
Semantic Edge Collapse:
A Mesh Edge Collapse Algorithm preserving per Face Semantic Information

Grégoire Grzeczkowicz1, 2 , Bruno Vallet 1

1 LASTIG, Univ Gustave Eiffel, IGN, ENSG
2 Direction Générale de l’Armement - Gregoire.Grzeczkowicz@ign.fr

Keywords: Urban 3D modeling, 3D mesh simplification, Semantic information, Structured mesh

Abstract

Recent advancements in 3D data acquisition and processing have enabled high-fidelity urban modeling. Yet, production of struc-
tured 3D models in standards like CityGML remain complex, resource-intensive, and difficult to automate. This paper introduces a
low-cost alternative that we call “structured mesh model” designed to cover many applications of structured 3D models at a lower
cost. It relies on integrating geometric simplification with segmentation alignment to produce a lightweight, unified mesh repres-
entation. Using an edge-collapse algorithm, our method combines geometry from an existing mesh with labeled point cloud data to
create a continuous mesh with edges aligned to segmentation boundaries, preserving both geometric fidelity and semantic clarity.
The resulting structured mesh efficiently reduces memory requirements while maintaining accuracy, offering a practical solution
for simulations and urban analyses that require structured 3D data.

1. Introduction

Recent advancements in 3D data acquisition, such as (Ign, 2022)
and high-resolution photogrammetric techniques, have enabled
the creation of highly detailed urban models. Although these
dense, textured meshes capture both geometric and radiometric
information, their unstructured nature limits their applicability
in urban analysis and simulation contexts where object based
representations are crucial. In structured urban modeling, the
CityGML (Gröger and Plümer, 2012) standard provides a com-
prehensive, object-oriented framework that represents urban en-
tities with semantic and hierarchical organization. However,
CityGML has several drawbacks: costly production, complex
multi-object models that consume significant memory and pro-
cessing resources, and can introduce geometric inconsistencies,
such as overlapping objects and gaps, which complicate their
use in simulations. To address these limitations, we introduce
the structured mesh model, a hybrid representation that bal-
ances detailed organization with computational efficiency. Un-
like CityGML, structured meshes consist of a single, continu-
ous mesh where each face contains metadata identifying both its
semantic class (e.g., building, vegetation) and instance ID. This
structure allows for a lightweight, unified geometry where ob-
jects are represented as subsets of mesh faces, maintaining in-
dividual object delineation without requiring separate geomet-
ries for each feature. This single-mesh design enables struc-
tured meshes to be lighter than CityGML models by using a
unified mesh structure; simpler than CityGML models, allow-
ing a fully automated generation and efficient for simulations.
Our method of constructing structured meshes uses a combin-
ation of geometry from an existing mesh and semantic or in-
stance information from a labeled point cloud. The approach
computes a simplified mesh that preserves geometric accuracy
while aligning mesh edges with segmentation boundaries. This
is achieved through an edge-collapse algorithm, allowing the
final resolution of the model to be adjusted. By iteratively col-
lapsing edges, we can control the level of detail, balancing geo-
metric fidelity and segmentation accuracy with reduced model
complexity. Each face in the resulting structured mesh is as-

sociated with a single label, ensuring coherent representation
of segmented regions within the mesh. This article details the
methodology and implementation of this edge-collapse-based
structured mesh generation. Our method is implemented in
C++ using the Computational Geometry Algorithms Library
(CGAL) (Project, 2024). Code and datasets are publicly avail-
able at github.com/umrlastig/StructuredMesh.

2. Related work

Mesh simplification is a subject that has been much studied in
the 90s. Cignoni et al. (Cignoni et al., 1998) proposed a clas-
sification into 3 categories: vertex decimation (Schroeder et al.,
1992, Soucy and Laurendeau, 1996), vertex clustering (Rossig-
nac and Borrel, 1993, Luebke and Erikson, 1997), and edge
collapse (Hoppe, 1996, Garland and Heckbert, 1997, Lindstrom
and Turk, 1998). The first two approaches often encounter is-
sues related to the preservation of topology, whereas the edge
collapse techniques have gained prominence thanks to their flex-
ibility and superior ability to maintain high-quality results with
well-preserved topology. Edge collapse techniques have evolved
significantly, with numerous enhancements proposed over the
years. Modern algorithms utilized in tools such as Meshlab
(Cignoni et al., 2008) and CGAL (Cacciola et al., 2024) are
advanced versions of those presented by Garland abd Heckbert
(Garland and Heckbert, 1997) or Lindstrom and Turk (Lind-
strom and Turk, 1998), using for instance probabilistic quadrics
(Trettner and Kobbelt, 2020). Recently, these algorithms have
been adapted to take into account other forms of constraints.
Salinas et al. (Salinas et al., 2015) try to guide the simplification
process using planar proxies detected in pre-
processing steps. Li et al. (Li et al., 2024) address a prob-
lem closely related to ours by prioritizing the simplification of
contour and primitive vertices, both linear and non-linear, to
preserve key structural elements. In a related but distinct ap-
proach, Scalas et al. (Scalas et al., 2020) proposed a method
for maintaining the association between 3D annotations and the
associated mesh during the simplification process.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-185-2024 | © Author(s) 2024. CC BY 4.0 License.

