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Abstract

Reliable pose information is essential for many applications, such as for navigation or surveying tasks. Though GNSS is a well-
established technique to retrieve that information, it often fails in urban environments due to signal occlusion or multi-path effects.
In addition, GNSS might be subject to jamming or spoofing, which requires an alternative, complementary positioning method.
We introduce a visual localization method which employs building models according to the CityGML standard. In contrast to the
most commonly used sources for scene representation in visual localization, such as structure-from-motion (SfM) points clouds,
CityGML models are already freely available for many cites worldwide, do not require a large amount of memory and the scene
representation database does not have to be generated from images. Yet, 3D models are rarely used because they usually lack
properties such as texture or only contain general geometric structures. Our approach utilizes the boundary representation (BREP)
of the CityGML models in Level of Detail (LOD) 2 and the geometry of the query image scene from extracted straight line segments.
We investigate how we can use an energy function to determine the quality of the correspondence between the line segments of
the query image and the projected line segments of the CityGML model based on a specific camera pose. This is then optimized
to estimate the camera pose of the query image. We show that a rough estimation of the camera pose is possible purely via the
distribution of the line segments and without prior calculation of features and their descriptors. Furthermore, many possibilities and
approaches for improvements remain open. However, if these approaches are taken into account, we expect CityGML models to be
a promising option for scene representation in visual localization.

1. Introduction

Providing an absolute pose in a given coordinate frame is vi-
tal for applications such as mobile robotics, navigation via mo-
bile phones, the navigation of drones or autonomous vehicles
or augmented reality (Castle et al., 2008, Middelberg et al.,
2014, Arth et al., 2009, Heng et al., 2018, Lim et al., 2012,
Naseer et al., 2018, Couturier and Akhloufi, 2021, Couturier
and Akhloufi, 2024). Absolute localization is usually done us-
ing GNSS positioning. GNSS provides the spatial position,
heading or rotation information is derived from IMU sensors or
compasses, even in low-cost smartphones. However, in urban
environments, GNSS is very often affected by occlusion and
multi-path effects, leading to reduced reliability and accuracy.
Moreover, GNSS is prone to spoofing and jamming, which
renders GNSS alone insufficiently reliable, especially in safety-
critical setups such as autonomous vehicle navigation. One
possibility to overcome those limitations is to use visual loc-
alization, in which the pose is estimated on the basis of image
observations.

The aim of visual localization is to determine the six degrees
of freedom (DoF) of the camera pose from which a specific
query image was taken. This is done by comparing the similar-
ity between the query image and a scene from a database. The
methods of visual localization can be categorized into expli-
cit and implicit approaches based on their scene representation.
Explicit methods use 3D models, meshes, SfM point clouds, or
georeferenced images (Sarlin et al., 2021, Sattler et al., 2012a,
Svarm et al., 2017, Zhou et al., 2020), often referred to as map
information. They can be further divided into direct and indir-

ect approaches. In direct methods, the camera pose is estimated
by matching 2D image features with 3D points (Schönberger
et al., 2018, Snavely et al., 2008, Irschara et al., 2009), typic-
ally using a minimal solver in a RANSAC framework (Barath
et al., 2019a, Barath et al., 2019b). However, these methods
face scalability issues. Indirect methods first conduct an image
retrieval step (Arandjelović et al., 2015, Gordo et al., 2016) to
select suitable images, then estimate the camera pose by match-
ing 2D features with visible 3D points in the retrieved images
(Humenberger et al., 2020, Sarlin et al., 2018, Sattler et al.,
2012b). These methods can utilize dense representations like
meshes or laser point clouds (Brejcha et al., 2020, Panek et al.,
2022, Sibbing et al., 2013, Zhang et al., 2020), providing pre-
cise pose estimates but challenging in terms of reconstruction
and privacy.
Implicit methods leverage neural networks and can be classi-
fied into scene regressors, absolute pose regressors and relative
pose regressors (Brachmann and Rother, 2017, Cavallari et al.,
2019, Cavallari et al., 2020, Kendall et al., 2015, Laskar et al.,
2017). While these methods yield accurate estimations, they
are limited by scene specificity but can adapt in real-time to
new scenes.
Less common are the use of CAD/building information model
(BIM) and city models for the scene representation. Rendered
synthetic images from the 3D models can be used to train
networks to regress the camera poses (Acharya et al., 2019,
Acharya et al., 2022, Acharya et al., 2023) or the 3D models can
be used explicitly for 2D feature matching (Panek et al., 2022,
Sibbing et al., 2013, Panek et al., 2023). Aligning query images
with 3D models can improve accuracy, though these methods
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Figure 1. Overall workflow of the object-based visual localization approach, where c represents the configuration of possible camera
poses.

require substantial training time and are sensitive to texture and
lighting conditions. The availability of suitable models also re-
mains a challenge.

