
Co-registering Laser Scanning Point Clouds and Photogrammetric Images 
with Deep Learning Multi-Modal Matching 

Luca Morelli 1,2, Giulio Perda 1, Francesco Ioli 3, Paweł Trybała 1, Andrea Sterpin 4, Simone Rigon 1, Neil Sutherland 5,
Marco Medici 6, Fabio Remondino 1, Alfonso Vitti 2 

1 3D Optical Metrology (3DOM) unit, Bruno Kessler Foundation (FBK), Trento, Italy 
Web: http://3dom.fbk.eu - Email: <lmorelli><gperda><ptrybala><srigon><remondino>@fbk.eu

2 Dept. of Civil, Environmental and Mechanical Engineering (DICAM), University of Trento, Italy - Email: alfonso.vitti@unitn.it
3 Dept. of Civil and Environmental Engineering (DICA), Politecnico di Milano, Milan, Italy - Email: francesco.ioli@polimi.it

4 Department of Architecture, University of Ferrara, Italy - Email: andrea.sterpin@unife.it
5 Nottingham Geospatial Institute, University of Nottingham, Nottingham NG7 2TU, UK - Email: neil.sutherland@nottingham.ac.uk

6 INCEPTION, Spinoff of the University of Ferrara, Italy - Email: marco.medici@inceptionspinoff.com 

Keywords: image-to-geometry registration, multi-modal matching, learning-based matching, laser scanning, photogrammetry, fusion 

Abstract: 
The integration of laser scanning and photogrammetry has become a critical approach in architectural and civil surveying, leveraging 
the geometric precision of Terrestrial Laser Scanners and the high-quality textures achievable through photogrammetric surveys. 
Despite the advances, challenges persist in efficiently merging these data sources, particularly due to limitations in sensor integration 
and varying levels of Ground Sampling Distance. This study presents a novel data fusion methodology, operating at raw and 
intermediate levels, bypassing the need for data pre-alignment, sensor trajectories or coloured point clouds. The approach employs 
deep learning-based matchers to achieve automated co-registration of RGB images and TLS data, offering advantages such as global 
registration, multi-modal matching, direct scaling and referencing, and enhanced sensor fusion during the photogrammetric bundle 
adjustment. Additionally, the method enables the direct orientation of single images and texture mapping without requiring dense 
point clouds. The pipeline is validated with an architectural surveying scenario, demonstrating its efficacy in comparison with 
commercial solutions.

1. INTRODUCTION

Laser scanning and photogrammetric point clouds, under 
appropriate conditions, can achieve similar results in terms of 
geometric 3D reconstruction and accuracy (Guarnieri et al., 2006; 
Charbonnier et al., 2013; Teza et al., 2016). Moreover, when a 
laser scanner is paired with high-resolution integrated cameras, it 
has the potential to provide good texture quality, but with wide 
variability depending on the scanner (Julin et al, 2020). For 
architectural and civil applications, even high-end Terrestrial 
Laser Scanners (TLS) often do not achieve the same texture 
quality as photogrammetric surveys with a full-frame or large-
sensor high-resolution camera (Crombez et al., 2015; Carraro et 
al., 2019; Julin et al, 2020). This discrepancy is primarily due to 
the limitations in the camera sensor size in the TLS and the fact 
that images are typically acquired from a limited number of 
stations, resulting in occlusions and a significantly variable 
Ground Sampling Distance (GSD). Nevertheless, in some cases, 
TLS does not have an integrated camera. As a result, the 
combination of laser scanning and photogrammetry is becoming 
increasingly common in civil and architectural surveys, 
leveraging TLS point cloud accuracy and high-quality textures. 
In certain applications, TLS is also used to have a metric base for 
the surveying and avoid time-consuming topographic networks 
for georeferencing and scaling a photogrammetric 
reconstruction. 
Therefore, an accurate and efficient data fusion process should 
be established to merge the data coming from the two different 
sources (Corsini et al., 2009; Moussa et al., 2012; Ramos and 
Remondino, 2015; Luhmann, 2019; Bruno et al., 2022). Data can 
be integrated at various levels (Medici et al., 2024): at raw level 
by directly coupling images and individual laser scans, at an 
intermediate level after some processing of both scans and 
images, or at a high level by simply co-registering and merging 

