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Abstract

Neural Radiance Fields (NeRFs) are a novel approach that is being intensively investigated in 3D scene reconstruction and similar
fields to overcome challenges of conventional methods. In this paper, we address the problem of estimating missing camera poses
in a six degrees of freedom setting, pushing the capabilities of NeRFs to address scenarios where only the primary camera’s pose is
known. Specifically, we focus on dual-camera setups with this constraint. Our core contribution is a novel pose correction model
that operates alongside an unmodified NeRF model, for which we have chosen Nerfacto in the Nerfstudio framework. The pose
correction model learns the necessary relative translation and rotation adjustments for the secondary camera solely through the
NeRF loss. This allows us to integrate our correction model directly into the Nerfacto training pipeline without altering the core
functionality. Through extensive experiments on different camera configurations in a synthetic scene, we rigorously evaluate our
model’s performance across diverse scenarios, pushing it to its limits. Our findings reveal that our model can effectively learn
pose correction parameters within a constrained range, with increased sensitivity to larger translations and particular challenges in
rotation corrections. This research highlights the potential of NeRFs for machine learning-driven 3D reconstruction on dual- and
multi-camera platforms, expanding the applicability of NeRFs to more complex, real-world setups despite the inherent challenges.

1. INTRODUCTION

Low-cost multi-camera systems are widely utilized for 3D scene
reconstruction across diverse applications, including mobile map-
ping systems (MMS), which support tasks like creation and
maintenance of Building Information Modeling (BIM) (Lehtola
et al., 2021; Hou et al., 2024) or vegetation mapping (Lechner
et al., 2020). Cameras in MMS are affordable and capable of
delivering high-resolution data, with flexible setups and custom
configurations (Elhashash et al., 2022; Goebel and Iwaszczuk,
2023). Also vehicles nowadays function as multi-sensor plat-
forms, increasingly equipped with cameras for a range of pur-
poses, from parking assistance to the complex demands of autonom-
ous driving systems (Häne et al., 2017; Indu et al., 2021; Hee Lee
et al., 2014). Neural Radiance Fields (NeRFs), introduced by
Mildenhall et al. (2020), are an innovative machine learning
approach for 3D scene reconstruction using multi-view RGB
images or videos from a standard camera. Unlike traditional
geometric methods, NeRFs learn a continuous representation,
which can generate highly realistic, photo-consistent renderings
from any viewpoint under various camera settings.

In multi-camera systems, NeRFs can offer significant benefits
by synthesizing realistic views from sparse input images, over-
coming the limitations of traditional 3D reconstruction in chal-
lenging environments. Applied to systems like MMS or auto-
motive platforms, NeRFs can enhance the quality and density
of point clouds, producing precise 3D models for applications
such as BIM and vegetation analysis without requiring expens-
ive equipment (Hachisuka et al., 2023). Its usability and ease

of setup also make NeRFs a promising tool for broadening ac-
cess to 3D reconstruction technologies. NeRF models take a
five-dimensional input, ray origin and direction, and output the
optical density and RGB color at each sampling point along the
ray. Optical density reflects the radiance contribution, which is
accumulated via ray marching to compute each ray’s final color.
NeRFs generate these outputs in two stages, creating coarse and
fine scene representations. By casting rays for each pixel based
on a defined camera setup, NeRFs render accumulated color
values to reproduce the scene from any viewpoint, as illustrated
in Figure 1.

Figure 1. Visualization of the NeRF pipeline and field
(nerfstudio Team, 2022).

Despite their potential, NeRFs face practical challenges. Ac-
curate 3D camera poses are critical for learning a scene, but in

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024 
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-251-2024 | © Author(s) 2024. CC BY 4.0 License.

 
251



multi-camera setups, particularly low-cost configurations, pose
data may be missing for some cameras. These setups prioritize
flexibility, often making precise measurements impractical and
leaving some poses unknown. Addressing these challenges is
key to expanding the use of NeRFs in accessible, multi-camera
systems.

1.1 Related Work

The introduction of X-NeRF represents an advancement in sensor
pose estimation. It introduced sensor pose optimization for
sensors in parallel image planes and improved rendering across
spectral modalities (Poggi et al., 2022). X-NeRF’s Normal-
ized Cross-Device Coordinates (NXDC) support multi-sensor
setups without cross-spectral calibration, enabling translation-
based alignment and novel view synthesis.

