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Abstract 

 

The total forest area in Indonesia reaches 62.97% of Indonesia's land area or approximately 125.76 hectares, requiring effective and 

accurate inventory methods. Conventional methods have a high level of accuracy but require large costs and labor. The use of UAV 

(Unmanned Aerial Vehicles) and Backpack LiDAR technology has emerged as an efficient alternative solution for forest inventory. 

The UAV serves as an aerial image capture platform that generates orthomosaic and canopy height data through the Canopy Height 

Model (CHM). Meanwhile, Backpack LiDAR can generate detailed point cloud data that enables stem diameter (DBH) measurement 

and Above-Ground Biomass (AGB) estimation. The analysis showed that the backpack LiDAR had an RMSE error of 0.793 meters 

and a standard deviation of 0.30332 cm for DBH. Linear regression showed a relationship between DBH and AGB with an R² of 

0.5591, indicating DBH had a significant effect on AGB. These data were used to calculate carbon stocks, which had small 

differences between the manual and backpack LiDAR methods. The results show that this technology-based method can improve 

efficiency and accuracy in forest inventory and support climate change mitigation efforts. 

 

 

1. Introduction 

 According to data from the Ministry of Environment and 

Forestry (2020), the total forest area in Indonesia reaches 

62.97% of Indonesia's land area or around 125.76 hectares. 

Forest inventory information is essential in forest management. 

In addition, for sustainable forest management, further 

information is needed, not only for planning future forest 

management (Koch et al. 2006). Forests need to be managed to 

ensure their sustainability so that they can be utilized to their 

full potential. Sustainable forest management requires precise 

and accurate understanding (Fankhauser et al. 2018) because 

forests have many important roles for humans and all other 

living things in the forest (Yilmaz et al. 2017). One of the early 

stages of forest management is to collect all information related 

to forest resources through forest inventory activities. 

Information based on forest inventory results will be very 

helpful for assessing forest ecosystem services, estimating stand 

volume, stored carbon and so on (Hematang et al, 2021). 

 Forest inventorying is still mostly done conventionally by 

conducting direct field measurements which have a high level 

of accuracy but require a lot of time, money, and manpower for 

the implementation in the field to run well. However, along with 

the times, the technology used for forest inventory has also 

developed. One of the technologies for capturing field data 

quickly and precisely is aerial photography technology using 

UAVs or unmanned vehicles (Hematang et al., 2021) and 

backpack LiDAR technology. 

 Unmanned Aerial Vehicles (UAVs) are platforms for 

taking aerial photographs whose operation is remotely 

controlled semi-automatically or automatically without a pilot 

on the platform (Puliti et al, 2017). The advantages of UAVs are 

that they can be used in high-risk situations without the need to 

endanger human lives, in inaccessible areas and fly at low 

altitudes under the clouds so that the resulting photos are free 

from clouds (Subakti, 2017). On the other hand, Backpack 

LiDAR technology enables efficient collection of spatial data in 

the form of point clouds with a high level of detail. Utilized in 

forest inventory, LiDAR can produce very complete data about 

tree segmentation. In addition to measuring tree height, LiDAR 

can also detect the position of each tree in the form of XY 

coordinates, the number of trees, canopy diameter and so on 

(Liu et al, 2018) 

 In contrast to conventional methods, backpack LiDAR 

offers ease of mobility and time effectiveness, especially in 

areas that are difficult to reach or have rough terrain. The 

combination of UAV and backpack LiDAR technology offers a 

more effective solution for forest inventory activities that 

require accurate data in a short time and at a lower cost 

compared to traditional methods. The use of UAVs equipped 

with high-resolution cameras for aerial mapping enables the 

acquisition of sharp images of the forest canopy and other areas 

(Zhang et al., 2019). Meanwhile, backpack LiDAR can provide 

detailed information on vegetation down to the lower levels of 

tree trunk and branch structure (Holmgren et al. 2003). The 

integration of these two technologies can provide more 

comprehensive data for various forest inventory purposes, such 

as biomass and carbon stock estimation, which are important 

indicators in assessing forest health and its potential to store 

carbon. With these data, sustainable forest management can be 
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carried out with a more data-driven approach, to support climate 

change mitigation efforts and ensure that the potential of forest 

resources can be utilized while maintaining its sustainability. 