the final point clouds of both techniques. The majority of 
approaches in literature propose integration at high level (Fiorillo 
et al., 2012;  Suwardhi et al., 2015), with few recent approaches 
working at raw or intermediate levels (Jonassen et al., 2023; 
Markiewicz et al., 2023; Medici et al., 2024), generally requiring 
the sensors trajectories, in particular for aerial LiDAR datasets 
(Glira et al., 2019). 

1.1 Aim of the work 

This study proposes a data fusion methodology working at raw 
and intermediate level based on LiDAR point cloud renderings. 
The method is not assuming a specific acquisition setup (e.g., 
aerial or terrestrial) and it does not require sensor trajectories nor 
coloured point clouds. The proposed approach leverages deep 
learning-based matchers to automatically co-register RGB and 
scan data featuring intensity values without any user intervention, 
with the following advantages: 
• Global registration approach: it is a sparse approach based on

2D tie points between RGB images and multiple renders, one
for each single TLS stations. TLS stations do not need pre-
alignment. The RGB dataset and TLS renders are oriented
together in a unique block up to a scale factor.

• Multi-modal matching: exploiting deep learning capabilities,
RGB colors in the LiDAR data are not strictly required.

• Directly scale and reference the photogrammetric data: the
laser scanning point cloud is used to support scaling and
referencing during the bundle adjustment (BA).

• Sensor fusion: the laser scanning observations (3D points) can
be used as constraint in the photogrammetric BA, potentially
improving the accuracy of the final 3D reconstruction.

• Orient single images: even without a robust camera network,
single images can be (geo)referenced since the geometry of the
model relies on the laser scanning point cloud.
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Figure 1: Scheme of the proposed approach to co-register TLS and RGB images with multi-modal image matching. 

 
• Direct texture mapping: registered images can be directly 

mapped onto the laser scanning point cloud without generating 
a dense point cloud from the image dataset. 

The proposed pipeline, reported in Section 2, was already 
successfully used to co-register crowdsourcing images and a TLS 
point cloud (Morelli et al., 2024a), while in this work it is refined 
and applied to an architectural surveying scenario. It is affine to 
Markiewicz et al. (2023), which projects single laser scans into 
equirectangular images and employs deep learning matchers to 
co-register TLS scans among them. We extend this approach to 
the multi-imodal RGB-TLS case. The proposed approach is 
compared with two commercial software solutions, Reality 
Capture (Capturing Reality, 2024) and Agisoft Metashape 
(2024), both of which enable the fusion of LiDAR point clouds 
and RGB data at different levels of integration. 
 

2. DATA AND METHOD 

2.1 Methodology 

Low-level data fusion approaches involve matching 3D laser 
scanning data with 2D images, a process that is highly complex 
due to the need for extracting repeatable and accurate keypoints, 
as well as describing these areas with descriptors to identify 2D-
3D homologous points. Detection, description and matching 
processes are inherently difficult and often unreliable as they 
involve working within different domains (Li et al., 2023), often 
referred to as multi-modal matching (Jiang et al., 2021). For 
example, 3D descriptors rely on feature extraction based on local 
geometric properties (e.g., point distribution), while 2D 
descriptors focus on local radiometric variations, which are not 
solely related to changes in geometry. 
To address these challenges, we propose a 2D-2D multi-modal 
matching approach, instead of 2D-3D, by rendering synthetic 
views of the laser scanning point cloud. Its workflow is 
showcased in Figure 1. A similar method was proposed by Elias 
et al. (2023) to co-register individual thermal images with LiDAR 
point clouds. Other studies in the literature have explored co-
registration through the rendering of RGB images and LiDAR 
point clouds. However, they emphasize the challenges of 
working with LiDAR point clouds lacking colorimetric 
information (Kehl et al., 2017; Elias et al., 2019), a scenario 
addressed in this work. To the best of the authors' knowledge, this 