We propose a method that employs CityGML models and uses
a sampling approach in the solution space, i.e., the coordinate
frame, with an score function which is interpreted as an energy
in an optimization framework to estimate the camera pose of
the query image. If such models are used, no distinct point fea-
tures usually exist, but lines or surfaces can be employed. The
use of line features has advantages over the use of point fea-
tures, especially in urban environments. Lines, in particular,
bounding edges, are mostly detectable in images, even in poor
lighting conditions, because of the high contrast to the back-
ground. They provide a geometric indication of the structure of
a scene (Pautrat et al., 2021). In addition, boundary representa-
tion (BREP), i.e. point-line-topology, is a simple and accepted
means to represent the core geometric elements of buildings and
contains more structural information than points alone.
However, one disadvantage of using those representations is
that lines need to be well distributed (in terms of coverage, but
also angular directions) to guarantee that the pose of a single
image can be determined. The accuracy of pose estimation de-
pends on those parameters and the accuracy of model repres-
entation and image resolution.
The CityGML standard1 establishes a conceptual model and ex-
change format designed for the portrayal, storage, and inter-
change of virtual 3D city models. The CityGML conceptual
model supports modelling of a variety of city objects such as
buildings, bridges, tunnels, water bodies, transportation, veget-
ation, land use, etc. The Open Geospatial Consortium, OGC,
standardizes CityGML. Buildings are represented in different
Levels of Detail (LOD). For visual navigation, the LOD2 is im-
portant: here the general roof structure is retained, but details
such as dormers are not added. The outer facade geometry and
main roof lines are interesting since those will be used to sup-
port localization from terrestrial images (facades) and airborne

1 https://www.ogc.org/standard/citygml/

images (ridges, outer roof edges). Compared to other 3D refer-
ence data, 3D city models following the CityGML scheme are
already available free of charge for many countries.

In our approach, we use the similarity between a query im-
age and a projected scene of the CityGML model based on a
assumed camera pose. To evaluate the similarity, we extract
straight-line features of the query image and the projection of
building models into the proposed camera pose. We assume
that if the lines of the query image match well with the lines of
the building model, the underlying pose used for this projection
is correct. Based on their match, we calculate the energy. The
best pose is found when the resulting optimization problem of
the energy converges.

2. Related work

In principle, 3D models can be used either implicitly or expli-
citly to represent the scene. When using the 3D models expli-
citly, the indirect approach with an upstream image retrieval is
usually used (Panek et al., 2022, Panek et al., 2023). If the 3D
models are used in the form of the implicit method, synthetic
images are rendered using the models, which are then used to
train the neural network (Acharya et al., 2022, Acharya et al.,
2023).
Less common are approaches that explicitly and directly use the
BREP of the 3D model to search for the corresponding image
lines in the image. Co-registration between vector-based city
representations and airborne images is presented in (Sun et al.,
2019), while (Fanta-Jende et al., 2019, Chen et al., 2021) co-
register airborne images and mobile or terrestrial mapping data.
To co-register generalized vector data and images is presen-
ted in (Jarzabek-Rychard and Maas, 2017). Once the matches
between datasets are established, a joint adjustment of all data
can be performed (Gerke, 2011, Sun et al., 2019).
Another approach is indirect and employs sampling in the solu-
tion space, in our case the unkown 3D pose of the camera. Each
pose realized in this way is evaluated w.r.t. its match with the
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model, leading to a score. The overall objective is to minimize
the score and thus optimize the parameters.