185

mailto:Gregoire.Grzeczkowicz@ign.fr
https://github.com/umrlastig/StructuredMesh

3. Edge Collapse

Mesh simplification reduces the complexity of a mesh by de-
creasing the number of faces, edges, and vertices while pre-
serving its shape. This process is driven by an edge-collapse
operation, where an edge e = (v′, v′′) is replaced by a single
vertex v (see Fig. 1). All edges connected to v′ and v′′ are
redirected to v, reducing the mesh by 3 edges, 2 faces, and 1
vertex.

Figure 1. Notations for edge collapse.

The algorithm relies on two main strategies: the placement
strategy, which chooses the optimal collapse point, and the cost
strategy, which evaluates the cost of each edge collapse. Using
a greedy approach, it iteratively collapses the edge with the low-
est cost, recalculating the collapse cost for affected edges after
each iteration, and continues until a stopping criterion, such as
a target number of edges, is met. To incorporate label informa-
tion, we adapt these strategies accordingly. While this operation
does not entirely prevent mesh errors, such as self-intersections,
we ensure the mesh remains a manifold by checking that the
new vertex does not invert any faces. If an inversion is detec-
ted, the collapse is rejected, and the next edge is considered.

4. Placement strategy

4.1 Mathematical framework

In the following section, we use v and v to denote, depending
on the context, the mesh vertex, the point in space, the vector
from the origin, or the corresponding 3 × 1 matrix. Vectors
and matrices will appear in bold, while vertices and points will
be in regular font. Lindstrom and Turk (Lindstrom and Turk,
1998) proposed geometric constraints to ensure the new ver-
tex v minimizes differences in mesh volume and boundary area
after collapse. Their method prioritizes each constraint sequen-
tially until the collapse point is defined, but this framework lim-
its flexibility for balancing multiple objectives. To address this,
we define the placement of the new vertex v as the solution to
an overconstrained linear system in the least squares sense:

v = argmin
x

||Ax−B||2

If there are N objectives, then A is an N × 3 matrix and B is
N × 1. This setup treats all objectives equally, allowing us to
incorporate as many objectives as needed. Our approach avoids
rigid constraints, finding a placement for v that optimally bal-
ances these objectives in the least squares sense.

4.2 Geometric objectives

For the geometric objectives, we choose to adopt the constraints
of Lindstrom and Turk (Lindstrom and Turk, 1998), but they are
now least squared objectives instead of hard constraints.

4.2.1 Volume preservation During an edge collapse, trian-
gular faces fi = (v1i , v

2
i , v

3
i) are replaced by the new faces

f ′
i = (v, v2i , v

3
i). This operation changes the volume of the

mesh by a volume equal to the sum of the volume of the tetra-
hedrons (v, v1i , v

2
i , v

3
i) (Figure 2).

Figure 2. Mesh volume change after edge collapse.

We define the signed volume of the tetrahedron as

V s
((

v, v1i , v
2
i , v

3
i

))
=

1

3

(ni

2
·
(
v − v1

i

))
=

1

6

(
ni · v − n · v1

i

)
where ni = (v2

i − v1
i) × (v3

i − v1
i) is a normal vector of the

face fi = (v1i , v
2
i , v

3
i), with magnitude twice the area of fi. A

negative signed volume would correspond to a decrease in mesh
volume, while a positive signed volume would correspond to an
increase in mesh volume. The volume preservation objective
attempts to minimize the mesh volume change introduced by
the edge collapse. Thus we want to minimize(∑

i

V s
((

v, v1i , v
2
i , v

3
i

)))2

=

(
1

6

∑
i

ni · v −
1

6

∑
i

ni · v1
i

)2

where fi = (v1i , v
2
i , v

3
i) are the faces around the replacing

edge e (v1i = v′ or v1i = v′′) and ni is the outward normal
vector of face fi, with magnitude twice the area of fi. Thus v
is solution of the equation A1x = B1 with

A1 =
1

6

∑
i

[
nx
i n

y
i nz

i

]
and B1 =

1

6

∑
i

[
ni · v1

i

]
(1)

4.2.2 Volumetric error minimization The volume preser-
vation ensures that the entire mesh volume does not change.
The volumetric error minimization objective attempts to min-
imize the volume change locally, encouraging the new point to
be close to the mesh surface. Thus we want to minimize

∑
i

V
((

v, v1i , v
2
i , v

3
i

))2
=
∑
i

(
1

6
ni · v − 1

6
ni · v1

i

)2

where fi = (v1i , v
2
i , v

3
i) are the faces around the replacing edge

e. Thus v is solution of the equation A2x = B2 with

A2 =
1

6


nx
i1

n
y
i1

nz
i1

nx
i2

n
y
i2

nz
i2

...
...