is the first study to employ deep learning-based local features and 
matchers to co-register TLS renders with RGB images. 
Given one or more TLS scans, each can be rendered into a series 
of synthetic views, following approaches such as the Reality 
Capture (six views on a cube) or Agisoft Metashape (one large 
equirectangular projection). Reality capture leverages the 
intensity values recorded by the TLS to generate these views, 
while is not known the approach adopted by Metashape. In our 
approach, for each single scan, a single view is rendered in 
Blender (Blender Foundation, 2024), with an orientation and 
field of view that allow good part of the scan to be visualized in 
a single render. As TLS scans generally lack RGB information, 
renders are generated with a rendering engine which uses TLS 
intensity values as texture. The core idea is to integrate the 
renders directly into the photogrammetric adjustment: individual 
TLS scans are co-registered with each other in a single step, along 
with the co-registration of the scans with the photogrammetric 
image block. This procedure fuses data at raw level producing a 
unified block where individual TLS scans and the RGB block are 
co-registered up to a scale factor. At this stage, a single TLS scan 
is sufficient to assign the scale and reference the block. In the 
case study experiment, multiple scans are pre-registered directly 
by the TLS. Consequently, in this paper the scale and referencing 
are achieved by treating the poses of the TLS renders—already 
known within a single reference system due to pre-alignment—
as fixed in the bundle adjustment, achieving an intermediate data 
fusion level. Moreover, the possible known/georeferenced laser 
scanning poses together with the multi-modal tie points can 
potentially improve the final reconstruction accuracy adding 
additional observations in BA respect the photogrammetric 
model with only tie points from the RGB image block. 
 
2.2 Multi-modal matching 

By shifting from 2D-3D to 2D-2D matching, the search of 
correspondences remains within the same domain, yet it still 
encounters challenges arising from significant radiometric 
differences between the rendered TLS images and those captured 
by cameras. For this reason, RGB-RGB matching, and especially 
the multi-modal matching, is performed using learning-based 
approaches trained to find robust tie points against extreme 
variations in illumination and perspective distortions (Chen et al., 
2021; Jin et al., 2021). Our hypothesis is that these AI models are 
sufficiently general to be used for multi-modal matching without 
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retraining, even though they were not explicitly designed for 
multi-modal matching. In this work, the methods available in the 
DIM toolbox1 (Morelli et al., 2024b) are used. DIM is a library 
of deep learning local features and matchers, able to match 
images at full size with a tiling approach, and that support easy 
integration in various photogrammetric software. The multi-
modal matching is performed using SuperPoint (DeTone et al., 
2018) combined with SuperGlue (Sarlin et al., 2020) and 
LightGlue (Lindenberger et al., 2024) matchers, DISK 
(Tyszkiewicz et al., 2020) and ALIKED (Zhao et al., 2023) 
paired with LightGlue, and DeDoDe (Edstedt et al., 2024) 
matched with the nearest-neighbor strategy. These matchers are 
compared with traditional methods: RootSIFT (Arandjelović and 
Zisserman, 2012), as implemented in COLMAP (Schönberger 
and Frahm, 2016) and Agisoft Metashape, to provide an example 
of a widely used commercial software in both practical 
applications and research. In addition, deep learning-based 
strategies are compared with the results of RIFT (Li et al., 2019), 
the most widely used multi-modal matching method, particularly 
used for aerial and satellite imagery datasets. 
 

   
Figure 2: Some images acquired for the photogrammetric 
processing. 
 

   
Figure 3: Rendered images from the TLS point clouds using only 
the intensity values from the TLS data. 
 

 
Figure 4: Camera network for the Santa Maria di Loreto dataset. 
RGB camera poses in green, positions of TLS renders in blue. 
 
