatial proximity links created between the two systems trajectories every 500th frame. 

selected, based on the spatial proximity derived from the initially 
co-registered point clouds coming from the two systems. These 
frames are assigned as links between the two 3D reconstructions 
to generate constraints in the pose graph adjustment. 
Additionally, if a passage was traversed in two directions, i.e., 
the nearest camera poses to a selected LiDAR frame belonging 
to two distinct parts of the trajectory, two links are created to 
maintain the local consistency of the reconstruction. As this part 
of the methodology is use-case specific for a challenging setting 
of a narrow staircase and the use of a multi-camera system, it may 
need to be adapted for other applications / scenarios. The 
constraint between LiDAR and camera frames are generated as 
relative poses, calculated as a result of both the initial alignment 
of whole point clouds, and a fine-tuning through ICP matching 
of the LiDAR frame to a sparse photogrammetric reconstruction. 
This directly enforces the LiDAR point cloud to be locally 
consistent with the photogrammetric reconstruction, which is 
assumed to be created mostly by the cameras in the vicinity of 
the specific LiDAR pose. 
Then, the initial trajectories in the form of relative poses are input 
into a Pose Graph Optimization (PGO), jointly with the 
aforementioned LiDAR-camera constrains (Dellaert et al., 2022). 
A simplified structure of the pose graph is presented in Figure 3. 
Additionally, the consistency of both SLAM-based 
reconstructions is ensured through constraining the relative poses 
between the start and ending points of the acquisition for both 
systems separately, using the original estimates of the SLAM 
solutions. Finally, the pose graph is optimized with the Gauss-
Newton algorithm, producing adjusted trajectories of both the 
LiDAR and visual mapping systems, already in a common 
reference frame. 
Since such pose graph adjustment lacks the information of the 
actual 3D data being mapped (i.e., 3D features, tie points), an 
additional step of local refinement of cameras is carried out. The 
pose graph optimized trajectory of the cameras is input into 
photogrammetric adjustment, using centimeter-level covariances 
for the optimized camera positions and higher covariances for 
their orientations for a further refinement and for the creation of 
the final dense cloud.  
Unlike single-source mapping, which might have inconsistencies 
due to sensor specific limitations (e.g., LiDAR’s SLAM 
sensitivity to sparse features or visual SLAM’s sensitivity to 
lighting), the combination of the two systems can exploit each 
sensor’s alignment strengths and compensate for weaknesses. 
By linking spatial proximate frames, we fuse both 3D poses 
without the need for strict temporal synchronization and allow 
for a flexible correction of the sensors’ trajectories, thus in the 
end essentially applying a non-rigid adjustment of the point 
clouds, which ensures their high coherence. 
 
3.1 Evaluation approach 

The overall alignment and 3D reconstruction quality of the 
original (separated) point clouds and the one produced with the 

proposed fusion approach are evaluated with respect to some 
reference data acquired with a Terrestrial Laser Scanning (TLS) 
survey (Leica C10). The assessment investigates accuracy and 
completeness of the dense clouds (before and after applying the 
fusion method). For accuracy (sometimes called also precision), 
we evaluate the ratio of points aligned to the ground truth data at 
different distance thresholds constructing the accuracy curve. On 
the other hand, the completeness (i.e., recall) curve is determined 
through thresholding the closest distances from the dense clouds 
to the ground truth data. This allows us to assess the compliance 
and coverage of the 3D reconstruction with respect to the ground 
truth as ratios of the total point count, satisfying the criteria at 
different metric distance thresholds (Knapitich et al., 2017; 
Nocerino et al., 2020). Additionally, the global alignment (and 
thus, global accuracy) is investigated in more detail, calculating 
signed distances from the evaluated point cloud to the reference 
data, using M3C2 method (Lague et al., 2013). The results are 
visualized in 3D, which properly highlights all problematic 
regions, in turn enabling identification of the causes of the lower 
accuracy (Trybała et al., 2023a). 
 