For our approach, we decided to optimize the energy function or
the parameter estimation of the six DoF in the form of Bayesian
optimization. Bayesian optimization has the advantage that it
is particularly effective for continuous domains with less than
20 dimension (Frazier, 2018). With Bayesian optimization, the
function to be optimized can be treated like a black box, as the
analytical form does not have to be known and yet the behavior
of the function can be estimated. This is because a surrogate
model or an acquisition function of the target function is set up
using the regression of the Gaussian process. Acquisition func-
tions can quantify the uncertainties in the predictions so that
they can help in deciding the next sampling. There are differ-
ent types of acquisition functions such as expected improve-
ment, knowledge gradient, entropy search or predictive entropy
search (Frazier, 2018).
As far as straight line segment extraction is concerned, different
types of line detectors and extractors can be used. The types
can be broadly grouped into three different approaches based
on their detection mechanism: handcrafted- and Hough-based
(Akinlar and Topal, 2011, Grompone von Gioi et al., 2012,
Suárez et al., 2022, Fernandes and Oliveira, 2008), learning-
based (Huang et al., 2018, Zhou et al., 2019, Dai et al., 2021,
Pautrat et al., 2021) and hybrid-based (Pautrat et al., 2022,
Teplyakov et al., 2022) methods. Handcrafted methods yield
accurate results but lack repeatability and adaptability (Pautrat
et al., 2021, Pautrat et al., 2022). Deep learning techniques,
introduced for edge detection and wireframe parsing, have
emerged from the wireframe dataset but face bias issues (Dai et
al., 2021, Pautrat et al., 2021, Pautrat et al., 2022). Hybrid meth-
ods try to combine traditional techniques with deep networks to
leverage the strength of both handcrafted and learning-based
approaches (Pautrat et al., 2022).

3. Methodology

Since the assumed pose prior of the sensor, obtained by the
possible degraded GNSS observations might be wrong by sev-
eral meters and degrees, respectively, a direct solution where
objects are searched in images, is very error-prone and unreli-
able. Therefore, we implement a Bayesian optimization where
we sample in the space of possible camera poses and assess,
how well the straight-line features of the reprojection of the 3D
building model fit to the straight-line features of the query im-
age. We assume that the scene from the query image is suf-
ficiently well represented by the building lines visible in the
image. Consequently, if the building lines of the 3D model are
projected into the image using the correct camera pose, they
overlap with the building lines from the query image.

3.1 Object-based Visual Localization Workflow

The workflow shown in the figure 1 was developed to simu-
late the problem presented. The optimization process is the
main module to simulate minimizing the energy function. In
this process, the camera poses are initialized, and their energy
is calculated and optimized using a solver. To calculate the en-
ergies of the individual camera poses the building lines must
first be projected into the image plane dependent on the cam-
era pose and the lines in the query image. This is done in the
Projection and Line Detection Module. The energy of the indi-
vidual camera poses is finally calculated in the Score Module.
The individual modules of the object-based visual localization
approach are described in more detail below.

3.1.1 Projection Module The initialized camera poses are
input to the Projection Module. The steps of the Projection
Module are shown in Fig. 1. Depending on the pose with
it’s six DoF a bounding box with a specific radius is created.
Within this bounding box all surrounding buildings of the 3D
city model are requested. The corner points of each building
surface are returned. Using the transformation matrix, consist-
ing of the six DoF, this vector representation is transformed into
the camera coordinate system. Clipping also takes places dur-
ing the transformation process. This means that corner points
that lie outside the field of view (in image space) are corrected
to the intersection point of the visible area. The result is the
vector representation of the building edges.

An example of the result can be seen in Fig. 2(a). This is fol-
lowed by the occlusion check in form of the calculation of a
z-buffer. The vector representation of the building edges is ras-
terized for each building surface using the depth values of the
corner points resulting from the transformation. The z-buffer is
the result of the minimum calculation of the depth values. An
exemplary z-buffer image is shown in Fig. 2(b). The edges are
extracted from the z-buffer using the Canny edge extractor and
the line segments, i.e. their start and end points, are calculated
from this using the Hough transformation. These can be seen in
Fig. 2(c). The resulting line segments are used as input for the
score module.

3.1.2 Line Detection Module To calculate the second input
in the score module, the lines of the query image are detected
and extracted using the SOLD2 (Pautrat et al., 2021) line ex-
tractor. We use the pre-trained model of SOLD2, which is suit-
able for man-made environments.

3.1.3 Score Module Finally, the score reflects the align-
ment of the lines detected in the image to the projected build-
ing edges. The angles and the orthogonal distance of the two
line types are included in the score. We deliberately refrained
from comparing coverage and line length due to sources of er-
ror such as the occlusion of building edges in the query image
by obstacles such as cars, people or vegetation.
In the score module, the angles of the line segments from the
the building lines are calculated first. Each line segment of
the query image is checked for each building line, i.e. the ex-
tent to which the angles of the query image lines deviate from
the building line angle is checked. If these are within a cer-
tain threshold, they are regarded as potentially corresponding
line segments. A visual representation of the potentially cor-
responding line segments for the query image and the building
lines is shown in Fig. 3(c). The orthogonal distance is then
calculated for the potential corresponding line segments. If the
orthogonal distance is within a threshold, a distance score is
calculated. The distance score becomes one if the orthogonal
distance is zero. Based on the number of corresponding line
segments of the query image an average distance score for each
building line is calculated. The sum of these ultimately results
in the final score. It should be noted that due to the minimiza-
tion problem of the energy presented, the score must finally be
inverted so that the best energy is zero and the worst is one.