2.3 Testing dataset and camera network 

To evaluate the proposed approach, a survey of the external 
facades of Santa Maria di Loreto in Rome (Medici et al., 2024) 
has been used. Data were acquired with Leica P40 (3D point 

 
1 https://github.com/3DOM-FBK/deep-image-matching  

position accuracy of 3 mm at 50 meters) and a Sony Alpha 7 (33 
MP full-frame sensor - Figure 2). To highlight the advantages of 
the proposed method, a strip of 31 images taken at a constant 
distance from the building facade was selected, without including 
oblique images or additional strips that could enhance the self-
calibration of the RGB sensor. Figure 3 shows three renders 
created from the TLS scans of the facade. Although the renders 
seem to include RGB data, the point cloud is rendered using only 
the intensity values from the TLS. The RGB images were 
captured at a distance of approximately 5 meters from the church 
facade, while the renders were generated from a distance of about 
18 meters. The camera network of the RGB images and the poses 
of the three renders are shown in Figure 4, where the multi-modal 
block is co-registered using SuperPoint combined with 
LightGlue. Multi-modal matching is complex not only because 
of the radiometry differences between TLS intensity renders and 
camera images, but also because of different image scales and 
resolution (see Section 3.2). Due to actual limitations of learning-
based methods (e.g. scale invariance), the TLS renders and image 
sizes had to be adjusted to 4094 x 4094 px 2803 x 4205 px for 
the TLS and RGB images, respectively, in order to maximize the 
number of extracted matches. To address the scale limitation, we 
would need to extract SuperPoint features on an image pyramid 
with varying scales.  
 
2.4 Image block orientation with DIM features 

Using DIM, a maximum of 4096 matches per image pair, filtered 
using MAGSAC (Barath et al., 2019), are extracted. The feature 
extraction is performed at medium quality, corresponding to half 
the original resolution of the images (see Section 3.2). DIM 
extracts features and matches that are saved in a database with 
the same format as COLMAP. Using pycolmap2, the image block 
is oriented with a pinhole camera model, and the poses and 3D 
tie points are exported in Bundler format. Then, all data are 
imported into Agisoft Metashape for a final BA, with the poses 
of the renders fixed as known, and the images undergoing a self-
calibration process. The transition from COLMAP to Agisoft 
Metashape is necessary because COLMAP, specifically 
pycolmap, does not support the use of additional constraints on 
camera poses. 
 
2.5 Fusion of TLS and photogrammetric point clouds 
 
As shown at the end of the processing in Figure 1, the proposed 
pipeline produces a photogrammetric point cloud scaled and 
referenced from a BA where 2D multi-modal observations are 
used, without any 3D constraints a part for the known render 
poses. However, it does not fully utilize all the information 
available from the TLS point cloud. Specifically, while the multi-
modal tie points are included in the bundle adjustment, their 3D 
coordinates derived from the TLS scan are not.  
Under the assumption that the TLS point cloud is more accurate 
than the photogrammetric one, an additional constraint can be 
introduced in the BA by treating the 3D coordinates of the multi-
modal tie points (available from the TLS ranges) as known 
values. In the experiments, a more general approach was tested: 
we employ the methodology described in Figure 1 up to the step 
where the multi-modal block is oriented. At this stage, the 3D tie 
points and the TLS point cloud are co-registered. By performing 
a nearest-neighbor search, each 3D tie point can be associated 
with a corresponding point in the TLS point cloud, and this 
coordinate can be treated as a known value in an additional BA 
run. This method allows not only the multi-modal tie points—
which may be limited in number—to be assigned TLS-derived 

2 https://github.com/colmap/pycolmap  
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coordinates but also enables the assignment of TLS coordinates 
to non-multi-modal tie points. 
 