 

2. Methodology 

2.1 Research Location  

 The study area is located in Wonorejo Mangrove with 

Coordinates -7.312613°E and 112.825161°, Approximately 0.81 

hectares of forest were selected for this study, The study area is 

dominated by vegetation growing close to each other, with the 

main tree species being xylocarpus, Avicennia alba, and 

Avicennia Marina. 

 

 
Figure 1. Study Area 

 

 
Figure 2. Flow Chart Research 

 

 This research aims to detect and segment trees using an 

approach that integrates aerial imagery and point cloud data. 

Aerial imagery is captured using a high-resolution drone that 

provides a detailed view from above the plantation area, while 

point cloud data is obtained through Backpack LiDAR 

technology that provides three-dimensional spatial information 

on topography and vegetation. 

 

2.2 Field Measurements 

 The data collection process begins with the UAV flying 

along a predetermined route to obtain aerial imagery of the 

forest area being studied. Meanwhile, the operator with the 

LiDAR backpack moves on the ground to map the vegetation 

structure and topography of the same area. This data was 

obtained from photogrammetric survey measurements using the 

DJI Mavic Pro equipped with a camera sensor at a height of 120 

m above the ground. Data collection was carried out during the 

day in clear weather. 

 
Figure 3. Data Collection Process 

 

 Data pre-processing involves aligning and merging aerial 

imagery to create a comprehensive dataset. Based on the 

resulting Ortho mosaic, elevation data from the ground surface 

to the canopy are processed to create a Digital Elevation Model 

(DEM) and a Digital Surface Model (DSM). DEM represents 

the elevation of the land without vegetation, while DSM shows 

the elevation of all elements (Zarco-Tejada et al, 2014). Using 

DSM and DEM, canopy height can be calculated, an important 

indicator in estimating biomass. This data is then used to 

identify vegetation types and canopy densities which form the 

basis for biomass and carbon stock estimates. 

 The data generated from the LiDAR backpack is a 

collection of points (point cloud) with three-dimensional 

coordinates (x, y, z) that show the position and height of the 

object (Liu et al, 2018). This data is filtered to remove noise and 

ensure only relevant points such as tree trunks. The point cloud 

is segmented to identify different vegetation structures, such as 

tree trunks and crowns. This segmentation is important for 

calculating the volume or structure of each tree, which plays a 

role in calculating biomass. 

 

2.3 Tree Sample 

 In this study, Tree samples used in this study were taken 

along the measurement path. All trees were measured for their 

chest diameter using a roll meter. This DBH data is very 

important in building a biomass estimation model because it has 

a close relationship with the volume and biomass of the tree. In 

addition, the XYZ coordinate position of each tree was also 

recorded using a GPS device which is a low-cost GPS 

technology, namely Smart Geo PD ITS. This aims to obtain 

accurate position data, which will later be used to match trees 

measured in the field with aerial imagery and point cloud data 

generated from UAVs and backpack LiDAR. However, because 

dense tree canopies can block GPS signal reception, which can 

reduce the accuracy of tree position, position recording is 

carried out by referring to the direction of the measurement 

path. This approach is taken so that the position of the tree 

remains accurate even though there is interference from the 

canopy that affects the quality of the GPS signal. After the tree 

position and DBH data are obtained, the next step is to match 

the measured tree position with aerial imagery data from UAVs 

and point clouds from LiDAR. This matching process is 

important to ensure that the position of the tree in the resulting 

spatial data can be validated with field data, thereby increasing 

the accuracy of biomass and carbon stock estimates and 

facilitating better forest management. 