...
nx
iN

n
y
iN

nz
iN

 and B2 =
1

6


ni1 · v1

i1
ni2 · v1

i2
...

niN · v1
iN

 (2)

where fi1 = (v1i1 , v
2
i1 , v

3
i1), fi2 = (v1i2 , v

2
i2 , v

3
i2), ..., fiN =

(v1iN , v2iN , v3iN) are the faces around the replacing edge e (v1i =

v′ or v1i = v′′).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-185-2024 | © Author(s) 2024. CC BY 4.0 License.

186

4.2.3 Boundary preservation If the model is not closed,
when the border edge ej = (v1j , v

2
j) is changed for the new

edge e′j = (v, v2j), the area of the mesh is changed by an area
equal to that of the triangle (v, v1j , v

2
j) (Figure 3).

Figure 3. Mesh area change when a border edge is changed.

We define the directed area of the triangle (v, v1j , v
2
j) as

A
((

v, v1j , v
2
j

))
=

1

2

((
v − v2

j

)
×
(
v1
j − v2

j

))
=

1

2

(
v ×

(
v1
j − v2

j

)
− v2

j ×
(
v1
j − v2

j

))
=

1

2

((
v2
j − v1

j

)
× v − v2

j × v1
j

)

We define the directed area of the triangle (v, v1j , v
2
j) as

Ad
((

v, v1j , v
2
j

))
=

1

2

(
v2
j − v1

j

)
× v − 1

2
v2
j × v1

j

Ad
((
v, v1j , v

2
j

))
is a normal vector of the triangle

(
v, v1j , v

2
j

)
,

with magnitude the area of the triangle. By analogy with volume
preservation, the boundary preservation objective attempts to
minimize the area change at the boundary introduced by the
edge collapse. Thus we want to minimize

∥∥∥∥∥∥
∑
j

A
d
((

v, v
1
j , v

2
j

))∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

2

∑
j

(
v

2
j − v

1
j

)
× v −

1

2

∑
j

v
2
j × v

1
j

∥∥∥∥∥∥
2

where ej = (v1j , v
2
j) are the border edges around the replacing

edge e (v1j = v′ or v1j = v′′). If the boundary is planar, all the
directed area vector are collinear and we are simply minimiz-
ing the signed area difference of the operation (as for volume).
Thus v is solution of the equation A3x = B3 with

A3 =
1

2

∑
j

 0 v1j
z − v2j

z
v2j

y − v1j
y

v2j
z − v1j

z
0 v1j

x − v2j
x

v1j
y − v2j

y
v2j

x − v1j
x

0


and (3)

B3 =
1

2

∑
j

v1j yv2j z − v1j
z
v2j

y

v1j
z
v2j

x − v1j
x
v2j

z

v1j
x
v2j

y − v1j
y
v2j

x



4.2.4 Surfacic error minimization The boundary preser-
vation ensures that the mesh area at boundary does not change.
The surfacic error minimization objective attempts to minimize
the area change locally, encouraging the new point to be close

to the mesh boundary. Thus we want to minimize

∑
j

A
((

v, v1j , v
2
j

))2
=
∑
j

∥∥∥∥12 (v2
j − v1

j

)
× v −

1

2
v2
j × v1

j

∥∥∥∥2

Thus v is solution of the equation A4x = B4 with

A4 =
1

2



0 v1j1
z − v2j1

z
v2j1

y − v1j1
y

v2j1
z − v1j1

z
0 v1j1

x − v2j1
x

v1j1
y − v2j1

y
v2j1

x − v1j1
x

0
...

...
...

0 v1jN
z − v2jN

z
v2jN

y − v1jN
y

v2jN
z − v1jN

z
0 v1jN

x − v2jN
x

v1jN
y − v2jN

y
v2jN

x − v1jN
x

0


and (4)

B4 =
1

2



v1j1
y
v2j1

z − v1j1
z
v2j1

y

v1j1
z
v2j1

x − v1j1
x
v2j1

z

v1j1
x
v2j1

y − v1j1
y
v2j1

x

...
v1jN

y
v2jN

z − v1jN
z
v2jN

y

v1jN
z
v2jN

x − v1jN
x
v2jN

z

v1jN
x
v2jN

y − v1jN
y
v2jN

x


where ej1 = (v1j1 , v

2
j1), ej2 = (v1j2 , v

2
j2), ..., ejN = (v1jN , v2jN)

are the border edges around the replacing edge e (v1j = v′ or
v1j = v′′).

4.2.5 Triangle shape optimization The triangle shape op-
timization objective attempts to make new face equilateral. The
idea is to minimize the perimeter-to-surface ratio. As the posi-
tion of the point barely changes the surface, only the perimeter
needs to be minimized. Thus we want to minimize∑

k D(v, vk)
2 where D(v, vk) is the distance between v and

the incident vertices vk upon the collapsing edge e.∑
k

D(v, vk)
2 =

∑
k

∥v − vk∥2

Thus v is solution of the equation A5x = B5 with

A5 =



1 0 0
0 1 0
0 0 1
...

...
...

