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Abstract 

Urban environments are continuously changing, driven by factors such as population growth and infrastructure expansion, which 

necessitates regular updates to urban models. Accurate, up-to-date information on these changes is critical, particularly for national 

mapping agencies monitoring long-term urban development. This paper presents an automated methodology for detecting building 

and vegetation changes within urban environments using LiDAR point clouds, focusing on the city of Liège in Belgium. By leveraging 

recent aerial LiDAR data from 2022, our approach identifies, models, and integrates urban changes into a refined 3D Digital Twin 

model of Liège. The methodology includes preprocessing steps such as coordinate systems homogenization, noise filtering, and octree-

based spatial indexing, followed by semantic and instance segmentation of point clouds using the RandLA-Net deep learning model. 

The change detection process focuses on four categories: appearance, disappearance, modification, and unchanged features. Achieving 

100% accuracy for detecting new buildings changes, as validated within the study dataset and methodology. The modelled results are 

structured into a CityJSON city model. This automated approach significantly enhances urban model updates by integrating detected 

changes into a standardized 3D representation.  

1. Introduction

Urban areas undergo continuous transformations driven by 

population growth, expanding infrastructure, and increasing 

urbanization. Keeping urban models updated is vital for efficient 

planning, resource management, and environmental oversight. 

However, traditional methods for updating these models are 

labor-intensive, time-consuming, and often prone to errors. This 

highlights the need for efficient, automated techniques to monitor 

and integrate urban changes. LiDAR (Light Detection and 

Ranging) technology has become a key tool for urban modeling, 

providing high-resolution, three-dimensional data that 

significantly improves the accuracy of urban model updates. 

Several studies have explored LiDAR’s potential for change 

detection and model refinement. Extending LiDAR applications 

to 3D models has led to the development of semi-automated 

techniques focused on specific features like buildings (Tamort et 

al. 2024) or vegetation (Hirt et al. 2021). Although promising, 

these methods have limitations: they typically address only one 

urban feature at a time, lack full automation, and struggle with 

scalability. Current research still faces key challenges. First, 

automating change detection across varied urban features 

remains complex due to the heterogeneity of urban landscapes, 

which include different building types, sizes, and vegetation 

densities. Second, most existing approaches struggle to integrate 

multiple urban elements, such as buildings and vegetation, into a 

unified model. Third, there is a need for scalable, cost-effective 

solutions that can be applied over large areas, as required by 

national mapping agencies and urban planners. 

A critical component of our approach is the integration of 

semantic information with geometric changes to achieve 

comprehensive 3D semantic change segmentation. Below, we 

illustrate the difference between binary and semantic change 

detection. In binary change detection (Figure 1.a), changes are 

identified without differentiating the types of objects involved, 

making it difficult to extract meaningful urban insights. In 

contrast, semantic change detection (Figure 1.b) provides a more 

nuanced analysis by distinguishing between different classes, 

such as buildings and trees. This distinction enables a better 

understanding of how urban features evolve and supports more 

informed decision-making. 

To address the existing challenges, we present an automated 

workflow for detecting and modeling changes in urban buildings 

and vegetation using LiDAR point clouds. The research focuses 

on the city of Liège in Belgium, an area with a diverse urban 

fabric and ongoing development. We use recent aerial LiDAR 

data from 2022 to update the city’s Digital Twin in Level of 

Detail (LoD) 2.2. The methodology involves several steps: 

preprocessing the data to remove noise and outliers, using deep 

learning models for semantic and instance segmentation, and 

detecting changes based on an object-based approach. 

Specifically, we employ RandLA-Net for semantic segmentation 

to classify the point cloud into buildings, vegetation, and other 

features. Changes are categorized into four types: appearance, 

disappearance, modification, and unchanged features. The results 

are structured into a CityJSON model using our proposed new 

change extension. Our approach provides a practical and efficient 

solution for urban model updates, benefiting regional and 

national authorities involved in urban monitoring and planning. 

The main contributions of this research are: (1) a fully automated 

workflow for urban change detection, (2) a new CityJSON 

extension for change information structuration and management. 