Other recent methods, which tackle sensor pose estimation, have
explored pose estimation for six degrees of freedom (6DoF), in
contrast to the three degrees of freedom in the work by Poggi
et al. (2022). iNeRF, for example, focuses on 6DoF pose es-
timation, aligning input images with pre-trained NeRF models
using gradient-based optimization for an efficient, RGB-only
approach (Yen-Chen et al., 2021). Lin et al. (2023) further ad-
apt this to Instant-NGP to accomplish faster results. NeRF-Pose
also handles 6DoF, training a pose regression model alongside
NeRF with PnP+RANSAC for increased accuracy (Li et al.,
2023).

Missing or inaccurate pose data is addressed as well in recent
publications. Wang et al. (2022) optimize missing intrinsics
and 6DoF poses as learnable parameters. BARF enables NeRF
training with imperfect poses through coarse-to-fine refinement
(Lin et al., 2021), and CBARF cascades these refinements (Fu
et al., 2023). For complex trajectories, NoPe-NeRF leverages
depth prior estimating relative poses between frames (Bian et
al., 2023).

Finally, Omni-NeRF expands NeRF’s scope to 360° images
with imperfect pose or intrinsics, broadening pose estimation
applications (Gu et al., 2022).

1.2 Contribution

In this paper, we build upon the work of Poggi et al. (2022) by
introducing a model that learns relative transformation and rota-
tion parameters to reconstruct missing pose data. Our approach
specifically addresses scenarios where only the main camera’s
poses are available, enabling the estimation of missing poses for
secondary cameras. Unlike Poggi et al. (2022), our method ex-
tends beyond the restriction of parallel image planes to include
rotation correction, making it applicable to a broader range of
multi-camera configurations.

We investigate the potential of NeRFs as a reconstruction method
in such scenarios and assess its performance in dual-camera
setups with missing pose data. Our contributions include a de-
tailed evaluation of our pose correction model, highlighting its
strengths and limitations, and providing valuable insights into
its capability to estimate missing poses.

2. METHODS

In this section, we explain the methods applied in this study
in detail, covering data generation, framework selection, model
configuration, pose correction approach, and training process,
which together form the basis of our experiments and pose es-
timation pipeline.

2.1 Data

Machine learning models rely heavily on datasets tailored to the
specific task. To ensure a consistent and reproducible setting,
while also allowing flexibility in modifying scene details, we
used a synthetic scene, which is modified for creating datasets
with dual-camera configurations. Each dataset includes a main
and a secondary camera to simulate scenarios with incomplete
pose data.

For the 3D scene creation, we used the open-source software
Blender (Blender Foundation, 2024). Using a royalty-free, user-
generated scene from the freely available platform BlenderKit,
we created an adapted version of this scene to allow for easy
modifications and dataset generation (Viriyahirunpaiboon, 2024).
In Blender, custom camera placements and paths were created,
enabling precise control over camera configurations and render-
ing at the desired frame rate. The BlenderNeRF plugin by Raa-
fat (2024) allowed us to export the data directly into a NeRF-
compatible format, providing a flexible dataset with a custom-
izable number of images, and included pose information and
camera intrinsics for each frame. The camera poses are 4x4
matrices that position each camera in 3D space, enabling con-
trolled multi-camera datasets with precise reference data.

Figure 2. Example rendering of the synthetic Blender scene.

2.2 Framework

For all experiments and implementations presented in this pa-
per, Nerfstudio was chosen as the NeRF-Framework (Tancik et
al., 2023). Nerfstudio is an open-source framework implemen-
ted in the Python programming language and offers an end-to-
end pipeline for NeRF training with a wide variety of NeRF
models to chose from. Overall, this framework is well-suited
for customization, which enables the implementations of de-
sired adaptions and offers a complete training structure, ensur-
ing an easy-to-use environment.