1 0 0
0 1 0
0 0 1


and B5 =

∑
k



vxk1

vyk1

vzk1

...
vxkN

vykN

vzkN


(5)

where vk1
, vk2

, ..., vkN
are the incident vertices upon the repla-

cing edge e.

4.3 Label purity

A key contribution of our work is the addition of two objectives
to ensure label purity during edge-collapse. To achieve this,
each face of the mesh must have a single label, with mesh edges
separating different labels. We use a Support Vector Machine
(SVM) to determine the plane that best separates points with
different labels and restrict the collapsed point to this plane.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-185-2024 | © Author(s) 2024. CC BY 4.0 License.

187

When points cannot be linearly separated (e.g., near segment-
ation corners), we employ an directe search to find the best
placement, minimizing the occurrence of mixed labels within
faces. Each point in the sampled point cloud is associated with
its nearest mesh face. After an edge collapse, points on modi-
fied faces are reassigned to their new closest face.

4.3.1 Support Vector Machine (SVM) Support Vector Ma-
chines (SVM), introduced by Cortes and Vapnik (Cortes and
Vapnik, 1995), determine a hyperplane that separates points of
two classes, maximizing the gap between them. This works
directly for linearly separable classes, but for non-linear cases,
points are projected into a higher-dimensional space where they
become separable. Formally, for N labeled points (x1, y1),
(x2, y2), ..., (xN , yN) with xi in space and yi ∈ {−1, 1},
the hyperplane is defined as w · x − b = 0. The goal is to
find w and b that minimize ∥w∥2, under the constraint that
yi(w · xi − b) ≥ 1.

Figure 4. Linear SVM with soft-margin in a 2D plane.
w · x− b = 0 is the line separating points of two labels (red

crosses and green circles) with maximum margin.

If classes are not perfectly separable, hinge loss (soft-margin) is
used, allowing some points to fall within the margin. This setup
minimizes ∥w∥2 + C

∑N
i=1 ζi under yi(w · xi − b) ≥ 1− ζi

and ζi ≥ 0, as shown in Fig. 4. The parameter C balances
margin size and misclassification tolerance.

4.3.2 Point separation In our case, we use soft-margin
SVM directly on 3D points. For a given edge e, we consider
points from faces around e and the labels with the majority in
each face. If only two labels dominate, we find a plane that
maximizes the separation between these points, ignoring other
labels. For cases with more than two majority labels, we com-
pute a separate plane (wl, bl) for each label, separating points
of that label from the others. To reduce computation time,
we identify ”edge points”—points where neighboring points
have different labels—and use only these in SVM computa-
tions. This approach yields one or more planes (wl1 , bl1), (wl2 , bl2), ...,
(wlN , blN), and the placement of v is given by solving the sys-
tem A6x = B6:

A6 =


wt

l1
wt

l2
...

wt
lN

 and B6 =


bl1
bl2
...

blN

 (6)

where (wl1 , bl1), (wl2 , bl2), ..., (wlN , blN) are the SVM planes
separating different labels around edge e. Using the soft-margin
SVM is essential, as slight noise in point labels can lead to out-
liers, making full separation challenging.

old face
label 1
label 2
suitable placement point
grid search
iterative local search
new face

Figure 5. Direct search. A suitable placement point is selected
on the collapsing edge (the blue dot). Then a grid search is

performed from this point (in orange). Finally, an iterative local
search follows from the best grid point (the blue line).

4.3.3 Direct Search When points are not linearly separable,
such as in segmentation corners, we use a direct iterative search
to find the optimal placement point that minimizes label mixing
within faces (see Fig. 5). This search is computationally in-
tensive, so we apply it only when necessary, specifically when
over 5% of points are mislabeled by the SVM. These challen-
ging cases often arise in flat areas, where placement becomes
under-constrained. Therefore, our direct search operates in two
dimensions. We begin by calculating a local tangent plane P
and projecting relevant faces and points onto it. The goal is
to obtain ”pure” faces, where all points share the same label.
Since a simple count of mislabelled points is not continuous,
we define a continuous membership function M(p, f) that as-
signs each point p a membership value to face f , ranging from 1
(exact match) to 0 (distant). This function encourages boundary
alignment for smoother optimization, as illustrated in Fig. 6.

0.2

0.4

0.6

0.8

1

τ
10

τ

α
D(p, f) 7→ M(p, f)

M(p, f) =


D(p, f) × 10α−1

τ
+ 1 if D(p, f) ≤ τ

10

α 10
9

× (1 − D(p,f)

τ
) if D(p, f) ≤ τ

0 otherwise

Figure 6. Distance to faces point memberships calculation.

The search begins by identifying a viable placement point along
the edge, starting at the midpoint and exploring along the edge
with decreasing step sizes to avoid face inversion. Once a suit-
able point is found, a grid search expands from it, followed by a
local iterative search that evaluates points in a cross pattern. The
process continues until the optimal point is identified, with step
size halving if no improvement is found. The search concludes
when differences between successive points fall below 0.0001.
This process yields the best placement point p∗ and the optimal

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-185-2024 | © Author(s) 2024. CC BY 4.0 License.

