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Abstract 

 

Recent advancements in Virtual Reality (VR) technology have extended its applications beyond entertainment, offering promising 

tools for professional fields such as 3D data annotation. This paper explores the use of VR for labelling 3D point clouds in forestry 

and cultural heritage datasets. We employ Labelling Flora, an open-source VR annotation tool, to re-label three existing cultural 

heritage and one forestry datasets and assess the effectiveness of VR-based annotations in training machine learning models. By 

comparing the accuracy, precision, and F1-score of inference models trained with VR-generated labels to those trained with traditional 

desktop labelling methods, we evaluate the potential of VR to streamline labour-intensive annotation tasks. Our results indicate that 

VR enables intuitive 3D segmentation, even for individuals without technical expertise, particularly for very complex scenes, 

improving labelling efficiency and contributing to the overall automation of complex datasets. This study highlights therefore the 

potential of VR to enhance other workflows and make complex tasks more accessible to domain experts who may not be familiar with 

3D data thus refining data accuracy and reliability. 

 

 

1 Introduction 

Virtual Reality (VR) has seen remarkable advancements in the 

past decade, driven by the development of new headsets and 

increased competition in the consumer market. While VR is 

gaining popularity in the leisure industry due to its immersive 

and engaging experiences, its applications have expanded to 

professional fields such as medical training and architectural 

visualization, where it enhances spatial awareness and precision 

(Suh et al., 2018). 

Recent research has explored the potential of VR for visualizing 

(Kharroubi et al., 2019; Zhao et al., 2019) and annotating 3D 

point clouds (Fol et al., 2022), yielding promising results. 

Researchers have also conducted user studies to assess the 

benefits of VR-based labelling tools compared to traditional 2D 

desktop-based software. For example, Franzluebbers et al. 

(2022) developed and tested a VR-based labelling tool designed 

for plants’ 3D scans, with users reporting enhanced accuracy, 

enjoyment, and a greater sense of precision. Similarly, Venn & 

Mills (2023) compared VR-based labelling with traditional 

desktop methods, revealing statistically significant 

improvements in performance and user perception.  

Despite these promising developments, labelling tasks are 

primarily undertaken to create training sets that automate the 

labour-intensive process of annotating 3D data. However, no 

research to date has specifically examined the effectiveness of 

VR-based labels for training machine learning (ML) models. The 

key question remains: Are VR-based annotations accurate 

enough to train reliable machine learning models? 

To fill this gap, this paper employs Labelling Flora (Fol et al., 

2024), an open-source VR-based annotation tool, to re-label 

various existing datasets from the forestry, and cultural heritage 

sectors (Figure 1). The re-labelled datasets will be used to train 

machine learning models, and the resulting segmentation 

performance will be evaluated in terms of accuracy, precision, 

recall, intersection over union, and F1-scores. This approach will 

determine whether models trained with VR-based labels can 

achieve results comparable to those trained with conventional 

desktop-based labels. Importantly, this study aims to bridge a 

gap between domain experts - who may lack the technical skills 

to operate complex 3D modelling software - and computer 

scientists, who may not possess the domain-specific knowledge 

required for accurate labelling. By leveraging the intuitive and 

immersive nature of VR, the goal is to make machine learning 

applications more accessible to professionals. The study seeks to 

determine if VR may support accurate 3D classification results 

using a more interactive method for annotation/labelling which 

is potentially also faster than a desktop-based approach.  

The experiment's design and tests are primarily inspired by the 

work of Grilli & Remondino (2020) and Fol et al. (2024) while 

for the 3D classification a popular machine learning algorithm is 

used. 

 

2 Materials and Methods 

2.1 Datasets 

For this study, existing datasets from the literature are used: a 

first from the forestry sector (Fol et al., 2022), consisting of 

single-tree stems and three datasets from the cultural heritage 

sector. All the datasets used in this study (Figure 2)  have been 

labelled manually for machine learning purposes and are thus 

available for download (see Appendix). 

 

Cultural heritage dataset: three datasets were used in this 

experiment to illustrate different types of architecture with 

different levels of complexity. The three used datasets are: 
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(a) (b) 

Figure 1. The two labelling processes: (a) desktop-based and (b) VR based using Labelling Flora (Fol et al., 2024). 

 

Figure 2. The datasets used in this paper: original point cloud (top row) and labelled parts used for the training process (bottom row). 

1. “Paestum” dataset: acquired using a terrestrial laser 

scanner (TLS), it consists of the following classes: Grass, 

Crepidoma, Pavement, Shaft, Echinus, Abacus, 

Architrave, Frieze, Cornice, and Tympanum (Grilli & 

Remondino, 2019). 