2.3 Model

The NeRF model used in this paper, Nerfacto, was introduced
with the Nerfstudio framework as a comprehensive NeRF im-
plementation. Primarily based on MipNeRF-360 (Barron et al.,
2022), it also incorporates features from NeRF-- (Wang et al.,
2022), Instant-NGP (Müller et al., 2022), NeRF-W (Martin-
Brualla et al., 2021), and Ref-NeRF (Verbin et al., 2021).

One improvement of Nerfacto over MipNeRF-360 was the ex-
tension of proposal sampling by introducing a piece-wise sampler.
While proposal sampling directs the ray sampling to key areas
for reconstruction, the piece-wise sampling process adapts the
sampling based on the distance. Near objects are uniformly
and densely sampled and for larger distances, the step size is
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changed, improving the efficiency. A second improvement, hash
encoding developed for Instant-NGP by Müller et al. (2022),
encodes data in a higher-dimensional space, allowing for a smal-
ler, more efficient MLP.

These enhancements, shown in Figure 3, significantly boost
performance while maintaining high-quality results.

Figure 3. Visualization of the Nerfacto pipeline and field
(nerfstudio Team, 2022).

2.4 Relative Pose Correction

The constraint of having no pose information of secondary cam-
eras limits the known poses to those of the main camera. There-
fore, the poses of the additional cameras have to be estimated.
For this purpose, we introduce a new pose correction model,
which is able to learn a relative pose correction. The estima-
tion of a relative pose correction is significantly less complex
than an absolute pose estimation. Making use of this is pos-
sible through having the main camera data available. The main
camera’s pose can therefore be used as the initial value for a
secondary camera’s pose. From that starting point the relative
pose correction parameters have to be estimated.
By splitting the pose correction into a separate model the main
NeRF model itself can stay mostly unchanged.
The correction is split into translation and rotation correction.
Those parameters are optimized separately for each secondary
camera in the training process. The corrections are applied to
the input data of the NeRF model in each iteration. By this, the
correction model does not require a separate loss function and
relies solely on the loss calculated by the NeRF model. Through
the pre-training introduced in Section 2.6 it is assumed that the
quality of the result of the NeRF model is mainly influenced by
the quality of the relative pose correction parameters.

2.5 Relative Pose Correction Implementation

The relative pose correction model is implemented as a separ-
ate module. As explained in Section 2.4 the pose correction
is split into translation and rotation correction. The translation
correction parameter is represented as a three dimensional vec-
tor and the rotation correction as a quaternion. Both are separ-
ately optimized as learnable parameters in the pose correction
model. All rays in the ray bundle, which is processed in the
NeRF model, consist of an origin and a direction vector. The
origin vector is therefore adjusted by the use of the translation
correction vector, shifting the ray origin in space with a regu-
lar matrix multiplication. The rotation correction is applied to
the direction vector through a quaternion rotation. All rays in
the input ray bundle for the NeRF model are modified by the

relative pose correction model and passed on to the main NeRF
model. No changes are made to the processing of the input
ray bundle done by the main NeRF model. Figure 4 showcases
the adapted Nerfacto pipeline, where the pose refinement step,
which is included in Nerfacto, was replaced by our pose correc-
tion model.

Figure 4. The adapted Nerfacto pipeline with our pose
correction model.

2.6 Training Process

The training of the pose correction model and the NeRF model
is split and handled in a separate, alternating way. First, the
NeRF model is pre-trained using only data from the main cam-
era. This creates the baseline Nerfacto field, and thus the 3D
representation, which was trained on correct pose information.
Second, this baseline field can then be used to train the pose cor-
rection model. In this step the parameters of the NeRF model
are frozen and therefore can not be corrupted by a potentially
incorrect pose correction. Through this separation the pose cor-
rection parameters are optimized depending on the NeRF out-
put without negatively influencing the Nerfacto field. Overall,
this training approach allows for both the NeRF model and the
pose correction model to be trained efficiently.

3. EXPERIMENTS AND EVALUATION

3.1 Hyperparameters

To achieve the best possible comparability between all evalu-
ation configurations, the hyperparameters were pre-selected and
fixed over all experiments. The hyperparameters were selec-
ted using OpTuna, a hyperparameter tuning tool (Akiba et al.,
2019). Table 1 below lists all used training details and hyper-
parameters.