 
Figure 4. TLS data of the staircase highlighting the interesting 
architecture of the study case (left) and some images taken 
during the acquisition (right). 

 
 

4. CASE STUDY AND DATA ACQUISITION 

The case study is the complex staircase of Sant'Andrea church in 
Mantua (Italy), which constitutes a intricated and narrow 
architectural environment for evaluating the capabilities of both 
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surveying systems in terms of spatial accuracy and coverage 
(Figure 4).  
The surveyed area of the staircase structure has a width of ca 1 m 
and extends for ca 24 m length from ground till rooftop through 
8 levels/floors. It is a double U-shaped staircase type where the 
separated up and down flights run mirror each other and 
interconnect between levels 4 and 5, enabling loop closure during 
the data acquisitions. For both acquisition systems, the survey 
started and finished at the entrance point with separate 
acquisition timings. The taken trajectory ensured forward and 
backward passes along the staircase, although certain areas were 
surveyed only once due to the complicated nature of the 
environment and the presence of obstructions (Figure 5). Both 
devices followed similar, but not identical trajectories. 
 

  

  
Figure 5. Examples of fisheye images acquired with the 
ATOM-ANT3D showing the narrow and complex site. 
 

5. DATA PROCESSING 

5.1 ATOM-ANT3D: V-SLAM + photogrammetry  

The ATOM-ANT3D visual MMS captures data through five 
fisheye cameras, with multi-instance V-SLAM built on 
ORBSLAM3.0 (Campos et al., 2021), and produces (1) oriented 
images, (2) trajectory paths and (3) global map / sparse point 
cloud of the survey scene (Figure 6). The survey lasted ca 15 
minutes starting and ending at the entrance point.  
V-SLAM algorithms subsample image streams into keyframes 
based generally on the rate of change in the viewed environment. 
The front view, particularly for this narrow and complex study 
case, is exposed to larger depth with respect to the lateral cameras 
and therefore a smaller view rate of change while navigating the 
staircase compared to the side stereo pairs, resulting in lesser 
number of keyframes required. 
The camera trajectories are refined using a pose graph 
optimization (PGO) approach available in GTSAM (Dellaert et 
al., 2022), leveraging both frame-to-frame and keyframe-based 
constraints to enhance spatial accuracy. Starting with initial pose 
estimates, a Nonlinear Factor Graph is constructed in which each 
frame is connected through relative transformations, while 
keyframes anchor the trajectory with higher-certainty constraints. 
The first frame is set as a fixed reference and subsequent frames 
are linked using Between Factors, capturing the relative 
transformations between consecutive frames. This pose graph 
structure minimizes cumulative error on unoptimized frames, 
producing a richer refined trajectory. After the optimization 
process a dense cloud can be generated thru MVS 
photogrammetry (Figure 7).  
 

 
Figure 6. ATOM-ANT3D sparse point cloud (blue dots) and 
camera trajectories (green lines). 

 

a) 

 

b) 

 

c) 

 
Figure 7. Point cloud of the staircase produced by the multi-
camera system and V-SLAM aided photogrammetry (a) 
(coloured by relative elevation) and some views of dense 
clouds of inner parts of the staircase (b, c).  
 
5.2 MandEye: LiDAR-inertial SLAM  

The MandEye system embeds a Livox Mid-360 laser scanner and 
a low-cost PC to store the raw data (Będkowski, 2024). It was 
employed solely for the purpose of data acquisition and then a 
LiDAR-inertial SLAM (Trybała et al., 2023b) was used to 
process continuous streams of LiDAR and inertial data. This led 
to the sensor’s poses estimation and the generation of a dense 
point cloud of the surveyed scene (Figure 8). Although SLAM 
was performed in an offline mode, we simulated a real-time 
mapping process through streaming the data from a rosbag file. 
The employed SLAM method utilizes a pose graph approach to 
optimize the sensor’s trajectory, given the relative poses from 
LiDAR-inertial odometry. The survey of the area of interest 
started and ended at the exact same point (a survey mark), forcing 
a loop closure to reduce the long-term drift. All other constrains 
in the graph are generated automatically by the system.  
 