2. “Doss Trento” dataset: a TLS point cloud of the Cesare 

Battisti Mausoleum monument in Trento, consisting of six 

classes: Floor, Shaft, Capital, Architrave, Frieze, and 

Cornice. It is part of the NeRFBK dataset (Yan et al., 

2023). 

3. “Portici” dataset: it is a photogrammetric point cloud of a 

façade from the city of Bologna and it consists of 13 

classes: Road, Pavement, Capital, Curtain, Façade, Arch, 

Molding, Columns base, Vault, Drainpipe, Shaft, 

Window/door and Cornice. It is part of the 3DOM 

Semantic Façade dataset (Stathopoulou et al., 2021).  

 

Forestry dataset: it consists of 17 point clouds of tree stems 

within the “Flora” dataset (Fol et al., 2022), generated using 

close-range photogrammetry (CRP). The tree stems were 

labelled to extract biodiversity indicators along the stems, using 

both VR- and desktop-based methods. The tree stem is split into 

five distinct classes: Non-TreM, Tree injuries and exposed wood, 

Cavities, Epiphytic and epixylic structures and Excrescences and 

fruiting bodies of saproxylic fungi. These classes constitute the 

tree-related microhabitats (TreMs) (Fol et al., 2022; Rehush et 

al., 2018). 

 

3 Methods 

Figure 3 illustrates the pipeline used in this study to process both 

the forestry and cultural heritage datasets. The workflow starts 

with re-labelling the training datasets using the Labelling Flora 

application, developed within the Unity Game Engine (Fol et al., 

2024). It is worth noting that all the datasets used in this 

experiment have been labelled manually using a desktop-based 

segmentation tool.  

For the VR labelling process, an Oculus CV1 VR headset was 

employed. While Labelling Flora was developed for the HTC 

Vive VR headset (Fol et al., 2024), it has however demonstrated 

practically seamless cross-hardware implementation as shown 

by the experiment conducted in this work. Once the datasets are 

re-labelled, the Random Forest for Point Cloud Classification 

(RF4PCC) method (Grilli & Remondino, 2020) is used to 

perform the semantic segmentation prediction on the rest of the 

dataset.  

Finally, the VR-based results are compared to the test sets 

generated using the desktop-based methods. For the comparison, 

common machine learning metrics are used, namely: average 

intersection over union (IoU), overall accuracy (oacc), average 

precision (P), average recall (R) and average F1 score (F1).  
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Figure 3. Workflow for evaluating VR-based labelling methods (blue boxes) versus desktop-based methods (grey boxes). 

 

3.1 Adjusting Labelling Flora VR tool 

To achieve proper labelling with any type of dataset, several 

modifications were made to the Labelling Flora VR application 

(Fol et al., 2024). In the original tool, the point cloud is inserted 

into a bounding box that encapsulates all points of the considered 

cloud. By moving the centre of this box, the point cloud itself 

can be repositioned. For the heritage datasets the box was off-

centre and it needed to be shifted more towards the centre of the 

VR zone (limited to around 2x2 metres in this scenario) 

otherwise the limited space would interfere during labelling 

operations. Moreover, since the heritage datasets include objects 

of a bigger scale compared to the Flora datasets, scaling 

functionalities were added to enable better manipulation during 

the labelling process. To further improve navigation and 

labelling efficiency for larger point clouds in Labelling Flora, 

additional movement features were reconsidered.  

Currently, the application does not support translating the point 

cloud along the XY plane—such as by using controller joysticks, 

a common feature in video games. This design choice was 

intended to encourage users to physically move around the point 

cloud, simulating real-world interaction and reducing the risk of 

cyber-sickness, especially for users less familiar with VR. 

However, this restriction proves less effective for large-scale 

datasets, such as those found in cultural heritage collections that 

feature buildings or monuments. To address this, future updates 

may introduce scaling adjustments alongside new navigation 

options, including ‘fly-through’ movement or XY plane 

translation, to enhance usability and flexibility with these larger 

datasets. 

 

4 Results and Discussions 

4.1 VR labelling process 

For the Paestum and Doss Trento datasets, labelling was more 

complex due to the presence of corners and surfaces that are 

challenging to evaluate on a 2D desktop screen. This is, however, 

where VR shows advantages, allowing for multiple clear 

viewpoints of the object in a faster way. Thanks to the 

appearance of precise layers in real time within the Labelling 

Flora interface, a two-step yet intuitive labelling process was also 

possible: the first being a rough annotation followed by a 

refinement afterwards. 