The structure of this paper is as follows: Section 2 reviews related 

work, highlighting the current state and limitations of existing 

methods. Section 3 describes our methodology, including data 

preprocessing, segmentation, and change detection. Section 4 

presents the results and their validation. Finally, Section 5 

concludes the study and discusses potential future research. 
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Figure 1. Difference between binary (a) and semantic change 

detection (b). Both projected on epoch 02. 

2. Related works 

3D point clouds have become a crucial data source for monitoring 

vegetation and buildings in urban environments. Compared to 

traditional image data, 3D points clouds provide richer 

information by capturing the geometric and structural details of 

objects, facilitating more accurate monitoring and analysis (Stilla 

and Xu 2023). However, the irregular and unstructured nature of 

point clouds presents unique challenges, requiring advanced 

methods to extract meaningful insights. Change detection 

approaches can be broadly categorized into two main families: 

derived-product methods and direct comparison techniques. 

 

Approaches based on derived products: Derived-product 

methods transform raw 3D point clouds into structured 

representations like Digital Surface Models (DSMs) or voxel 

grids, making it easier to apply traditional 2D change detection 

algorithms. For example, DSM-based methods enable change 

detection in buildings by calculating height differences between 

multi-temporal datasets (Dini et al. 2012). Similarly, Canopy 

Height Models (CHMs) derived from LiDAR data are used to 

monitor vegetation changes, with techniques like watershed 

algorithms identifying individual tree crowns (Slavík et al. 2020). 

Voxel-based methods also regularize point clouds for easier 

comparison, reducing the impact of varying point densities 

(Harith et al. 2021). However, these derived-product methods 

have inherent limitations. The conversion from 3D to 2D or 

voxelized grids often results in information loss and interpolation 

errors, which can reduce the accuracy of change detection, 

particularly for objects with fine geometric details. Moreover, 

studies have shown that derived approaches struggle in areas with 

complex topography or where high precision is required, making 

direct comparison methods more suitable for such scenarios 

(Okyay et al. 2019). 

 

Direct approaches using raw point clouds: Direct methods 

operate on raw 3D point clouds, preserving the spatial and 

topographical relationships of data points. Traditional techniques 

like Cloud-to-Cloud (C2C) and Multi-Scale Model-to-Model 

Cloud Comparison (M3C2) measure distances between points in 

multi-temporal datasets to detect changes (Lague, Brodu, and 

Leroux 2013; Girardeau-Montaut et al. 2005). While effective for 

precise geometric comparisons, C2C methods often fail to 

provide context about the type of changes, such as the appearance 

or disappearance of buildings or vegetation. Recent 

advancements have incorporated semantic segmentation into 

change detection workflows, referred to as post-classification 

change detection. For instance, (Awrangjeb 2015) introduced a 

connected component analysis method for updating building 

information in topographic maps, while (Dai, Zhang, and Lin 

2020) developed an object-based approach that detects changes 

like newly constructed or demolished buildings. (Tran, Ressl, and 

Pfeifer 2018) extended this to vegetation monitoring, identifying 

changes at the tree level using a supervised classification 

framework. 

 

Machine learning and deep Learning have significantly enhanced 

the accuracy of 3D change detection. Deep learning models, 

including Siamese Neural Networks and Graph Convolutional 

Networks (GCNs), have introduced more advanced solutions, 

processing raw point clouds directly and achieving high 

performance in change detection task (Nagy, Kovacs, and 

Benedek 2021). Siamese KPConv, a notable deep learning 

approach, directly operates on 3D point clouds to detect changes, 

reducing the need for voxelization and retaining geometric details 

(de Gélis, Lefèvre, and Corpetti 2023). However, deep learning 

models often require substantial computational resources and 

large annotated datasets, which can be a limitation in real-world 

applications. Self-supervised learning techniques are emerging to 

mitigate these data challenges, employing deep clustering and 

contrastive learning to improve the performance of unsupervised 

3D change detection methods. 