 

2.4 Point Cloud Segmentation Method 

Tao et al. (2015) developed a TLS point cloud segmentation 

method with a bottom-up approach to identify individual trees. 

This method utilizes TLS data taken from under the canopy, 

where tree branches are visible and can be used as a reference 

for segmenting information.  

Biomass plays an important role in the carbon cycle, where 

the amount of biomass in vegetation can be used to estimate 

carbon stock values. Based on SNI 7724:11, carbon and 

biomass estimates can be calculated using established formulas. 

Previous studies used the Allometric formula to calculate 

biomass in tree branches and leaves, as shown in the following 

equation: 

 

𝐵 = V x BJ x BEF                                           (1) 

Description: 

• B: Above-ground biomass, in kilograms (kg). 
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• V: Volume of wood without branches, in cubic meters 

(m³). 

• BJ: Wood density, in kilograms per cubic meter 

(kg/m³). 

• BEF: Biomass expansion factor.  

 Wood volume is estimated by measurement, usually the 

tree's height and diameter. The measurement of diameter is 

taken at a standard height about 1.3 meters from the ground, 

known as Diameter at Breast Height or DBH, while the height 

of the tree is measured from the ground to the highest point of 

the tree. Calculation of wood volume the method used in 

calculating the volume of wood follows the volume of a 

cylinder formula as set out by the Indonesian National Standard 

(SNI), that is, National Standardization Agency 2011. The 

volume in this method is calculated using the formula below: 

V = 0,25 π x r2 x h x F                                   (2) 

Description: 

• r: Tree radius (DBH) in meters (m). 

• h: Tree height in meters (m). 

• F: Tree shape factor (usually 0.6). 

 This approach takes into account the differences in tree 

trunk shape, with a shape factor (F) that corrects for differences 

between tree and perfect cylinder shapes. Typically, tree trunks 

are not perfectly straight or perfectly cylindrical; this shape 

factor accommodates these variations to make the volume 

calculation closer to reality. The shape factor (F) is calculated 

by comparing the actual volumes of cylinders with the same 

diameter and height. A common value for significant tree 

branches is 0.5, used without a specific shape factor for that 

category. After calculating biomass, the next step is to estimate 

carbon stock based on SNI 7724:11 which states that 47% of 

biomass contains carbon using the following formula: 

 

Carbon Stock = 0,47 ∗ B                                 (3) 

Description: 

• Carbon Stock: Carbon storage in vegetation (Ca/ha). 

• B: Stem biomass (Ca/ha). 

 The carbon stock in a forest ecosystem is closely related 

to the biomass stored in trees and other vegetation. The 

calculated carbon stock is usually expressed in units of Ca per 

hectare (Ca/ha), illustrating the capacity of carbon stored in a 

land area. As the amount of biomass in vegetation increases, the 

amount of carbon stored also increases significantly. 

Vegetation, especially trees with larger biomass, absorbs carbon 

dioxide from the atmosphere and stores it in the form of carbon 

in wood tissue, leaves, and other plant parts. Therefore, forests 

with large and dense trees tend to store higher amounts of 

carbon per hectare. 

 

3. Results and Discussion  

3.1 Low-cost GNSS Field Data 

 The Global Navigation Satellite System (GNSS) 

commonly used for vehicle navigation and positioning, also 

plays a critical role in geospatial data collection (Cahyadi et al, 

2022). In this study, the use of low-cost GNSS type F9R aims to 

obtain Ground Control Point (GCP) data as a reference point for 

data from Backpack LiDAR and Aerial Photography. This 

GNSS data is used for the georeferencing process, which aims 

for the point cloud to have a global reference system. This 

georeferencing process only uses translational parameters on the 

x, y, z axes and rotation on the x, y, and z axes, without using a 

scale (not enlarging or reducing the data). This approach is 

taken to avoid errors that can affect the accuracy of LiDAR 

point cloud data. 