The Portici dataset presented a different challenge due to the 

largest number of classes (13) thus requiring a longer time for 

annotations. Its verticality also revealed a limitation to the VR 

labelling process, and it may not be user-friendly for those with 

mobility issues.  

Overall, the labelling process is made far less complicated as the 

user should see the point cloud instead of rotating it, making 

cross-sections, segmenting, etc., in a 2D space. The user 

therefore does not need to be highly knowledgeable in 3D data 

to label a point cloud. Familiarity with the semantic layers and 

the elements to be inserted into them is sufficient. Additionally, 

being able to display the desktop screen at the bottom of the view 

in a small window made the labelling process more efficient, as 

the user did not have to constantly switch between the real 

desktop trying to remember all the layers. The process thus 

presents a form of gamification for the point cloud labelling 

process.  

In terms of labelling time, the VR approach (Table 1) resulted in 

a similar time to a classical desktop-based approach except for 

the forestry dataset, where VR was faster due to the complexity 

and details of the scene, enabling at the same time the user to 

interact and quickly rectify any possible errors. While an exact 

numerical comparison of labelling time is not yet available, Fol 

et al. (2024) reported a reduction of around 56% compared to the 

time required by labelling using the screen/desktop. This value 

was achieved only for the Flora dataset.  

 

 Flora Paestum 
Doss 

Trento 
Portici 

Labelling 

time [h] 
3:50 0:50 0:18 1:30 

Table 1. Labelling time required to perform the annotation tasks 

using Labelling Flora in VR. 

 

4.2 Comparison of machine learning metrics 

Starting from the VR- and desktop-based (Figure 4), the 3D 

classification was performed (Figure 5): it can be observed that 

classifications based on both VR and desktop labels are visually 

similar. The inference model performed well in distinguishing 

non-TreM points but struggled with accurately defining the 

borders of the TreM subcategories. These findings suggest that 

VR-based labelling could be a viable alternative to traditional 

methods. Moreover, the challenges encountered by the ML 

model in segmenting the forestry dataset highlight VR’s 

potential to enhance the accuracy of machine learning outputs. 

A comparison in percentage points is shown in Table 2, where 

the VR labelling managed to outperform the traditional method 

in almost all metrics. Indeed, in terms of recall, overall accuracy, 

and IoU, the improvement averages around 20% compared to 

traditional desktop-based labelling (see Figure 5). While this can 

be attributed to the advantage of VR in interacting with the 

highly heterogeneous environment present in forest scenes, this 

should nonetheless be considered only as an initial indication.  
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Figure 4. Visual comparisons of the labelling results for the four datasets for the purposes of creating training data (desktop-based 

CloudCompare and VR-based Labeling Flora). 

 

Figure 5. Results of the prediction based on RF4PCC using the training datasets generated by VR labelling as inputs.  

 

More tests using forest scenes must be conducted before a 

definitive conclusion may be drawn. 

A comparison in percentage points is shown in Table 2 and 

Figure 6, where the VR labelling managed to outperform the 

traditional method in almost all metrics in particularly for the 

forestry dataset. Indeed, in terms of recall, overall accuracy, and 

IoU, the improvement averages around 20% compared to 

traditional desktop-based labelling (see Figure 5). While this can 

be attributed to the advantage of VR in interacting with the 

highly heterogeneous environment present in forest scenes, this 

should nonetheless be considered only as an initial indication. 

More tests using forest scenes must be conducted before a 

definitive conclusion may be drawn. 

A similar trend – but not so significative - can be observed in the 

three cultural heritage datasets, though at a far less convincing 

rate. Indeed, although the metrics for the VR datasets are slightly 

better than the desktop ones, it is statistically insufficient to draw 

any conclusions at this point regarding the improvement in 

quality. What may be safely ascertained, however, is that the VR 

method managed to attain a quality comparable to desktop means 

at least concerning datasets for machine learning purposes.  

It is also interesting to note that for architectural datasets, the 

RF4PCC algorithm managed to score very good metrics, and the 

VR labelling does not significantly increase them. This contrasts 

with the forest dataset, where the prediction quality is lower, but 

the VR labelling process managed to improve the prediction 

quality to a greater degree. Much of this can be explained by the 

nature of the scenes themselves. Indeed, in the three cultural 

heritage datasets, classes were based on architectural elements, 

which are man-made and therefore more clear-cut.  

On the other hand, in the forest dataset, the classes divided by 

the type of TreM do not translate into easily delineated objects. 

In several cases, interpretation by an expert is required, thus 

making it difficult to maintain a standardised classification. This 

also adds to the complexity of the heterogeneity and unordered 

nature of forest scenes in performing labelling and, by extension, 

machine learning predictions.   