188

placement line d∗ orthogonal to P through p∗. We then com-
pute two orthogonal planes (w1, b1) and (w2, b2) intersecting
at d∗. The final placement of v satisfies A6x = B6:

A6 =

[
wt

1

wt
2

]
and B6 =

[
b1
b2

]
(7)

4.3.4 Segmentation contour minimization Our method
aims to maximize face purity, which can conflict with mesh
simplification. Ensuring face purity could mean avoiding edge
collapses near segmented regions, resulting in a final contour
with many small, uneven edges. To address this, we add an
objective to minimize the total length of the segmentation con-
tour, encouraging smoother, more regular contours. The goal
is to minimize the distance from v to the segmentation contour
points (vm1 , vm2 , ..., vmN′) among the vertices (vk1

, vk2
, ...,

vkN
) on edge e, i.e., points along edges between faces of dif-

ferent labels. Thus, v is determined by solving A7x = B7:

A7 =



1 0 0
0 1 0
0 0 1
...

...
...

1 0 0
0 1 0
0 0 1


and B7 =

∑
i



vxm1

vym1

vzm1

...
vxmN′

vymN′

vzmN′


(8)

4.4 System solution

The matrices A1,A2, ...,A7 and B1,B2, ...,B7 represent the
objectives for placing the vertex v that replaces edge e. To con-
trol the influence of each objective, we introduce parameters
λ1, λ2, ..., λ7. The solution for v is found by solving the over-
constrained system Ax = B in the least squares sense, where
A = [λiAi]i=1..7 and B = [λiBi]i=1..7. We therefore solve
v = argminx∥Ax−B∥2. Choosing values for λ1, λ2, ..., λ7

allows us to balance between objectives. For example, increas-
ing λ1 emphasizes volume preservation over surface fidelity
or segmentation purity. This formalism adapts the objectives
proposed by Lindstrom and Turk (Lindstrom and Turk, 1998),
while adding symmetry and the flexibility to include new ob-
jectives for segmentation.

5. Cost strategy

To determine the optimal order for collapsing edges, we also
need to evaluate the cost of each edge-collapse so that we can
prioritize edges from least to most expensive. There are two
main strategies for determining this cost. Like Lindstrom and
Turk (Lindstrom and Turk, 1998), we could base it solely on
placement error, allowing memoryless simplification without
storing the original mesh or modification history. Alternatively,
we can leverage the point cloud, which contains both segment-
ation and geometric information.

5.1 Placement strategy-based cost

The objectives from the previous section enable us to calculate
placement errors (e.g., volume and area changes). Thus, a basic

cost strategy is to use ∥Ax−B∥2 as the contraction cost:

Cp = λ2
1

(∑
i

V s
((

v, v1i , v
2
i , v

3
i

)))2

+ λ2
2

∑
i

V
((

v, v1i , v
2
i , v

3
i

))2

+ λ2
3

∥∥∥∥∥∥
∑
j

Ad
((

v, v1j , v
2
j

))∥∥∥∥∥∥
2

+ λ2
4

∑
j

A
((

v, v1j , v
2
j

))2
+ λ2

5

∑
k

D(v, vk)
2

+ λ2
6

∑
l

(wl · v − bl) or λ2
6D(v, d∗)2

+ λ2
7

∑
m

D(v, vm)2

(9)

where fi are faces around the edge e, ej are boundary edges
around e, D(v, vk) is the distance between v and nearby ver-
tices vk, (wl, bl) are SVM planes separating labels, D(v, d∗)
is the distance to the best placement line, and D(v, vm) is the
distance to segmentation contour points vm.

5.2 Point cloud-based cost

Using the point cloud allows us to calculate costs without addi-
tional memory usage. For each face f and associated points pi
with labels Lpi , we assign f the label Lf that most of its points
share. We then define two costs, an absolute geometric cost

Cg =
∑
i

D(pi, f)
2 (10)

and an absolute segmentation cost

Cs = |{pi|Lpi ̸= Lf}| (11)

where D(pi, f) is the distance from point pi to face f , and
|{pi|Lpi ̸= Lf}| is the count of points that do not match the
majority label.

5.3 Segmentation contour-based cost

As discussed in Section 4.3.4, another objective is to minimize
the length of the segmentation contour. We define the contour
cost as:

Cc =
∑
n

L(en) (12)

where L(en) is the length of edge en, and en are edges between
faces with different labels.

5.4 Combined cost

Each cost has strengths and weaknesses. The placement cost
Cp is continuous but can drift as it only reflects the previous
mesh state. The geometric cost Cg compares the simplified
mesh to the original but relies on discrete sampling. The seg-
mentation costs Cs and Cc provide more precise label align-
ment by assessing point-by-point consistency. To combine these,
we use:

C = αCg + βCs + γCc + δCp (13)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-185-2024 | © Author(s) 2024. CC BY 4.0 License.

189

where α, β, γ, and δ are chosen based on the desired balance
among these objectives.