 

Semantic Change Detection (SCD) extends traditional methods 

by identifying both the regions and types of changes, such as 

distinguishing between a changed building and a tree. SCD 

approaches can be categorized into single encoder, dual encoder, 

and triple encoder models. Single encoder methods often suffer 

from class overlap, while dual encoder models like Siamese 

architectures provide better differentiation but may miss 

temporal relationships between features. Triple encoder 

approaches incorporate auxiliary information, enhancing 

accuracy but increasing computational complexity. 

 

Despite advancements in geometric and semantic change 

detection, current methods often focus on one aspect, neglecting 

the other, reliance on labeled datasets, and limited scalability. 

This study introduces an unsupervised semantic change detection 

(SCD) pipeline that integrates both semantic and geometric 

analysis using 3D point cloud. 

 

3. Methodology 

This study presents a comprehensive methodology for 

automating the detection and modeling of building and 

vegetation changes using LiDAR point clouds. As summarized 

in Figure 2, the workflow begins with data preparation, including 

coordinate systems standardization, cleaning, and preprocessing 

of multi-temporal datasets to ensure consistency. Semantic and 

instance segmentation are then performed to accurately classify 

and isolate objects such as buildings and trees. The subsequent 

steps involve defining and detecting changes, quantifying these 

changes using relevant metrics, and generating detailed 3D 

models. Finally, the results are structured into the CityJSON 

format, facilitating seamless integration into urban digital twin 

applications. 

3.1 Data preparation 

Before the implementation phase, several data preprocessing 

steps were carried out. First, adaptation to the same coordinate 

system was performed. This step was followed by cleaning and 

merging the tiles covering the study area. Finally, the point 

clouds were prepared according to the requirements of the deep 

learning architecture used for classification. 

3.2 Semantic and instance segmentation 

Semantic segmentation was performed to accurately extract 

buildings and trees. To perform semantic segmentation, we used 

RandLA-Net as a deep learning model, which had been trained 
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and validated on a dataset comprising urban LiDAR scans from 

the city of Liège, as described in our earlier work  (Ballouch et 

al. 2024). This model achieved classification accuracy of 95% for 

buildings and vegetation, ensuring reliable semantic 

segmentation in this study. Following this, instance segmentation 

was applied to trees using the TreeISO algorithm (Xi and 

Hopkinson 2022) to isolate each tree individually and assign a 

unique identifier. TreeISO segments individual trees using a 

hierarchical, graph-based clustering approach. It first groups 

points into fine clusters based on spatial proximity, then 

aggregates these into tree segments using connectivity rules 

informed by elevation and distance. While designed for terrestrial 

laser scanning (TLS), we adapted it for aerial laser scanning 

(ALS) to isolate individual trees effectively from our dataset. For 

buildings, instance segmentation was not required, as modeling 

relied on PICC data, which includes footprints and unique 

identifiers for each building. 

 

 
Figure 2. Overview of the Methodology Workflow 

3.3 Change definition and detection 

To detect changes between two epochs, we propose a method that 

combines point-level indicators, clustering, and object-level 

metrics. This approach ensures robust identification of changes 

while addressing common artifacts, such as façade-related noise 

in buildings and overlapping canopies in trees. Changes are 

categorized into four classes for both buildings and trees: new, 

lost, modified, and unchanged. 

Point-level change detection begins with the calculation of 

distances between the two epochs using a modified version of the 

Multi-Scale Model-to-Model Cloud Comparison (M3C2) 

algorithm. To mitigate artifacts from vertical structures like 

building façades or dense tree canopies, M3C2 distances are 

projected onto a horizontal plane. This ensures that the detected 

changes reflect meaningful modifications in object presence or 

geometry rather than irrelevant vertical differences caused by 

variations in scan viewpoints (see Figure 10). Using these 

distances, objects are initially classified as new or lost based on 

horizontal threshold: 

• New objects are detected in the second epoch where 

M3C2 distances exceed a threshold, indicating objects 

present in the second epoch but not in the first. 

• Lost objects are identified from the first epoch where 

M3C2 distances exceed the threshold, signifying 

objects present in the first epoch but absent in the 

second. 

To refine these classifications, a connected-component clustering 

algorithm is applied. This groups adjacent points with similar 

change indicators, forming spatially coherent regions of change. 