5.3 LiDAR-Visual data fusion 

4131 images/camera were used for the fusion approach. Only 
poses of the master camera of the right stereo instance were 
utilized in the graph. For the other cameras, their poses were 
calculated later using a rigid transformation, obtained during a 
rigorous calibration performed before the measurements. On the 
other hand, a total of 8173 frames from the LiDAR-based system  
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Figure 8. Point cloud of the staircase produced with the 
portable LiDAR-based system (coloured by relative 
elevation). 
 

were used. Both trajectories were input into the pose graph 
optimization with a total of 20 links through local ICP (i.e. 
LiDAR - cameras relative pose constraints) established every 
500th LiDAR frame. An example of creating such a link is shown 
in Figure 9. The solution is constrained at the entrance for both 
trajectories (relative poses separately generated by the two 
SLAM solutions) in the pose graph representing the loop closure 
at the starting and ending point. Figure 9 demonstrates the effect 
of the global ICP between the sparse V-SLAM point cloud and a 
LiDAR frame. The resulting optimized poses for the two 
trajectories were used to compute the final optimized dense 
clouds of the LiDAR and visual techniques.  
 

  
a) b) 

Figure 9. Correcting the point cloud alignment through ICP: a 
single LiDAR frame oriented according to global ICP 
between the point clouds (a; orange) and according to local 
ICP refinement (b; red) to the sparse V-SLAM point cloud 
(blue). 

 
The fusion of the two-point clouds, apart from elevating the 
quality of the joint trajectory estimation, brings different benefits. 
Figure 10 presents part of the complementary role provided by 
the fusion for improving the completeness of the point clouds. In 
the LiDAR point cloud, one part of the staircase was not 
measured due to the lack of coverage during the survey. After the 
fusion, vision-based points filled this gap, greatly increasing the 
completeness of the 3D reconstruction. 
 

  
Figure 10. Gaps in in the LiDAR-based point cloud (left) are 
minimized by integrating the vision-based point cloud (right). 
 
But, beside increasing completeness, there is a potential 
accumulated noise in the fused point cloud, therefore a filtering 
procedure is necessary for each original data. The visual point 
cloud was filtered based on the confidence level of depth maps 
supporting each point used. On the other hand, the LiDAR point 
cloud was clean based on (i) a range threshold (e.g. points beyond 
5 meters distance) and (ii) a noise filter considering the nearest 
neighbor’s approach (20 nearest neighbor) and a standard 
deviation threshold (1-sigma). Figure 11 shows the result of the 
filtering process which, while marginally decreasing the 
completeness of the 3D reconstruction, is more consistent, with 
most of the noisy points being removed. 
 

  
Figure 11. Cross-section of the fused point cloud representing 
part of the stairs: before (left) and after (right) filtering. 

 
5.4 Quality assessment for the fused 3D data 

Figure 12 illustrates the accuracy and completeness curves of the 
dense points downsampled at 5 mm level against the ground truth 
(TLS). The x-axis represents the distance threshold in meters 
whereas the y-axis reports the percentage of points within those 
thresholds. For the accuracy assessment (Figure 12top), the 
photogrammetric point cloud (blue curve) achieves ca 70% of 
points falling within the 6 cm accuracy range. LiDAR SLAM 
curve (orange curve) improves upon it with 80% of points falling 
with 6 cm accuracy. Both techniques plateau at ca 95% of points 
falling within 14 cm distance thresholds.  
In contrast, photogrammetry with PGO adjustment (green) 
achieves over 90% alignment within 5 cm, demonstrating a 
substantial improvement from the standalone photogrammetry 
(V-SLAM aided) method. Similarly, the LiDAR with PGO 
adjustment (red) reaches about 95% alignment at 5 cm, 
highlighting the impact of optimization in further enhancing 
LiDAR accuracy. Both photogrammetry (green) and LiDAR 
(red) with optimization demonstrate a notable improvement with 
approximately 100% of points falling within the 6 cm accuracy 
threshold. The point cloud fused with the proposed approach 
(violet) and aided with the filtering process (grey) also converge 
at 100% of points falling within 6 cm accuracy, whereas the 
filtered point cloud and LiDAR SLAM with PGO optimization 
have both equivalent results. 
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Figure 12. Accuracy (top) and completeness (bottom) assessment 
results.  
 