3.1.4 Optimization For the optimization of the energy, we
decided to consider the problem as a black box function. We
have chosen to implement a method based on the search al-
gorithm Tree-Structured Parzen Estimators (TPE). This search
algorithm models the distribution of the parameters, i.e. the six
DoF, within a defined search space in order to estimate the per-
formance of different combinations.
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Figure 2. Visualization of the steps of the projection module: The projected building lines of the 3D model, taking into account the
camera pose, can be seen in part (a). The result of the occlusion check in the form of the z-buffer is shown in (b). (c) shows the lines

extracted from the z-buffer by handcrafted line extractors.

Figure 3. Visualization of the steps of the score module: (a) shows the line segments from the 3D models as part of the input to the
Score Module. (b) shows the line segments from the query image as the second part of the input to the Score Module. The matched

line segments are shown in (c).

4. Experiments

We are testing our approach using a selected test area in Braun-
schweig, a city in Lower Saxony in Germany. The test area
is located near the city centre of Braunschweig and covers ap-
prox. 370× 280m2. The area contains a variety of buildings
and building types as well as sections with urban canyons.

4.1 Reference dataset

The Braunschweig 3D city model in LoD2 is available as 3D
reference data for the area (Landesamt für Geoinformation
und Landesvermessung Niedersachsen, 2024) and is stored in
CityGML format on a server. The 3D city model was cre-
ated using building outlines from cadastral data, digital terrain
model (DTM) in 5m resolution and 3D data from laser scan
or matching point cloud. This means that the positional accur-
acy depends on the cadastral data and the height accuracy on
the matching point cloud (Landesamt für Geoinformation und
Landesvermessung Niedersachsen, 2024).

4.2 Query dataset

To create a query image dataset we captured images from a
handheld smartphone rigidly attached to a tactical grade in-
ertial navigation system (INS), c.f. Fig. 4. The images got
resampled to a resolution 960× 1280, resulting in a average
ground sampling distance (GSD) of 4 cm. By using post-
processed kinematics (PPK) we estimate the trajectory of the
smartphone down to a few centimetres standard deviation in
good conditions. Since the test area is partly in narrow urban
areas, we added a post-processing step: The dataset underwent

Figure 4. Smartphone rigidly mounted to INS system to capture
query data.

a structure-from-motion and bundle adjustment pipeline, where
also Ground Control Points (GCP) and Check Points (CP) were
involved. The points were measured in the field using a sur-
veying grade GNSS-receiver with RTK (GCP) at distinct, well-
observable positions in terms of GNSS outages. The adjustment
resulted in an RMSE at GCP of (6; 7; 2) cm in X, Y, Z, respect-
ively and mean errors at CPs of (7; 4; 1) cm. The exterior ori-
entation (EO) parameters of images were obtained with a mean
error of 1.5 cm in X, Y and 0.7 cm in Z and standard deviations
of 6 and 2mm, respectively. The rotation components have a
mean error of 0.02◦ at σ = 0.04◦.

4.3 Setup of experiments

It is obvious that considering a small number of line segments
on the side of the building lines can lead to an ambiguity of
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the score and finally effects the best pose. Therefore we have
to make assumptions for our experiments. We assume that we
have a pose prior and that the true pose is within a certain radius
with respect to the pose prior. Therefore, we limit the search
space in the X and Y directions. We also assume that the edge
device is approximately levelled during the query image acquis-
ition. This means that we can set the rotation angles omega and
phi to 90◦ and 0◦ respectively. We can also assume that we have
an initial assessment for κ. We can then also limit the search
area for κ. To rule out the possibility of proposed poses being
inside buildings, we created a grid from the digital terrain model
(DTM) and the building outline layer for the test area. The grid
is set to None-values in places where a building is present and
corresponds to the values of the DTM in all other places. This
also allows us to specify that the Z coordinate corresponds to
the value of the grid including an offset at point X, Y. We want
to investigate two questions with our experiments. Firstly, the
question of whether the score can represent the true pose well
enough. Secondly, we want to investigate the accuracy of our
approach. Our experiments are designed accordingly. To test
the sensitivity of the score, we vary the size of the search space
in the X and Y directions as well as the angle search space. We
test the combinations of 40× 40; 20× 20m search space for X,
Y, an angle search space of ±10◦ ±20◦ and 50, 100, 200 iter-
ations during the optimization. In the following, however, we
will only consider the combinations with a search space for X,
Y of 20× 20m and an angle search space of ±20◦ around the
true value for κ.