Clusters that fall below minimum size, typically caused by noise 

or minor misalignments, are removed to ensure that only 

meaningful changes are retained. For objects classified as 

unchanged, vertical changes are further analyzed. Buildings are 

examined for structural modifications such as height increases 

(e.g., additional floors) or reductions (e.g., partial demolitions), 

while trees are assessed for vertical growth or trimming. This 

vertical analysis leverages the M3C2 distances in the z-

dimension to detect significant differences and our metrics for 

change quantification. 

3.4 Object change metrics 

After detecting changes, the next step involves quantifying them 

to characterize the modifications for both buildings and trees. 

These metrics provide detailed insights into the type and extent 

of changes. 

For modified buildings, the following metrics are extracted: 

• Height Difference: The average and maximum height 

differences are calculated to identify taller or shorter 

structures. 

For trees, we detect four categories of change: new, lost, 

modified, and unchanged. New, lost, and unchanged trees are 

identified using M3C2 distance metrics to compare spatial 

correspondence between epochs. For modified trees, the 

following metrics are used to assess growth or pruning: 

• Tree Height (99th Percentile Z): The maximum 

height of the tree above ground. This metric identifies 

the maximum canopy height while avoiding influence 

from outliers (e.g., single, unconnected high points due 

to noise). 

These metrics provide a clear and quantifiable basis for 

evaluating structural changes in individual trees. Since trunk 

positions are unavailable due to the aerial acquisition, we identify 

corresponding tree objects between epochs by finding the closest 

tree object spatially. If the nearest tree surpasses a defined 

maximum distance, the tree is flagged for manual user 

confirmation. This assumes new and lost trees have already been 

filtered out, leaving modified or unchanged trees for comparison. 

For each tree in the second epoch, the nearest tree in the first 

epoch is determined based only on the spatial proximity of their 

centroids or canopy centers, without relying on constraints like 

canopy dimensions or height metrics, as these can vary due to 

changes. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024 
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-227-2024 | © Author(s) 2024. CC BY 4.0 License.

 
229



 

Changes are then classified using either threshold-based rules or 

supervised learning techniques if a labelled dataset is available. 

Threshold-based rules are predefined, such as classifying trees 

with height increases above a certain value as “heightened” or 

“lowered”. Alternatively, when labeled training data is available, 

machine learning algorithms like Random Forests can classify 

changes based on the extracted metrics. This approach allows for 

more nuanced classification while leveraging a training dataset. 

3.5 Buildings and trees modelling 

After the change detection step, 3D modeling of different change 

classes is conducted. For buildings, the footprints extracted from 

the previously described PICC data are used. They include 

attribute information for each building, along with unique 

identifiers. In addition to these vector data, building point clouds, 

derived from semantic segmentation, were used to reconstruct 

building geometry. Geoflow tool1 enabled this reconstruction in 

CityJSON format, achieving a level of detail 2.2. For the 3D 

modeling of trees, the instance segmentation results were used to 

calculate the height of each tree above the ground, as well as 

specific parameters (height, width, perimeter, etc.). These 

extracted parameters were also reconstructed in CityJSON 

format using a Python script. The schema and geometry of the 

reconstructed models were then validated. For geometry 

validation, we used Val3dity2, an open-source software dedicated 

to validating 3D primitives (geometries) of the model. For 

schema validation, we relied on the official validator3 for 

CityJSON files. 

3.6 Structuration into CityJSON 

This step involves the structuring of the change’s information 

into a standardized data model to enhance usability and 

interoperability. CityJSON is a lightweight and developer-

friendly format for representing, storing, and extending 3D city 

models. Given its simplicity and its extensibility, we integrate the 

change information in compliance with the CityJSON standard 

by defining new attributes for existing city objects, namely 

buildings and vegetation. We define a set of attributes that report 

the change characteristics (e.g., the change type (refer to Table 

1), the height variation, and the change uncertainty). We structure 

this information following the CityJSON extension 

specifications. The change extension is adopted upstream as a 

way of organizing, storing, and managing the change information 

in 3D city models. Following the CityJSON extension 

specifications 2.0.1, the change attributes are integrated as 

extraAttributes for existing city objects. Each city object is 

extended by the three main change attributes: change, height 

variation, and change uncertainty. Their values are stored 

respectively following the defined CityJSON extension. 