3. RESULTS AND DISCUSSION  

3.1 Performance evaluation of commercial software 

Co-registering RGB data with LiDAR data is not a 
straightforward task, particularly when performed in the early 
stages of processing, prior to the generation of independent point 
clouds (Medici et al., 2024). A fusion of raw data at this stage 
theoretically allows for combining observations to achieve 
enhanced geometric accuracy. As previously noted, some 
commercial software solutions enable this type of integration. 
For instance, Reality Capture supports the alignment of 
individual TLS scans or groups of pre-aligned scans with an 
approach similar to that proposed in this study. From the input 
LiDAR point clouds, six cube-distributed renders are generated 
around the station point using a pinhole camera model. It is 
assumed that the images are subsequently matched with these 
renders to enable multi-modal co-registration. Agisoft 
Metashape, on the other hand, uses an equirectangular projection 
of the TLS points and intensity and, presumably, follows a 
similar matching strategy. In the tested dataset, both Reality 
Capture and Agisoft Metashape fail to co-register LiDAR and 
RGB data effectively, whether the scans are provided 
individually or pre-aligned (Figure 5). This failure is likely due 
to the lack of RGB information in the TLS point cloud leading to 
an inability of matching intensity-based images with RGB 
images.  This result aligns with the findings reported in Medici et 
al. (2024), from which the dataset used in this study is a subset. 
 

 
Figure 5: A failed co-registration of the RGB data with the TLS 
point cloud in Agisoft Metashape. 
 
3.2 Image matching with different local features 

Given the radiometric differences arising from real versus 
artificial illumination conditions in the renders, the data are not 
only matched using classical methods such as RootSIFT but are 
also processed using neural network-based matchers. As said, 
although these matchers are not explicitly trained to align LiDAR 
data with RGB images, it is hypothesized that their training on 
highly complex datasets enables them to generalize effectively to 
multi-modal datasets. Table 1 presents the results of the different 
matching approaches tested. Despite the variety of deep learning-
based approaches available in the literature, only SuperPoint 
demonstrates the ability to generalize to our case study. All other 
methods fail to detect the minimum number of tie points required 
between renders and RGB images to enable the orientation of the 
renders within the photogrammetric block. Furthermore, the 
combination of SuperPoint and LightGlue proves to be the fastest 
matching method between learning-based approaches. The 
results reported in the table refers to the specific implementation 
of DIM that works per tiles and apply MAGSAC. 

 

 
Figure 6: Matches (green lines) between TLS renders and RGB 
images with RootSIFT (top) & SuperPoint+LightGlue (bottom). 
 
Matching TLS renders with RGB images using SuperPoint is not 
feasible across all resolutions, as mentioned in 2.4. Consistent 
with findings in Marelli et al. (2023), the scale invariance of deep 
learning-based methods is limited. Although DIM supports high-
resolution matching, aligning RGB images and renders at full 
resolution results in the extraction of a limited number of 
matches. This indicates that the SuperPoint descriptor does not 
operate effectively across a wide range of scales, unlike 
RootSIFT. Consequently, it is necessary to manually determine 
the most appropriate scale for matching. Matching at a lower 
resolution clearly affects the actual GSD of the scene, leading to 
some 4 mm for RGB and 1cm for TLS renders. 
Similarly to most DL-based descriptors, RootSIFT in the 
COLMAP implementation also fails, as does Agisoft Metashape, 
when attempting to orient TLS renders and RGB images together. 
Similarly, RIFT, even after testing various combinations of 
image down sampling, fails to find correspondences. Figure 6 
presents an example of matching between a TLS render and a 
RGB image, using RootSIFT and SuperPoint combined with 
LightGlue. 
 