6. Face division

Edge collapse simplifies the mesh by merging faces but does not
allow moving mesh points without reducing face count. Some
segmentation details, however, may be smaller than the initial
mesh faces. To handle this, we introduce a face division step
before edge collapse, assigning labels to faces based on the
method in the previous section. We divide only those faces
associated with points of different labels. For each face with
mixed labels, using SVM, we find the plane that best separates
the majority-label points from the others. The triangular face is
then divided at the intersection of this plane and the face. The
new edge extends to the opposite vertices of adjacent faces and
to the midpoint of any edge not intersected by the plane. If the
angle between the face and the SVM plane is less than 10◦, the
plane is ignored, and the face is simply divided at the midpoints
of each edge. This process iterates until no face has points with
different labels.

f

SVM plane

Figure 7. Face division. New edges are shown in dark blue, and
the SVM plane intersection creating the first edge is in light

blue, with its margin shaded.

7. Evaluation

To evaluate our method, we used three models: the Stanford
Bunny (Stanford Bunny, n.d.), the Fandisk (Hoppe et al., 1994),
and a tile from the SUM Dataset (Gao et al., 2021). The first
two are standard choices in geometry processing evaluations.
For these, we generated labeled point clouds using Meshlab’s
(Cignoni et al., 2008) Poisson-disk Sampling (Corsini et al.,
2012) and manually labeled them to capture various scenarios,
such as segmentation boundaries align or not align to with sharp
edges, large areas, and fine details. The resulting point clouds
are available at github.com/umrlastig/SemanticMesh. The
third dataset tests our method on structured mesh generation
and includes a high-resolution mesh (450,000+ edges) of a 250m
x 250m segment of Helsinki, with a point cloud detailing se-
mantic classes (e.g., buildings, vegetation, water, vehicles).

Our goal is to assign labels to each face. Final labeling is
achieved through a majority vote among the points nearest to
each face, which can be done at any stage of simplification. In
cases where a low number of points are associated with a face,
indicating limited information in certain areas, we introduce a
minimum occupancy fraction. First, an average point density
per unit area is calculated for the mesh. Then, for each face,
if the number of points falls below a certain fraction of the ex-
pected count, it is labeled as ”unknown”. Similarly, very small
faces might lack associated points. If a face’s expected point
count is less than 1, it is labeled using a majority vote weighted

by the length of shared edges with neighboring faces. This pro-
cess is recursively applied to adjacent faces with missing labels.

To evaluate geometric error, we use the symmetric Hausdorff
Distance (Cignoni et al., 1998) between the initial and final
meshes. Given a sampling of the two meshes, this is the greatest
distance between one mesh and the farthest sampling point of
the other mesh. In one direction, we measure from vertices of
the initial mesh to the final mesh; in the other, from randomly
sampled points on the final mesh surface to the initial mesh.
Figure 8 shows the progression of mean distance error during
mesh simplification.

0 20 40 60 80 100

Percent edges removed in the mesh, bigger is simpler.

10−7

10−6

10−5

10−4

10−3

10−2

10−1

M
ea

n
di

st
an

ce
(m

),
sm

al
le

ri
s

be
tte

r.

Fandisk
Bunny
SUM

Figure 8. Geometric error during simplification.

To assess segmentation error, we count the points in the initial
point cloud whose closest face on the final mesh has a different
label. We also compare results with the CGAL implementation
of the Lindstrom-Turk and Garland-Heckbert algorithms (Cac-
ciola et al., 2024) using default settings. These methods ignore
segmentation, resulting in lower segmentation accuracy and un-
derscoring the importance of segmentation in our approach. For
consistency, we use the number of remaining edges as the stop-
ping criterion, a common practice (Cacciola et al., 2024) that
allows comparison between meshes of similar sizes. Addition-
ally, our method allows to stop at a maximum collapse cost de-
rived from acceptable mesh-to-mesh distance or point count er-
rors, using the parameters α, β, γ, and δ from equation 13.

We achieved optimal results with the following hyperparamet-
ers: α = 2, β = 1, γ = 0.01, δ = 0.01, λ1 = 10, λ2 = 1,
λ3 = 10, λ4 = 1, λ5 = 1 × 10−5, λ6 = 1, λ7 = 0.01,
C = 1× 105. As shown in Table 1, our method performs well
in segmentation, with minimal association errors between the
point cloud and the final mesh, as less than 0.04% of points are
assigned incorrect labels. The primary drawback of our method,
however, is its significantly longer processing time due to more
complex objectives and to re-association: each collapse opera-
tion increases the number of points linked to each face, requir-
ing time-consuming re-association as illustrated in Figure 9.
Re-association is essential for aligning mesh edges with seg-
mentation boundaries. When segmentation is ignored, whether
with Lindstrom-Turk, Garland-Heckbert, or our method without
the point cloud, point-to-face label mismatches increase signi-
ficantly. To understand the impact of each component, we con-
ducted an ablation study (Table 1). Removing the direct search
component (see Section 4.3.3) has minimal effect Excluding
segmentation objectives reduces geometric and segmentation
accuracy slightly but speeds up processing by a factor of three.
Running SVM on all points instead of edge points greatly in-
creases computation time without notable accuracy improve-
ments. Figures 8 and 9 reveal three simplification phases: an
initial phase where segmentation contour minimization (Cc)
simplifies the contour, causing a sharp local error increase; a

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-185-2024 | © Author(s) 2024. CC BY 4.0 License.