Training Setup Overview
GPU Nvidia RTX 4090
NeRF Studio Version 0.3.4
Total Number Of Iterations 30000
Pre-training Steps 4000
NeRF Field Initial Learning Rate 0.01
NeRF Field Final Learning Rate 0.0001
Pose Correction Initial Learning Rate 0.005
Pose Correction Final Learning Rate 0.0005
NeRF Field Training Steps 400
Pose Correction Training Steps 1100
Combined Training Percentage 3%
Rays per batch 16384
Camera Resolution 500x500px

Table 1. Overview of all important training details and
hyperparameters.
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3.2 Experiment Structure

The goal of the evaluation process is to explore the functionality
and limits of the proposed pose correction. For this, the datasets
were split into five different categories. While all poses from
the main camera are known to the model, the secondary camera
poses are unknown. Ground truth poses are available for all
poses. The created datasets consist of 34 images per camera,
with a resolution of 500 × 500 pixels.

Translation The first category only contains datasets with a
translation transformation between the cameras. The extent of
the translation is again split into steps, ranging from a smaller to
a larger translation. The first part of this category only contains
translations along a single axis, again reducing the complexity
to a minimum. The second part contains combinations of trans-
lations in multiple axes.

Rotation The second category works analogously to the first
category, but focuses exclusively on rotation, instead of transla-
tion.

Combination The third category combines translation and ro-
tation to increase complexity. Additionally, the goal is to test
the limits for the translation and rotation and to determine whether
these limits shift when two types of transformation are com-
bined. Again, the extent of the transformations is staggered into
multiple datasets.

Multi-Camera This additional category focuses on using three
cameras. It combines and repeats tests from previous categories
in the same manner. Therefore, this category helps to under-
stand, how multiple optimizations at once affect the quality of
the reconstruction. Finally, these experiments further explore
the robustness of the model.

Additional Experiments These additional experiments aim
to investigate performance improvement possibilities and the
robustness of the model. Therefore, three additional experi-
ments were conducted. The first experiment tested the hypo-
thesis that more data leads to better performance, which is a
general assumption for machine learning tasks. In the second
experiment, we tested whether increasing the number of rays
per batch above 16,384, the count used in all our other experi-
ments, would lead to a significant improvement over Nerfacto’s
default value of 4,096. Lastly the model was also tested with
secondary camera data with a lower resolution of 200 × 200
pixels.

3.3 Evaluation Process

The evaluation process consists of two steps. First, after each
experiment, the final pose correction parameters are compared
to the ground truth values generated from the Blender scene.
The generated 4 × 4 transformation matrix from the Blender
data is decomposed into translation and rotation elements. The
translation vectors are compared using Euclidean distance, and
the rotation is represented as a quaternion to calculate the an-
gular difference in degrees. Thus, smaller error metric values
indicate a more accurate estimation of the relative pose correc-
tion. Since the translation values are defined by the scale of the
Blender scene, they do not relate to a real-world unit. These er-
ror values are used to assess performance. Additionally, selec-
ted results are rendered from a baseline NeRF model for visual
inspection and interpretation.

4. RESULTS

This section presents the results of the conducted experiments,
with abbreviations used to improve readability due to space
constraints. Within each category, the applied transformation is
classified into relative sizes: S (small), M (medium), L (large),
and XL (extra-large). Note that these categorizations are relat-
ive within each category and are not comparable across categor-
ies. All calculations were performed using all decimal places,
with rounding only applied in the tables for readability. Labels
x, y, and z denote the relevant axes for each transformation, in-
dicating either a translation along or a rotation around the spe-
cified axis. Additionally, trans. stands for translation, and rot.
for rotation. These abbreviations are used consistently through-
out the paper.

4.1 Translation Results

Experiments across individual axis translations show that the
model can effectively learn pose corrections within limited trans-
lation ranges. Most of the tested translations were accurately es-
timated, resulting in robust alignment with the expected ground
truth translations. For small translations the results were still
good when combining translations over two axes, but would
result in incorrect estimations for medium to large translation
combinations.