We argue that in these complex cases, the VR method is even 

more useful as it allows domain experts (e.g., foresters, 

biodiversity scientists) who are unfamiliar with 3D labelling 

techniques or the concept of point clouds in general to use it with 

greater ease. This is due to the intuitive nature of the VR 

application, which was designed to follow basic painting  
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Figure 6. Difference (in percentage points) of machine learning metrics generated using the VR-labelled training data with respect to 

a traditional desktop-labelled datasets. 

 
  F1 P R OverAcc IoU 

F
lo

r
a
 Desktop 0.787 0.891 0.730 0.730 0.360 

VR 0.834 0.839 0.885 0.885 0.430 

P
a

e
st

u
m

 

Desktop 0.953 0.956 0.951 0.967 0.912 

VR 0.952 0.959 0.946 0.967 0.910 

D
o

ss
 

T
re

n
to

 

Desktop 0.957 0.944 0.974 0.984 0.923 

VR 0.971 0.963 0.979 0.987 0.944 

P
o

r
ti

ci
 

Desktop 0.752 0.834 0.747 0.811 0.635 

VR 0.744 0.821 0.759 0.814 0.638 

Table 2. Comparison of inference metrics (average F1, P, R and 

IoU values across classes). 

 

movements. This, in turn, highlights the necessity of presenting 

an easy-to-use and ergonomic design for the user interface to 

complement the intuitive nature of the VR system. 

 

5 Conclusions 

The paper evaluated the applicability of VR-based labelling 

across datasets through specific use-case scenarios. Our primary 

goal is to demonstrate that VR enables individuals, including 

those without technical expertise, to support 3D segmentation 

tasks in an intuitive way by facilitating annotations of 3D point 

clouds. By integrating VR with machine/deep learning methods 

demanding annotated data, the labels generated can facilitate the 

segmentation of larger and complex datasets. Given that 

traditional labelling is a time-consuming task for scientists and 

researchers, VR presents a promising solution, allowing domain 

experts to label data more efficiently. Furthermore, VR can also 

be utilised to refine existing labels and retrain inference models, 

potentially enhancing overall accuracy. 

This paper has shown that the VR labelling method is capable of 

producing annotated point clouds within a generally faster 

timeframe while achieving a classification quality comparable to 

results created using traditional desktop-based methods. 

Furthermore, the proposed VR method demonstrated its 

advantage more clearly when working with complex scenes such 

as forests. While there is a possibility that the inclusion of this 

immersive and intuitive element could improve the quality of 

ML-based predictions, particularly in more complex scenarios 

such as forests and trees, further tests are needed to draw 

statistically significant conclusions in other sectors. However, it 

has been demonstrated that the use of VR in labelling 3D datasets 

is a reliable method that is easily repeatable even by those who 

have only started working with point clouds. The proposed 

method is therefore accurate enough to be reliably used for 

machine learning annotation purposes. Finally, a proper user 

study performed across different datasets should be conducted in 

order to be able to draw statistically sound conclusions regarding 

the use of VR in 3D data annotation. This is despite the fact that 

the proposed method showed promise in its flexibility and user 

friendliness. 

Several potential improvements to the Labelling Flora 

application became evident during the course of the experiments, 

including: 

• Enhancements for visual comfort during long labelling 

sessions, e.g., increasing colour contrast and lowering the 

screen’s gamma. 

• Implementation of variable levels of detail for the input point 

cloud, using a culling system (for distant points) and an 

octree structure (for close points) to allow users to zoom in 

on the point cloud. 

• Improving physical comfort for the operator by 

implementing third-person XY + Z movement to allow users 

to navigate virtually without having to move physically. 

• Additions to the UI for quality-of-life improvements, e.g., 

features to save, change layer colours on the fly, select files, 

return to the desktop, etc. 

These improvements, as well as a future user study to assess the 

acceptance of such novel concepts in 3D segmentation, will be 

the focus of future work. 
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Appendix 

The datasets used in this paper are all part of open data, which 

may be accessed for download as of 14 November 2024. The 

following data sources were used in this study: 

 

• Flora: https://doi.org/10.3929/ethz-b-000694978 

• Paestum: https://github.com/3DOM-FBK/NeRFBK 

• Doss Trento: https://github.com/3DOM-FBK/NeRFBK 

• Portici: https://github.com/3DOM-FBK/3DOM-

Semantic-Facade 

 

The VR labelling application used, Labelling Flora, is available 

in the following link: https://doi.org/10.5281/zenodo.13933004 

(last accessed 14 November 2024). The RF4PCC method is 

available at https://github.com/3DOM-FBK/RF4PCC (last 

accessed 14 November 2024).  
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