190

https://github.com/umrlastig/SemanticMesh

Table 1. Ablation study and comparison with baseline.
Experiments are compared with the same number of edges in the final mesh (2,500 for Bunny, 1,000 for Fandisk and 50,000 for SUM).

Without pointcloud: λ6 = 0, λ7 = 0, α = 0, β = 0, γ = 0, δ = 1 - Without segmentation placement: λ6 = 0, λ7 = 0

Model Experience Mean distance Max distance Wrong Point Contour length Time
(mm) (mm) (%) (m) (s)

Bunny Complete method 0.17 1.9 0.039 0.7 81.8
Bunny Garland-Heckbert 0.18 1.8 1.485 0.6 0.6
Bunny Lindstrom-Turk 0.14 1.5 1.444 0.7 1.1
Bunny without pointcloud 0.23 2.3 1.702 0.7 5.2
Bunny without segmentation placement 0.16 1.6 0.039 0.7 28.4
Bunny without direct search 0.16 2.2 0.032 0.7 66.6
Bunny without initial subdivision 0.16 1.9 0.030 0.7 80.1
Bunny without edge point 0.17 2.3 0.037 0.7 213.0
Fandisk Complete method 1.16 19.5 0.001 28.8 450.1
Fandisk Lindstrom-Turk 0.43 9.2 4.863 26.3 0.3
Fandisk Garland-Heckbert 3.48 226.1 6.063 20.0 0.5
Fandisk without pointcloud 0.42 16.1 5.006 33.5 1.3
Fandisk without segmentation placement 4.16 79.4 0.018 28.7 91.1
Fandisk without direct search 1.32 25.6 0.002 28.8 275.9
Fandisk without initial subdivision 0.63 11.6 0.043 29.1 930.9
SUM Complete method 75.3 1.9 0.037 10.0 292.3
SUM Lindstrom-Turk 14876.1 1231.9 9.556 29.2 10.1
SUM Garland-Heckbert 883.7 13.3 9.482 21.2 175.5
SUM without pointcloud 81.1 6.9 1.778 11.7 25.9
SUM without segmentation placement 74.9 2.0 0.057 11.0 64.1
SUM 50% of pointcloud 77.2 1.8 1.902 9.8 175.6
SUM without initial subdivision 75.4 1.9 0.043 10.1 294.1
SUM without direct search 75.4 1.8 0.039 10.0 302.0
SUM without edge point 75.2 1.9 0.042 10.0 374.2

second phase with exponential error growth as the mesh is sim-
plified; and a third phase where reduced edge count impacts
model fidelity, leading to another sharp error increase. Remov-
ing segmentation placement or edge points affects time mainly
in the first phase, where segmentation boundaries undergo the
most adjustments. An example is seen in the Fandisk model,
where simplifying the “IGN” letters demands more segmenta-
tion processing. Finally, the initial subdivision of faces signific-
antly improves accuracy and reduces the number of mislabeled
points, ultimately saving processing time.

8. Conclusion

This paper presents an algorithm that combines mesh simplific-
ation with segmentation alignment, producing structured meshes
with edges that match segmentation boundaries. By preserving
both geometric fidelity and segmentation labels, the method en-
ables lightweight, structured models suitable for various applic-
ations. While computationally demanding, the approach allows
flexibility in handling semantic segmentation and demonstrates
a trade-off between processing time and model detail. Future
optimizations, including GPU acceleration and machine learn-
ing enhancements, could further improve efficiency and bound-
ary alignment. In summary, our approach effectively gener-

ates clear, structured meshes, providing an automated, practical
solution for urban modeling needs.

References

Cacciola, F., Rouxel-Labbé, M., Şenbaşlar, B., Komaromy, J.,
2024. Triangulated surface mesh simplification. CGAL User
and Reference Manual, 5.6.1 edn, CGAL Editorial Board.

Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganov-
elli, F., Ranzuglia, G., 2008. Meshlab: an open-source mesh
processing tool. V. Scarano, R. D. Chiara, U. Erra (eds), Euro-
graphics Italian Chapter Conference, The Eurographics Asso-
ciation.

Cignoni, P., Montani, C., Scopigno, R., 1998. A comparison of
mesh simplification algorithms. Computers & Graphics, 22(1),
37–54.

Corsini, M., Cignoni, P., Scopigno, R., 2012. Efficient and
Flexible Sampling with Blue Noise Properties of Triangular
Meshes. IEEE Transactions on Visualization and Computer
Graphics, 18(6), 914–924.

Cortes, C., Vapnik, V., 1995. Support-vector networks. Machine
Learning, 20(3), 273–297.