The completeness results (Figure 12bottom) show that the 
photogrammetric and LiDAR SLAM clouds feature some 80% 
of points falling within the 8 cm distance threshold, with the later 
having better completeness at 2 and 4 cm distance thresholds. 
Both techniques plateau at approximately 90% of points with 
distance thresholds exceeding 14 cm level.  
The PGO applied to photogrammetry data yields a significant 
improvement, achieving over 90% completeness at a 5 cm 
threshold whereas for LiDAR SLAM data it further increases the 
coverage reaching approximately 95% within a 5 cm threshold. 
The point cloud fused with the proposed approach performs 
nearly optimally and marginally better than the other approaches. 
Compared to the separately processed photogrammetry and 
LiDAR SLAM, the optimized techniques are able to overcome 
the plateau and reach near 100% completeness levels compared 
to the TLS. 
Figure 13 presents the global accuracy evaluation results of each 
3D surveying method based on the comparisons of the ground 
truth with the point clouds generated with 6 studied methods. The 
V-SLAM aided photogrammetric method (Figure 13a) 
demonstrates error values higher than 10 cm along the connecting 
flights of each level (blue and red color regions). The LiDAR 
SLAM (Figure 13b) shows similar behavior at the entrance and 
top level of the staircases. Considerable improvement can be seen 
for both methods enriched with the PGO (Figure 13c-d) and after 
the proposed fusion (Figure 13e-f).  
Finally, Table 1 reports means and standard deviations of the 
M3C2 signed distances. The mean shift of the photogrammetric 
solution is probably related to the complexity of the staircase in 
terms of lighting, overexposure of images at narrow spaces, 
repetitive turns within narrow spaces limiting the field of views. 
All other proposed solutions reached close to zero mean shifts, 
with a high reduction over the standard deviations of the global 
alignment with respect to the ground truth data. Both fusion 
methods (with/without filtering) achieved standard deviations 
close to the PGO LiDAR solution, demonstrating only a tiny 
compromise in terms of accuracy after fusing with the other point 
cloud. 
 

Method 
M3C2 distance 

[mm] 
μ σ 

V-SLAM aided Photogrammetry -24 74 
LiDAR SLAM -3 60 

Photogrammetry with PGO trajectory -4 27 
LiDAR with PGO trajectory -1 20 

Proposed fusion -2 22 
Proposed fusion and filtering -1 21 

Table 1. Mean and standard deviations of the global 
alignment assessment using M3C2 signed distances (see 
also Figure 13). 

 
 

6. CONCLUSIONS 

The fusion of vision-based and LiDAR point clouds, through the 
proposed PGO optimization and filtering, significantly enhances 
both the completeness and accuracy of the reconstructed models. 
By improving the pose alignment of the visual approach through 
the link constraints with the LiDAR SLAM, and further filling 
gaps in the LiDAR data with photogrammetric points, this 
approach provides a more continuous and comprehensive 
representation of complex environments, as demonstrated in the 
multi-level staircase setting. Hybrid optimization allows the 
point clouds to achieve near-perfect alignment with the TLS 
ground truth, effectively overcoming the limitations of 
standalone methods. The hybrid point clouds achieve high levels 
of accuracy and reliability, with reduced alignment errors and 
consistent global alignment statistics for accuracy and 
completeness. This study highlights the complementary strengths 
of visual and LiDAR data, showcasing the potential of hybrid 
methods to produce high-fidelity 3D reconstructions that are 
robust, scalable, and adaptable to challenging survey 
environments. 
Future works include further research for enhancing the pose 
graph optimization approach and using smarter and more 
sophisticated filtering techniques for the hybrid point clouds. 
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