 

No.  Description  Easting (m)  
Northing 

(m)  

1 GCP 1 701478.563 9191291.433 

2 GCP 2 701476.3379 9191287.387 

3 GCP 3 701474.6301 9191283.818 

4 GCP 4 701476.1913 9191278.465 

5 GCP 5 701467.8404 9191270.683 

6 GCP 6 701469.3466 9191269.903 

 

No.  Z (m)  STDV X  STDV Y  STDV Z 

1 31.1 0.74 0.15 0.03 

2 31.3 0.52 0.11 0.23 

3 31 0.81 0.54 0.07 

4 31.3 0.37 0.82 0.23 

5 30.6 0.98 0.6 0.47 

6 31.1 0.47 0.38 0.03 

Table 1. Low-cost GNSS Field Data 

 

 The data is used to correct the position and orientation of 

the LiDAR point cloud to match the coordinates of the global 

reference system, ensuring the accuracy and quality of the data 

produced. In this table, the columns STDV X, STDV Y, and 

STDV Z show the standard deviation for each GCP coordinate 

in the horizontal and vertical directions. These values provide a 

figure of measurement precision, which serves to assess the 

reliability of the GNSS data used in the georeferencing process. 

Data with a smaller standard deviation indicates a higher level 

of precision at that coordinate. 

 

3.2 LiDAR and UAV Georeferencing with Low-cost GNSS 

 LiDAR and UAV georeferencing with Low-cost GNSS is 

conducted as the first step in the 3D modelling process. The use 

of low-cost GNSS allows the acquisition of GCP data at a lower 

cost, but still provides accurate accuracy for georeferencing 

purposes. GNSS data from these GCP points is then used to 

align LiDAR data and aerial photographs to the same global 

coordinate system, thus facilitating integration between LiDAR 

and UAV data. 

 The georeferencing process begins by adjusting the 

position and orientation of the LiDAR and aerial photography 

scanned point cloud data with the GCP references. Translations 

and rotations on the x, y and z axes were applied to align the 

data with the actual position on the ground. However, scale 

transformation was not applied to keep the object dimensions in 

line with the original size and minimise the risk of data 

distortion. 

 The use of F9R type low-cost GNSS data with measurable 

standard deviations at each GCP point helped to improve the 

georeferencing accuracy (Cahyadi et al, 2023). A low standard 

deviation in GCP coordinates is an indicator of measurement 

accuracy, which plays an important role in maintaining the 

accuracy of the georeferencing process. Thus, the generation of 

precise and affordable 3D models that can be utilized for a 
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variety of spatial analysis and in-depth field mapping 

applications is made possible by the combination of inexpensive 

GNSS data, LiDAR, and aerial photography. Georeferencing is 

mostly used to convert local LiDAR coordinates to global 

coordinates. The following outcomes were obtained using the 

georeferencing procedure. 

 Thus, the generation of precise and affordable 3D models 

that can be utilized for a variety of spatial analysis and in-depth 

field mapping applications is made possible by the combination 

of inexpensive GNSS data, LiDAR, and aerial photography. 

Georeferencing is mostly used to convert local LiDAR 

coordinates to global coordinates. The following outcomes were 

obtained using the georeferencing procedure. 

 
Figure 4.  Visualisation of GCP locations in georeferenced data 

 

 The Figure 4, The georeferencing process's result displays 

an RMSE value of 0.793 meters for the point cloud data and 

0.667 meters for the UAV aerial photography data. The degree 

of inaccuracy between the points' locations on the 

georeferenced point cloud and their real ground positions using 

the GCP reference is indicated by this RMSE number. While 

the RMSE of 0.793 meters for the LiDAR data indicates that the 

LiDAR point cloud accuracy is still within acceptable tolerance 

limits for large-scale mapping and spatial analysis applications, 

the RMSE of 0.667 meters for the UAV data indicates that the 

aerial photography data has a high level of accuracy. The small 

difference between the RMSE values is due to the difference in 

resolution and data capture techniques between UAV and 

LiDAR. Overall, the georeferencing process successfully 

aligned the LiDAR and UAV data on a global coordinate 

system with sufficient accuracy, supporting the need for precise 

3D modelling. 