Exp. Result Ground Truth Error

S x trans. (0.36, 0, 0) (0.35, 0, 0) 0.01

No rot. (1, 0, 0, 0) (1, 0, 0, 0) 0◦

M x trans. (0.67, 0, 0) (0.66, 0, 0) 0.01

No rot. (1, 0, 0, 0) (1, 0, 0, 0) 0◦

L x trans. (1.33, 0.01,−0.01) (1.32, 0, 0) 0.02

No rot. (1, 0, 0, 0) (1, 0, 0, 0) 0◦

XL x trans. (1.13,−0.60, 0.20) (1.93, 0, 0) 0.60

No rot. (1, 0.03,−0.04, 0.02) (1, 0, 0, 0) 5.38◦

S y trans. (−0.05, 0.01, 0.40) (0, 0, 0.40) 0.05

No rot. (1, 0, 0, 0) (1, 0, 0, 0) 0◦

M y trans. (−0.05,−0.10, 1.02) (0, 0, 0.97) 0.12

No rot. (1, 0, 0, 0) (1, 0, 0, 0) 0◦

L y trans. (−0.04,−0.02, 1.52) (0, 0, 1.49) 0.05

No rot. (1, 0, 0, 0) (1, 0, 0, 0) 0◦

S z trans. (−0.05, 0.01, 0.40) (0, 0, 0.40) 0.05

No rot. (1, 0, 0, 0) (1, 0, 0, 0) 0◦

M z trans. (−0.05,−0.10, 1.02) (0, 0, 0.98) 0.12

No rot. (1, 0, 0, 0) (1, 0, 0, 0) 0◦

L z trans. (−0.04,−0.02, 1.52) (0, 0, 1.49) 0.05

No rot. (1, 0, 0, 0) (1, 0, 0, 0) 0◦

S xy trans. (0.58, 0.18, 0) (0.57, 0.18, 0) 0.01

No rot. (1, 0, 0, 0) (1, 0, 0, 0) 0◦

M xy trans. (0.08,−0.47, 0.85) (0.76, 0.32, 0) 1.34

No rot. (1, 0.04,−0.04, 0.01) (1, 0, 0, 0) 5.61◦

S xz trans. (0.58, 0,−0.22) (0.57, 0,−0.22) 0.01

No rot. (1, 0, 0, 0) (1, 0, 0, 0) 0◦

M xz trans. (0.70, 0,−0.35) (0.46,−0.59, 0.16) 0.81

No rot. (1, 0.03,−0.01, 0.01) (1, 0, 0, 0) 4.29◦

S yz trans. (0, 0.11,−0.17) (0, 0.11,−0.17) 0

No rot. (1, 0, 0, 0) (1, 0, 0, 0) 0◦

M yz trans. (0, 0.30,−0.40) (0, 0.31,−0.40) 0.01

No rot. (1, 0, 0, 0) (1, 0, 0, 0) 0◦

Table 2. Pose correction model results for translations. See
Section 4 for abbreviation explanation.
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(a)

(b)

Expected Actual

Figure 5. Renderings of x-axis translation correction results:
incorrect (a) and correct (b).

The resulting renderings for an incorrectly and a correctly es-
timated pose correction can be seen in Figure 5. The latter is
representative for all correct estimations since in those cases
the expected results is optimally replicated.

4.2 Rotation Results

Regarding the correction of rotations around a single axis, the
results were less promising compared to the translation exper-
iments. Only small rotations up to 15 degrees could be accur-
ately estimated. For any larger rotation for each of the axes
the resulting correction estimation was unsuccessful. One addi-
tional observation is the tendency of the model to apply a trans-
lation correction, even though only a rotation would have been
necessary. One reason might be the increased complexity of
rotations compared to translations, resulting in a tendency to-
wards translations instead of rotations. This will be further dis-
cussed in Section 5.

(a)

(b)

Expected Actual

Figure 6. Renderings of z-axis rotation correction results:
incorrect (a) and correct (b).