5. Results

In the following, we will present and then analyze the results
in relation to the questions from section 4.3. First, we check
the results of the analysis to see whether the score can reliably
represent the true pose and then we look at the accuracy of our
approach.

5.1 Measuring reliability of the score

To analyze the score, we tested our approach for 10 query im-
ages with the scenarios mentioned above. The results of the
translation errors in metres in the X and Y directions and their
score are shown for 50, 100 and 200 iterations in Fig.5. De-
pending on the query image, we have summarized the results of
the scores of individual iteration steps in classes. A low score
should express a very high correspondence of the line segments
from the z-buffer with those of the query image and vice versa.
Clusters of low scores around the minimal deviation are there-
fore to be expected. These clusters cannot clearly be recognized
at 50, 100 or even 200 iterations. A poor score of one occurs
frequently in the vicinity of a minimal translation error. The
comparison of the different number of iterations shows that, re-
gardless of this, a low score does not necessarily cluster around
a translation error of zero. The distribution of the score as a
function of the rotation error for κ for the different iterations is
similar to the translation error, it is noticeable with the rotation
error that a score of one does not only occur with strong devi-
ations of κ from the ground truth value. There is also no direct
influence of the number of iterations on the representation of a
low score of a deviation around zero for κ.

5.2 Measuring absolute errors

To investigate the accuracy of our approach, we performed the
optimization of the camera pose parameters for 30 images. The

Table 1. Localization results for the 30 query images. We report
the % of query images localized within the given deviation of

the ground truth pose.

2m, 2◦ 5m, 5◦ 9m, 10◦ MAD
3.85 23.08 34.62 4.88 / 14.02

results of the optimization are listed in table 1. The average of
the translation error of the tested images is 8.9m and that of
the rotation error is −2 23◦. For 3.85 % of the images tested,
the translation error is less than or equal to 2m and the rotation
error is less than or equal to 2◦. While for 23.08 % of the images
there is a translation error of 5m and a rotation error of 5◦. For
34.62 % of the images, there is a translation error of maximum
9m and a rotation error up to 10◦. The mean absolute deviation
of the translation error is 4.88m and that of the rotation error is
14.02◦.

6. Discussion

By analyzing the deviations for translation and rotation as a
function of the score, it is observable that the score does not
reflect the true pose reliably enough, even with the assumptions
made. By analyzing various test scenarios, it can be ruled out
that the reason for this is the iteration or the search spaces. It
can be seen that even with values of the translation and rotation
errors around zero, the score is one. The results of the optim-
ization with 30 test images show that the accuracy is not yet
sufficient. This is the consequence of the observation of the un-
reliability of the score.
The final proposed camera pose is based on the reliability of the
score. The score in turn is based on the fact that it is possible
that the line configuration of the building edges, resulting from
the pose, can match the line configuration of the query image
very well. However, there may be cases in which these cor-
relations are not given. Examples of this are strongly occluded
building edges in the query image or too few true building lines.
This ultimately leads to the score not reflecting the true pose.
In addition, we must take into account that there are also cases
in which the number of lines may be too limited.

7. Conclusion

We present a low-cost visual localization approach using 3D
city models. The use of 3D city models has the advantage that
they are now available free of charge in many cities worldwide.
In addition, the 3D city models, which are divided into tiles,
are available in a format that requires little storage space. This
makes it possible to use our approach even under offline condi-
tions.
However, it is important to bear in mind that the quality of 3D
city models is not universal and depends heavily on the model-
ling process. The quality of the model in turn influences the ac-
curacy of the proposed camera poses. Further difficulties arise
if only an insufficient number of building edges are visible in
the query image.
To highlight the uniqueness of the different poses in such cases
and in general, there are several options that we will implement.
We will test how the areal information of the buildings from the
z-buffer and the query image can be integrated into the score.
The idea is to use image segmentation to extract the building
surfaces in the query image and compare them with the visible
building surfaces derived from the z-buffer. This can be used
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Figure 5. Scatter plot of the translation errors with different iteration steps and their score. From left to right: 50, 100 and 200
iterations. 10 images were tested.

to develop further improvement options, such as differentiat-
ing between roof surfaces and wall surfaces and comparison of
these. In addition we strive to minimize the uncertainty of the
score in further work and ensure that the score is stabilized by
other factors, ambiguities are reduced, and the actual pose is
better represented. This also concerns the use of straight line
extractors: are there others which are more suitable? We will
also employ quite simple image gradient computation ortho-
gonal to the projected building edge to derive a score making
directly use of low level image features.
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