 

3.3 Canopy Height Model (CHM) 

 The UAV data was processed using Agisoft Metashape 

software to generate an orthomosaic map. This orthomosaic 

map is made up of many aerial pictures integrated into a single 

figure. Figure 5 shows how an orthomosaic figure creates a 

comprehensive and accurate visual representation of the 

mapped area. 

 
Figure 5. Orthomosaic Results from Aerial Photograph Data 

 

 Following the creation of the orthomosaic map, the data is 

further processed to generate 3D Point Clouds and Mesh, as 

illustrated in Figure 6. This step seeks to create a Digital 

Surface Model (DSM) and a Digital Terrain Model. The DSM 

represents the top surface of all things in the area, including 

vegetation, buildings, and other structures, whereas the DTM 

solely represents the ground surface with no items on it. 

 

 
 

 
Figure 6. 3D points clous result from Aerial Photo Data 
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 The following step is to normalize the data by subtracting 

the DSM from the DTM. This procedure produces the Canopy 

Height Model (CHM), which represents the height of trees or 

vegetation in the mapped area, in this case the mangrove forest. 

Figure 7 depicts the fluctuation in tree canopy height in the 

mangrove area, as provided by this CHM. This CHM data is 

extremely important for vegetation study, forest health 

monitoring, and management of mangrove forest conservation 

zones. 

 
Figure 7. Canopy Height Model 

 

 Figure 7 shows the CHM mapping results that represent the 

variation of canopy height in the mangrove forest area. The 

model displays color gradations that reflect canopy height, 

where blue indicates areas with the highest canopy, reaching 

approximately 59.8935 meters, while red to blue indicate lower 

heights or even areas with no canopy. This color gradient helps 

to identify the difference in canopy height, which gives an idea 

of the vertical structure of the vegetation in the area. The 

distribution of canopy height in the map shows areas with taller 

and denser trees (marked in dark blue), as well as areas with 

lower or open canopy (colored red). 

 

3.4 3D Tree Data Visualization 

 3D tree data is obtained by utilizing point cloud data 

scanned using Backpack LiDAR. The process of capturing point 

cloud data is done through the SLAM process, this method is 

able to produce point clouds that accurately reflect the spatial 

structure of the environment, including details of tree shape and 

density. The tree extraction process is performed by classifying 

tree objects from the point cloud data based on height and 

canopy shape. Segmentation filters are applied to distinguish 

trees from other objects such as land, buildings, or other 

vegetation elements. The segmentation results are then used to 

visualize each tree as a separate 3D object, with details of the 

canopy, trunk, and branches that can be analyzed individually. 

In the 3D visualization, each tree is represented from the trunk 

area to the canopy. However, shadows or other obstructing 

objects can also affect the data density, especially at the top of 

the tree. The following is the result of 3D visualization of the 

model using backpack in Figure 8.  

 

 

 

 

 

 

  
(a) (b) 
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(c) 

 
(d) 

Figure 8. Backpack Lidar Point Cloud Data Visualization, a). Top View, b) Top View Facing North, c). Left Side View, d) Right 

Side View 

 

 The data visualization of each individual tree is shown in 

Figure 9 below. The top of the tree (canopy) appears to have a 

lower density than the trunk area of the tree object 

  
Figure 9. Individual tree data visualization. 

 

3.5 Calculation of DBH and AGB 

 Comparison of tree diameter between point cloud data and 

measurements using a tape measure is done by calculating the 

absolute difference between the two datasets to obtain the 

discrepancy at each point. Next, the RMSE (Root Mean Square 

Error) and Standard Deviation values are calculated to assess 

the accuracy of the data. The results of the difference 

calculations between the two datasets are shown in Table 2, 

with visualization in Figure 10. MBP represents the result of 

subtracting the tape measure data from the backpack LiDAR 

data. 