Exp. Result Ground Truth Error

No trans. (0, 0.01, 0.13) (0, 0, 0) 0.13

5◦ x rot. (1, 0.03, 0, 0) (1, 0.04, 0, 0) 2.13◦

No trans. (−2.05,−0.71,−0.96) (0, 0, 0) 2.37

20◦ x rot. (0.70,−0.35, 0.42, 0.46) (0.99, 0.17, 0, 0) 102.31◦

No trans. (2.01,−0.89,−0.15) (0, 0, 0) 2.20

30◦ y rot. (0.84,−0.34, 0,−0.42) (0.97, 0, 0.26, 0) 71.48◦

No trans. (2.63,−1.04,−1.43) (0, 0, 0) 3.17

60◦ y rot. (0.94, 0.25,−0.13, 0.21) (0.87, 0, 0.5, 0) 83.60◦

No trans. (−0.01, 0, 0.01) (0, 0, 0) 0.01

15◦ z rot. (0.99, 0,−0.03,−0.12) (0.99, 0, 0,−0.13) 2.36◦

No trans. (0.75,−2.31,−4.53) (0, 0, 0) 5.14

35◦ z rot. (0.31, 0.50,−0.18,−0.79) (0.95, 0, 0,−0.30) 115.29◦

Table 3. Pose correction model results for rotations. See
Section 4 for abbreviation explanation.

The images in (a) in Figure 6 show a result, which is visually
close to the correct pose correction, but the accurate values were
not achieved. The images in (b) in Figure 6 on the other hand
are representative for all accurate pose correction estimations
which only include rotations.

4.3 Combination Results

(a)

(b)

(c)

Expected Actual

Figure 7. Renderings of pose correction estimations for a
combination of translation and rotation.

When combining translations and rotations the overall error fur-
ther increases compared to the results for a single transform-
ation. As seen before, small combinations can be estimated,
but the error increases quickly with increasing transformations.
Figure 7 visualize different possibilities for resulting renderings
incorrect relative pose correction estimations. The implications
of these results and their possible explanations are discussed in
Section 5.
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Exp. Result Ground Truth Error

S1
(−0.33,−0.02, 0.23) (0.53, 0, 0) 0.89

(0.85,−0.46, 0.23, 0.14) (0.98, 0.17, 0.09,−0.02) 79.08◦

S2
(0.41,−0.01,−0.28) (0.65, 0.07,−0.05) 0.34

(1,−0.01,−0.04,−0.02) (1,−0.03,−0.03,−0.03) 0◦

M1
(0.42, 0.09, 0.31) (0.78, 0, 0) 0.49

(1, 0.03,−0.02, 0) (1, 0.06, 0, 0) 2.62◦

M2
(−0.57,−0.26, 0.38) (0.79, 0.29, 0.32) 1.46

(1,−0.01, 0.09, 0.02) (0.97,−0.05, 0.25, 0.01) 18.91◦

L
(−0.22,−0.21, 0.32) (1.41, 0.57, 0.21) 1.81

(0.93,−0.30,−0.10,−0.21) (0.95,−0.16, 0.23, 0.15) 57.86◦

XL
(0.05,−0.02, 0.60) (1.74, 1.30,−0.08) 2.25

(0.90,−0.08,−0.04,−0.42)(0.87,−0.28, 0.11,−0.38) 28.77◦

Table 4. Pose correction model results for combinations of
rotation and translation. See Section 4 for abbreviation

explanation.

4.4 Multi-Camera Results

Exp. Result Ground Truth Error

S z trans. (0.06, 0.11, 0.43) (0, 0, 0.97) 0.55

No rot. (1,−0.02, 0, 0) (1, 0, 0, 0) 3.62◦

L z trans. (0.04, 0.13, 0.90) (0, 0, 1.49) 0.61

No rot. (1,−0.02, 0, 0) (1, 0, 0, 0) 2.81◦

M x trans. (0.35,−0.02,−0.12) (0.97, 0, 0) 0.63

No rot. (1, 0, 0, 0) (1, 0, 0, 0) 0◦

L x trans. (0.67,−0.02,−0.09) (1.32, 0, 0) 0.66

No rot. (1, 0,−0.04, 0) (1, 0, 0, 0) 4.58◦

S y trans. (0,−0.44,−0.02) (0,−0.48, 0) 0.05

No rot. (1, 0, 0, 0) (1, 0, 0, 0) 0◦

M y trans. (0,−0.59,−0.03) (0,−0.64, 0) 0.05

No rot. (1, 0, 0, 0) (1, 0, 0, 0) 0◦

No trans. (−0.01, 0,−0.03) (0, 0, 0) 0.03

15◦ z rot. (0.99, 0.00,−0.03,−0.12) (0.99, 0, 0,−0.13) 3.86◦

No trans. (0, 0, 0.12) (0, 0, 0) 0.12

5◦ x rot. (1, 0.03, 0, 0) (1, 0.04, 0, 0) 2.30◦

Table 5. Pose correction model results for combinations of three
cameras. See Section 4 for abbreviation explanation.