 Extraction 
[min:sec] 

Matching 
[min:sec] Status 

Agisoft Metashape 00:07 Fails 
COLMAP (RootSIFT) 01:12 00:05 Fails 
SuperPoint + LightGlue 00:45 01:18 Oriented 
SuperPoint + SuperGlue 00:45 13:09 Oriented 
DISK + LightGlue 02:26 01:01 Fails 
ALIKED + LightGlue 01:56 01:12 Fails 
DeDoDe + NN 01:20 00:57 Fails 
Key.Net + HardNet + NN 02:24 00:43 Fails 
RIFT > 1 h Fails 

Table 1: Matching time and success status for different matching 
strategies and image triangulation. All tests were conducted using 
an NVIDIA GeForce RTX 3050 Laptop GPU. 
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3.3 3D accuracy evaluation 

The accuracy assessment was performed using one façades of the 
church (Figure 7). Pre-aligned TLS scans are used as ground 
truth, to assess the accuracy of the point cloud generated from 
RGB images oriented using the renders, that is expected to be less 
accurate because of the poor camera network. The renders enable 
the creation of a photogrammetric point cloud that is already 
scaled and referenced, and it is then compared with the classical 
methodology, which involves manually co-registering a 
photogrammetric point cloud roughly, followed by fine co-
registration using the iterative closest point algorithm (ICP).  
 

 
Figure 7: The area of the façade used for the accuracy evaluation. 
Results are reported for the entire areas shown in the figure and 
for just the area inside the red rectangle. 
 
RGB images were oriented at the highest quality option in 
Metashape, and a dense point cloud was generated at high quality 
with moderate depth filtering. The same settings were used to 

produce the dense point cloud via the proposed method using 
SuperPoint, where no manual co-registration or ICP has been 
required. 
Figures 8a–8d illustrate the C2C distance maps with scale bars in 
centimetres between each evaluated approach and the TLS point 
cloud taken as reference. Figures 8e and 8f present the percentage 
of points with C2C distances below increasing thresholds from 0 
to 5 cm. While 8e shows the curve for the entire generated point 
clouds, 8f reports the C2C distances excluding the peripheral 
regions, since they are more instable and reconstructed with 
higher uncertainty due to the configuration of the camera network 
(Figure 7). 
The first key finding is that the proposed method effectively 
enables the automatic referencing and scaling of the 
photogrammetric block using LiDAR data. Figures 8b–8d 
demonstrate absolute C2C errors of less than 5 cm for over 95% 
of the points. This metric highlights the potential of multi-modal 
matching as a method for global co-registration. In relative terms, 
the four generated point clouds are equivalent. Performing a final 
ICP on the point clouds (Figure 8b-8d) yields an RMSE identical 
to that obtained in Figure 8a, specifically 4.4 cm. However, 
working with ICP presents drawbacks, particularly in poorly 
reconstructed areas, such as the peripheral regions in this case. 
These areas heavily influence the ICP process, although they 
minimize the overall error, they worsen accuracy in regions with 
strong camera network coverage, such as the central areas. 
Figure 8f underscores the advantages of the proposed approach: 
in the central area, over 75% of the points achieve an accuracy of 
less than 1 cm, and 90% fall below 2 cm. Conversely, the same 
chart reveals that approach in Figure 8a penalizes the central area. 

 

  

 

(a) Metashape ICP (98% overlap) (b) SP+LG  

  

 

(c) SP + SG (d) RootSIFT + SP + LG  

  

 

(e) (f)  
Figure 8: Cloud-to-cloud distances between photogrammetric and TLS point clouds after applying classical co-registering approach 
with ICP (a) and co-registration via multi-modal matching using different combinations of descriptors (b–d). Accuracy comparisons 
for the full façade (e) and the center part only (f) in terms of percentage of points with C2C distances below increasing thresholds from 
0 to 5 cm. Common color scale for plots (a–d) is shown. Both the scale bar and the accuracy thresholds are in centimeters. 
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In addition, RootSIFT was run on full resolution images to 
leverage the potential accuracy gains from using such images and 
combined with SuperPoint features, increasing the number of 
keypoints from 4,096 kpts/image to 9,269 kpts/image. However, 
the lack of improvement is likely tied to the available GSD, 
which may not sufficiently support the expected gains in 
accuracy. 
 