 

DBH 

Roll 

meter 

(m) 

DBH 

BP (m) 
ID 

MBP 

(cm) 

(MBP)

^2 

1.580 1.587 1 0.700 0.490 

0.388 0.396 2 0.800 0.640 

0.843 0.849 3 0.600 0.360 

1.109 1.113 4 0.400 0.160 

1.000 1.003 5 0.300 0.090 

DBH 

Roll 

meter 

(m) 

DBH 

BP (m) 
ID 

MBP 

(cm) 

(MBP)

^2 

0.285 0.287 6 0.200 0.040 

3.640 3.632 7 0.800 0.640 

1.555 1.558 8 0.300 0.090 

0.310 0.312 9 0.200 0.040 

1.630 1.636 10 0.600 0.360 

1.143 1.145 11 0.200 0.040 

1.496 1.497 12 0.100 0.010 

2.287 2.299 13 1.200 1.440 

0.550 0.549 14 0.100 0.010 

0.948 0.955 15 0.700 0.490 

1.816 1.822 16 0.600 0.360 

4.068 4.071 17 0.300 0.090 

2.284 2.286 18 0.200 0.040 

0.525 0.534 19 0.900 0.810 

1.118 1.126 20 0.800 0.640 

  Mean  0.500 

  RMSE 0.585 

  STDV 0.30332 
Tabel 2. Table of comparison DBH 

 

 The data of the table can be analysis that the difference in 

tree diameter between measurement using a roll meter and BP 

LiDAR shows a significant difference. For example, tree 

number 2 difference between roll meter and BP LiDAR reach 

0.800 cm, while for tree number 12, the difference only 0.100 

cm. Overall the average MBP difference between the two 

measurement methods is 0.500 cm, indicating that although 

both methods provide similar results, there are still small 

differences between them. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024 
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-201-2024 | © Author(s) 2024. CC BY 4.0 License.

 
206



 

 The value of RMSE is 0.585 cm and indicates an average 

measurement error that is not too large, but it still suggests a 

variation in accuracy between the two methods. This could be 

due to various factors, incl inaccuracies in LiDAR data 

processing or the influence of external factors in the field, such 

as objects obstructing the sensor. Meanwhile, the standard 

deviation is 0.303 cm, which indicates a spread of errors across 

the various trees measured, although it is not too high. This 

spread may be caused by factors such as varying BP LiDAR 

data quality at different points or the impact of field 

measurements.  

 In this analysis, it can be concluded with difference 

between the two methods is not very large, the RMSE and 

standard deviation values indicate room for improvement in 

measurement accuracy, especially for trees with more 

significant diameter differences. In other case, external factors 

such as object obstructions and field data collection conditions 

can affect measurement results and serve as additional sources 

of error.  

 
Figure 10. Difference graph between LiDAR Data and Roll 

meters measured 

 

 In Figure 10, it can be seen that most of the MBP data 

distribution is below 1 m, indicating good horizontal accuracy 

in the measurements, however there is an outlier for tree 

number 13, with a value of around 1.2 meters. AGB represents 

the amount of biomass above the ground in a tree, including the 

trunk, branches, and leaves. The AGB value is often used as an 

important indicator in ecology and forestry to assess tree growth 

and health, as well as its role in carbon storage. Therefore, an 

AGB value distribution is needed for further processing.  

 
Figure 11. Graph of value AGB each of tree 

 

 In figure 11, it can be seen the distribution of AGB values 

on every tree in the dataset that already analysed. This graphics 

provide an illustration about the variation of AGB among 

different trees, also might be seen to us for doing identification 

to general pattern, such as corelation between the size of the tree 

by the diameter of the tree trunk or DBH and AGB, also the 

existence of the outlier or extreme value that can affect the 

analysis output. DBH calculated the diameter of the tree trunks 

on 1,3 meters height from the ground. Meanwhile AGB was 

aimed for the masses of tree biomass on the ground, include the 

tree trunk, the branch, and the leaves. The following is the 

relationship between DBH and AGB which can be seen in 

Figure 13.  