All other experiments were conducted with a dual-camera setup,
requiring only one pose correction estimation. To further test
the model’s robustness with an increased number of cameras,
additional experiments were performed using a three-camera
configuration. While the accuracy of pose estimations declined
slightly compared to the dual-camera results, the model con-
tinued to perform well in estimating pose corrections for both
additional cameras when the transformations were kept moder-
ate.

4.5 Results of Additional Experiments

More training data. For the dataset used in the experiment

”XL x translation“ shown in Table 2 the number of frames was
doubled. Unfortunately this did not result in an improvement
and the resulting pose estimation was equal to using the original
number of frames.

More rays per batch. Doubling the number of rays per batch
did not lead to a significant improvement in accuracy. Larger in-
creases were not tested due to the resulting increase in required
computational time.

Lower secondary camera resolution. Lowering the resolu-
tion of the secondary camera to 200x200 pixels did not neg-
atively affect the models ability to correctly estimate the pose
correction parameters. Therefore, if the pose estimation was
correct for a dataset with a resolution of 500x500, the same
dataset with a resolution of 200x200 lead to the same correct
results.

5. DISCUSSION

Overall, the results show that our approach is suitable for re-
lative pose correction between two cameras. Using only the
NeRF-loss value to optimize the pose correction model in com-
bination with the alternating training approach is sufficient for
accurately converging towards correct relative pose correction
parameters in a given range. The following parts of this discus-
sion section dissect the findings into different data-dependent
categories with the goal of showcasing the possibilities of the
pose correction model, as well as introducing possible explana-
tions for the found limitations.

5.1 Translation Correction

Our pose relative pose correction model can effectively learn
a wide range of translation corrections (Table 2). This shows
that the model is highly usable for relative pose correction tasks
within this range of possible translation values.

Local optimum due to visual similarity: On the other hand,
the images in (a) in Figure 5 reflect a different phenomenon.
Here, the pose correction model produced inaccurate pose cor-
rection values, yet these results appear explainable upon visual
inspection. Specifically, the main error involves a backward z-
axis translation, causing the camera’s perceived field of view to
expand, thereby increasing the field of view for the processed
rays in the NeRF model. This incorrect translation and field of
view adjustment enhanced the visual overlap between the ex-
pected and actual renderings, thus lowering the NeRF loss. The
hypothesis for this observation is that the model may have con-
verged to a local optimum where loss was minimized due to
improved visual overlap.

Local optimum due to pose out of bounds: A second ob-
servation shows the pose correction parameters positioning the
camera outside the scene, resulting in renderings dominated by
the background. In this particular scene, the background is pre-
dominantly gray, which is the most common color in the scene.
The hypothesis here is that the model converged to a local op-
timum. In this scenario, the loss may be lower than for an en-
tirely incorrect pose within the scene, as the gray background
likely overlaps more with the expected image due to its preval-
ence. This tendency is most likely related to the observation in
Figure 8 and the explanations in Section 5.3.

Similar observations can be made for datasets that feature trans-
lations in more than one axis. Either the resulting pose correc-
tion parameters were estimated correctly, or the results were
similar to the ones showcased by the images in (a) in Figure 5,
reinforcing the proposed hypotheses.
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5.2 Rotation Correction

In contrast to the translation correction, the rotation correction
proved to be more error prone. Overall, more incorrect estim-
ations could be observed. Only small rotations were correctly
estimated in the training process. A successful relative pose
correction and a case, where the model got close to a correct
solution, but did not achieve the accurate correction values, can
be seen in Figure 6.