 

4. Experiments and results 

4.1 Data description  

In this study, two types of data were used: LiDAR and vector. 

The LiDAR point clouds from 2022 have specific characteristics, 

including an average flight altitude (AGL) of 2400 m, a density 

of 6.8 points/m², and the use of Double LMSQ780 and Double 

VQ780II-S equipment. The planimetric accuracy is evaluated 

with an RMSE of ≤ 1 m, while the altimetric accuracy reaches an 

RMSE of ≤ 0.4 m. In contrast, the point clouds from 2014 were 

collected at a minimum altitude of 1015 m and a maximum 

altitude of 1550 m, with a density of only 0.8 pulses/m², resulting 

in an average spacing of 1.13 m in the direction of flight and 1.14 

 
1 https://github.com/geoflow3d/geoflow-bundle  
2 https://github.com/tudelft3d/val3dity 

m transversely, while also displaying a planimetric and altimetric 

accuracy with a maximum RMSE of 1 m and 0.4 m, respectively. 

Additionally, data from the Mapping Framework Information 

Plan (PICC) were utilized; these vector data allowed for the 

extraction of footprints and attribute information for each 

building, complementing the analysis derived from the point 

clouds. 

 
a. LiDAR acquisition of 2014 

 

 
b. LiDAR acquisition of 2022 

Figure 3. Epoch 1 (a) and 2 (b) of aerial point clouds over the 

study area colored by Height ramp. 

4.2 Implementation  

Semantic segmentation was performed using RandLA-Net, a 

deep learning model previously validated for urban classification 

tasks. The model classified the point cloud into four classes: 

buildings, vegetation, ground, and others. The overall accuracy 

for buildings and vegetation exceeded 95%. The experiments 

were conducted on a high-performance workstation equipped 

with an NVIDIA GeForce RTX 3090 GPU, an Intel i9-10980XE 

CPU, and 256 GB of RAM. 

 

 

Figure 4.  Results of semantic segmentation of 2022’s data  

3 https://validator.cityjson.org/  
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After semantic segmentation, vegetation classes were further 

processed using TreeISO for instance segmentation. However, 

due to the inclusion of fences and low vegetation in the 

vegetation class, additional filtering was applied. To isolate valid 

tree clusters and exclude noise or irrelevant objects (e.g., fences 

or isolated points), we applied a filtering criterion based on the 

height distribution of points within each cluster. For each 

segmented cluster, the 95th percentile of point heights was 

calculated. Clusters where the 95th percentile height exceeded 

3.5 m were retained, as this threshold reflects a meaningful 

minimum height for trees in the study area. This percentile-based 

approach ensures robustness by adapting to variations in point 

density and cluster size, reducing sensitivity to noise and outliers 

compared to a fixed point count. 

 

 

Figure 5. Vegetation clustering using TreeISO after removing 

small components, low vegetation, and fences (data 2014). 

To detect new and demolished buildings, the building class was 

projected onto the XY plane, and the M3C2 algorithm was 

applied. For new buildings, epoch 02 served as the reference, 

while epoch 01 was inverted to identify demolished buildings. 

Height changes were calculated for individual buildings, which 

were isolated using PICC shapefile footprints. We applied a 

height threshold of 3 meters, equivalent to the average height of 

a floor, to detect significant vertical changes. Buildings with 

height increases exceeding 3 meters were classified as 

"heightened," while those with reductions exceeding 3 meters 

were classified as "lowered." However, no such vertical changes 

were detected in the study area, as all buildings remained within 

this threshold or were completely new. 

 

 

Figure 6. The new building visualized in green, and unchanged 

in gray. 