 
Figure 12. Regression Linear of DBH with AGB 

 

 In figure 12, The measurement that already done was 

using backpack LiDAR with the value of R2 is equal to 0.5591, 

that means around 55,91% changes of the DBH value on “BP” 

data can provide an illustration of how much change has 

occurred in the AGB (Above-Ground Biomass). This means 

that DBH has a significant influence in determining the AGB 

value in the group. However, there is about 44.09% of AGB 

variation that can’t explained only by the changes in DBH, 

which may be caused by other factors that affect AGB, such as 

tree species, environmental conditions, or other factors not 

included in this linear regression model.  

 Based on the result of the AGB calculation, the carbon 

stock of each tree was calculated. The estimated of the carbon 

stock based on SNI 7724:11 states that 47% from biomass 

content is carbon, so for the estimated of carbon is by multiplied 

the biomass by 47% of the biomass elements that are thought to 

be carbon. The visual graph of the carbon stock calculation is 

shown in Figure 13. 

 

 
Figure 13. Graph data of Carbon Stock Estimation 

 

 In figure 13, the analysis of comparison the Carbon 

Uptake (CU) that obtained from two measurement methods, the 

manual method and backpack LiDAR, with the result are 

similar one to each other, with the very smalls difference. For 

example, for the first measurement, the value of CU that 

obtained from the manual method was 2,577,127977 tons, while 

the BP method is 2,577,121053 tons, with a difference of only 

about 6 grams. The similar differences are also seen in other 

measurements, where most of CU values that obtained from 

both methods are almost identical, with very small differences, 

for the low and high carbon values. For example, in data with 
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values of 0, 164730167 tons in manual method and 

0,164740659 tons in BP method, the differences is about 

0,000010492 tons, which is very small. This shows that both of 

the methods produce estimation of carbon uptake with 

consistent and accurate. Although the result almost identical, the 

use of backpack LiDAR have more advantage in efficiency, 

because it can do measurements on larger area in a short of a 

time, consider it as the best option for larger area measurements 

or the location that hard to reach.  

 

4. Conslusion  

 In light of Indonesia's vast forests, which are essential to 

the world environment, this study intends to create forest 

inventory techniques that use technology to improve the 

accuracy and efficiency of gathering data on forest resources. 

For efficient forest management and ecosystem health 

monitoring, which in turn aids in attempts to mitigate climate 

change, proper inventorying is essential. The study makes use 

of technologies as Backpack LiDAR to collect detailed spatial 

data in the form of point clouds and Unmanned Aerial Vehicles 

(UAVs) for aerial mapping. Furthermore, inexpensive GNSS is 

used to help with georeferencing, which makes it possible to 

create precise spatial models in a global reference system. 

 The research findings indicate that the georeferencing of 

LiDAR and UAV data resulted in relatively low RMSE values, 

0.667 meters for UAV data and 0.793 meters for LiDAR data. 

These results demonstrate adequate accuracy for 3D modeling, 

which is essential for various spatial analysis applications. The 

study also produced a Canopy Height Model (CHM) that 

visualizes canopy heights in the mangrove forest area, helping 

to monitor variations in canopy height and identify vegetation 

structure. 

 Further analysis included the calculation of Diameter at 

Breast Height (DBH) and Above-Ground Biomass (AGB), 

which revealed a significant relationship between tree trunk 

diameter and biomass. The AGB values obtained from manual 

measurements ranged from 350,489.716g to 143,424,179.634g, 

while the values from the Backpack LiDAR measurements 

ranged from 350,512.040g to 143,424,202.949g. Carbon stock 

calculations were made based on biomass estimates, showing 

that the Backpack LiDAR method yielded carbon absorption 

values very similar to those of manual methods, but with greater 

efficiency. Overall, the combination of UAV and Backpack 

LiDAR technologies proved to be effective in providing 

accurate and efficient forest inventory data. The use of these 

technologies can save time and costs, especially in large-scale 

mapping or areas that are difficult to access.  
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