Complexity of Rotations: Rotations are more challenging to
correctly approximate due to the complex mathematical nature
of applying a rotation in comparison to a translation. Firstly, us-
ing the quaternion representation requires four values to be op-
timized, in contrast to the three dimensional vector for a trans-
lation. Translations primarily involve straightforward summa-
tions, whereas applying a quaternion to a vector v requires
quaternion multiplication, a more complex operation involving
both the quaternion and its inverse.

v′ = q ⊗ v ⊗ q−1

This overall increased mathematical complexity might make it
more difficult for the model to correctly optimize the rotation
correction parameters in the backpropagation process. Further-
more, a small change in the rotation quaternion can result in
significantly larger evaluation changes for the computed rays
than an equivalent translation change. This higher sensitivity
for changes can cause additional challenges in the optimization
process.

5.3 Combinations of Translation and Rotation Correction

The results (a) and (b) in Figure 7 both highlight that the model
may converge to incorrect solutions that still produce high visual
similarity, as discussed in Section 5.1. The result (c) in Fig-
ure 7 illustrate that NeRFs interpret visual similarity differently
from humans. The evaluation at each pipeline step compares
the input ray bundle’s results to the ground truth in a purely
pixel-wise manner, without structural context. Thus, NeRFs re-
quire only significant pixel-wise overlap between two views to
perceive them as visually similar. Comparing the pixel-wise
RGB similarity between actual and expected renderings, Fig-
ure 8 shows that the images in (b) and (c) in Figure 7 produce
similar histograms. Although the renderings differ, their pixel-
wise similarity can yield similar loss values, leading to a po-
tential local optimum. Furthermore, the histogram for two mis-
matched images differs greatly, reinforcing this observation.

Figure 8. Histograms for the images (b) (visually different) and
(c) (visually similar) in Figure 7 and a non-matching image pair.

5.4 Multi-Camera Correction

The results in Table 5 demonstrate that the proposed approach
can be effective even in setups involving three cameras. While
the addition of extra cameras does further limit the range of
pose corrections that can be accurately estimated, the model
still creates promising results for both smaller translations and
rotations. This indicates that the introduced approach can also
handle larger numbers of cameras with only a minor impact on
performance, although more extensive testing is needed.

5.5 Additional Experiments

The additional experiments generally showed no improvements
in the pose correction model’s performance. Specifically, adding
more training images did not significantly boost accuracy. While
increasing rays per batch did improve accuracy, it also raised
training time substantially, making this option impractical with
the available hardware. Notably, the model successfully con-
verged on accurate pose correction parameters even with lower-
resolution images from secondary cameras, indicating a degree
of robustness across varying resolutions. This resilience should
be tested further with additional datasets.

5.6 Summary

Our findings show that the model effectively learns translation
corrections, especially for smaller translations. Larger transla-
tions are more challenging but still yield reasonable estimates.
Rotation corrections are more difficult, with the model often
converging to local optima rather than the correct values, es-
pecially for larger angles. The model only succeeds for small
angle adjustments, highlighting its limitations and the need for
further refinement. Despite this, the model’s success in correct-
ing translations and small rotations shows promise for NeRF in
multi-camera setups.

6. CONCLUSION AND OUTLOOK

In this paper, we investigated the feasibility to utilize NeRFs
in multi-camera setups, where only the main camera’s pose is
known, in particular the ability of NeRFs to manage relative
translation and rotation corrections for one or more secondary
cameras. The research demonstrated that the proposed model is
able to learn pose correction parameters within a limited range.
Therefore, the sensitivity to large translations and challenges
with rotation corrections suggest the need for further optimiz-
ation and testing. Additionally, the model demonstrated some
robustness to varying resolutions and camera counts, underscor-
ing the potential of the proposed approach. Despite these chal-
lenges, the promising results showcase the possibilities, as well
as the importance of continued research in this area. Ultimately,
this research provides the groundwork for advancements in en-
abling NeRF as an innovative machine learning driven recon-
struction method for practical multi-camera applications.

This research opens several pathways for future work. First,
additional experiments could examine various camera config-
urations, types, and scene complexities to further assess scalab-
ility and refine the model’s effectiveness. Alternative training
strategies, such as fully decoupling the training of pose para-
meters or incorporating a specific loss function for pose correc-
tion, also offer potential performance improvements. Another
critical area is applying the framework to real-world data from
complex and lower-resolution cameras. Only when the model
is applied to real-world data can it be evaluated for its applicab-
ility in the diversity of real-world scenarios.
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