0 50 100
100

101

102

Ti
m

e
(s

),
sm

al
le

ri
s

be
tte

r.

(a) Bunny

0 50 100
100

101

102

103

104

(b) Fandisk

0 50 100

101

102

103

(c) SUM
Percent edges removed in the mesh, bigger is simpler.

Complete method
Without edge points
Without direct search
Without segmentation placement

Figure 9. Time flow during simplification.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-185-2024 | © Author(s) 2024. CC BY 4.0 License.

191

Figure 10. Original mesh, labeled point cloud and structured mesh (top to bottom) for Bunny, Fandisk and SUM dataset (left to right).
The results show good geometric approximation while maintaining a sufficient number of edges to mark segmentation details.

Gao, W., Nan, L., Boom, B., Ledoux, H., 2021. SUM: A bench-
mark dataset of Semantic Urban Meshes. ISPRS Journal of
Photogrammetry and Remote Sensing, 179, 108–120.

Garland, M., Heckbert, P. S., 1997. Surface simplification using
quadric error metrics. Proceedings of the 24th Annual Confer-
ence on Computer Graphics and Interactive Techniques, Sig-
graph ’97, ACM Press/Addison-Wesley Publishing Co., Usa,
209–216.

Gröger, G., Plümer, L., 2012. CityGML – Interoperable se-
mantic 3D city models. ISPRS Journal of Photogrammetry and
Remote Sensing, 71, 12–33.

Hoppe, H., 1996. Progressive meshes. Proceedings of the
23rd Annual Conference on Computer Graphics and Interact-
ive Techniques, Siggraph ’96, Association for Computing Ma-
chinery, New York, NY, USA, 99–108.

Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H.,
McDonald, J., Schweitzer, J., Stuetzle, W., 1994. Piecewise
smooth surface reconstruction. Proceedings of the 21st Annual
Conference on Computer Graphics and Interactive Techniques,
Siggraph ’94, 295–302.

Ign, 2022. Lidar hd. https://geoservices.ign.fr/
lidarhd.

Li, J., Chen, D., Hu, F., Wang, Y., Li, P., Peethambaran, J.,
2024. Shape-preserving mesh decimation for 3D building mod-
eling. International Journal of Applied Earth Observation and
Geoinformation, 126, 103623.

Lindstrom, P., Turk, G., 1998. Fast and memory efficient
polygonal simplification. Proceedings Visualization ’98 (Cat.
No.98CB36276), 279–286.

Luebke, D., Erikson, C., 1997. View-dependent simplifica-
tion of arbitrary polygonal environments. Proceedings of the
24th Annual Conference on Computer Graphics and Interactive
Techniques, Siggraph ’97, ACM Press/Addison-Wesley Pub-
lishing Co., Usa, 199–208.

Project, T. C., 2024. CGAL User and Reference Manual. 5.6.1
edn, CGAL Editorial Board.

Rossignac, J., Borrel, P., 1993. Multi-resolution 3d approxima-
tions for rendering complex scenes. B. Falcidieno, T. L. Kunii
(eds), Modeling in Computer Graphics, Springer Berlin Heidel-
berg, Berlin, Heidelberg, 455–465.

Salinas, D., Lafarge, F., Alliez, P., 2015. Structure-Aware Mesh
Decimation. Computer Graphics Forum, 34(6), 211–227.

Scalas, A., Mortara, M., Spagnuolo, M., 2020. A pipeline for
the preparation of artefacts that provides annotations persist-
ence. Journal of Cultural Heritage, 41, 113–124.

Schroeder, W. J., Zarge, J. A., Lorensen, W. E., 1992. Decim-
ation of triangle meshes. SIGGRAPH Comput. Graph., 26(2),
65–70.

Soucy, M., Laurendeau, D., 1996. Multiresolution Surface
Modeling Based on Hierarchical Triangulation. Computer Vis-
ion and Image Understanding, 63(1), 1–14.

Stanford Bunny, n.d. https://graphics.stanford.edu/
data/3Dscanrep/. Stanford University Computer Graphics
Laboratory.

Trettner, P., Kobbelt, L., 2020. Fast and Robust QEF Minimiz-
ation using Probabilistic Quadrics. Computer Graphics Forum,
39(2), 325–334.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-185-2024 | © Author(s) 2024. CC BY 4.0 License.

192

https://geoservices.ign.fr/lidarhd
https://geoservices.ign.fr/lidarhd
https://graphics.stanford.edu/data/3Dscanrep/
https://graphics.stanford.edu/data/3Dscanrep/

	Introduction
	Related work
	Edge Collapse
	Placement strategy
	Mathematical framework
	Geometric objectives
	Volume preservation
	Volumetric error minimization
	Boundary preservation
	Surfacic error minimization
	Triangle shape optimization

	Label purity
	Support Vector Machine (SVM)
	Point separation
	Direct Search
	Segmentation contour minimization

	System solution

	Cost strategy
	Placement strategy-based cost
	Point cloud-based cost
	Segmentation contour-based cost
	Combined cost

	Face division
	Evaluation
	Conclusion