For trees, we applied a height threshold of 1 meter to detect 

significant vertical changes, considering it sufficient to capture 

meaningful growth or pruning while avoiding noise from minor 

seasonal variations or data inaccuracies. Trees with height 

increases exceeding 1 meter were classified as "grown," while 

those with reductions beyond this threshold were classified as 

"pruned." However, challenges arose in areas with dense canopy 

coverage, where overlapping layers occasionally affected the 

clustering process, leading to misclassification. This limitation 

emphasizes the importance of refining segmentation techniques 

to handle complex vegetation structures more effectively in 

future studies. 

 

Figure 7. New vegetation visualized in green, removed in red 

and modified in brown. 

In this work, change attributes were not included in the 

reconstruction process, as described in Section 3.5. We have 

therefore proceeded as follows: for each city model, we upgraded 

the city models v1.1 for buildings and v1.0 for vegetation to 

version v2.0 using cjio to comply with our extension, and we 

have added the corresponding attributes using Python code. For 

instance, in the LoD2.2 building model, representing all new 

buildings, we have assigned the change attributes to each 

building, reflecting the type of change (i.e., new), the height 

variation, and the change uncertainty. We proceeded in the same 

way for vegetation to report the change type.  

 

City Objects Building Vegetation 

Change type Unchanged, 

New, 

Demolished, 

Heightened, 

Lowered 

Unchanged, 

New,  

Lost, 

Growth, 

Trimmed 

Table 1. Change type according to the city objects 

 

The CityJSON files containing the change attributes are validated 

using the CityJSON schema validator (Figure 9). The aim behind 

the change extension is to ensure that these attributes are 

maintained in a standardized way and are automatically updated 

when a new value is available. Results are viewed below. 

 

 

Figure 8. The results are displayed in an in-house developed 

tool for 3D city model structuration, management and 

visualization ©GeoScITY 
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Figure 9. Change extension schema validation 

4.3 Discussion 

The performance of the proposed methodology was qualitatively 

assessed by visually inspecting the results for new, lost, modified, 

and unchanged buildings and vegetation. Visual comparisons 

between the two epochs demonstrated that all new and 

demolished buildings were correctly identified. The use of the 

M3C2 algorithm, combined with the projection onto the XY 

plane, minimized false positives associated with vertical 

structures, such as façades or overlapping tree canopies. This 

ensured reliable detection of changes in urban environments. 

 

While the methodology accurately detected new and lost trees, 

some errors were observed in the classification and clustering 

stages. Specifically, small clusters of vegetation were 

occasionally misclassified as trees, and dense vegetation often 

led to the over-segmentation of tree canopies. These limitations 

highlight the need for further refinement in the instance 

segmentation and clustering algorithms. Additionally, the 

proposed methodology relies on several threshold values (e.g., 

the height threshold for tree filtering and the M3C2 distance 

threshold for change detection). These thresholds were 

determined empirically and may affect the reproducibility and 

generalizability of the results. Future work will explore adaptive 

or data-driven approaches to optimize these thresholds across 

different datasets. 

 

Overall, the methodology demonstrates robustness in detecting 

major urban changes, particularly for buildings. However, the 

challenges associated with vegetation segmentation and 

classification suggest areas for improvement in future research. 

 

5. Conclusion 

This study introduced an automated methodology for detecting 

and structuring changes in buildings and vegetation using multi-

temporal LiDAR point clouds. By combining semantic 

segmentation, object-based clustering, and geometric analysis, 

the approach effectively identified new, lost, modified, and 

unchanged features, structuring them into a CityJSON format for 

urban digital twins. Applied to LiDAR data from Liège, Belgium, 

the method demonstrated high reliability in building detection 

and vegetation, leveraging tailored metrics like tree height. 

However, challenges remain in accurately clustering dense 

vegetation and reduce the reliance on empirically derived 

thresholds. Future work will focus on improving threshold 

adaptability, integrating additional urban features, and exploring 

supervised learning for enhanced scalability and robustness in 

large-scale urban monitoring. 
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Figure 10. Visual Comparison of LiDAR point clouds and 

change detection Results: (a) Point Cloud from 2014, (b) Point 

Cloud from 2022, (c) Significant Changes Detected Using 

M3C2 (Red Indicating Façade Noise as relevant change), and 

(d) Noise-Free Changes Using Projected M3C2. 
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