3.4 Influence of 3D constraints on tie points 

The proposed approach is not merely a method for global co-
registration, but also offers the capability for deep integration of 
LiDAR and photogrammetric data. In the case study, it is 
assumed that the TLS point cloud can serve as a reference due to 
its higher accuracy compared to the photogrammetric point 
cloud, which is particularly affected by a dome effect caused by 
a suboptimal camera network (see C2C distribution in Figure 8a). 
The TLS data can thus be used as an anchor for the 
photogrammetric point cloud to improve the estimation of both 
extrinsic and intrinsic parameters, as well as calibration 
parameters, thereby reducing the dome effect. In the case study, 
the constraints on the tie points are introduced as actual ground 
control points with one millimeter accuracy. If the point-by-point 
TLS point cloud covariances are known, the same approach can 
be applied by appropriately weighting the additional constraints 
using the known a priori standard deviation. 
Two possible solutions are demonstrated (Section 2.4). The first 
involves manually selecting a few natural points to include as 

constraints in the BA, referred in Figure 9 as SP+LG+3GCP. 
Figure 9a shows the distribution of three natural points chosen to 
cover a significant portion of the cloud. They are clearly 
identifiable in the TLS point cloud and on the RGB images, and 
they are treated as ground control points, e.g., adding 2D 
projections on the images and the 3D LiDAR coordinates as 
constraints in the BA. Figure 9b illustrates an alternative 
approach. The results obtained with the global co-registration 
approach evaluated in the previous section can be treated as an 
initial orientation. At this stage, each 3D tie point can be 
associated with a corresponding TLS point using a nearest-
neighbor approach. These points, as 2D projections and their 3D 
LiDAR point correspondences, are then used as constraints in the 
BA. Empirically, 150 tie points were randomly sampled for this 
procedure. Although the points are not evenly distributed due to 
random sampling, they still cover the entire facade, unlike in 
Figure 9a. This approach is referred in Figure 9 as 
SP+LG+LiDAR constrains. 
As shown in Figure 9e and 9f, the introduction of constraints 
using three natural points or 150 3D tie points leads to a 
significant improvement in accuracy compared to the baseline 
method of SuperPoint + LightGlue. In the second case, 80% of 
the points achieve an accuracy of less than or equal to 1 cm in the 
non-peripheral area. This approach results in a substantial 
enhancement in the final co-registration accuracy between the 
RGB and TLS point clouds. 

 

  

 

(a) (b)  

  

 

(c) SP+LG+3GCP (d) SP+LG+LiDAR constrains  

  

 

(e) (f)  
Figure 9: Accuracy evaluation of SuperPoint + LightGlue and additional BA constraints with 3 GCPs (a, c and e) and with 150 
constraints on 3D tie points (b, d and f). Common color scale for plots (c–d) is shown. Both the scale bar and the accuracy thresholds 
are in centimeters. Accuracy comparisons for the full façade (e) and the center part only (f) is reported in terms of percentage of points 
with C2C distances below increasing thresholds from 0 to 5 cm. 
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3.5 Orientation of single frames on TLS point cloud 

The same approach can be applied to align single or a small 
number of DSLR images with a LiDAR point cloud. In this case, 
a purely a-posteriori approach on the final point clouds is not 
feasible, as it is not possible to generate a dense cloud from a 
single RGB image. Figure 10a illustrates the alignment of a 
single image from the same dataset used previously, alongside 
the three renders. The three renders were modelled using a 
pinhole camera model with a known focal length and their poses 
have been used to reference and scale the model. Given the 
limited number of images, the photo was assigned a camera 
model with a single radial distortion parameter. To verify the 
accuracy, three natural points were selected as checkpoints, 
yielding an RMSE of 1.5 cm. Figure 10b shows the projection of 
the RGB image onto the LiDAR point cloud. 
 

 
 

(a) (b) 
Figure 10: Orientation of a single photo (in green) to the three 
TLS renders (in blue) (a) and projection of the single image on 
the TLS point cloud (b). 
 
 

4. CONCLUSIONS 

The combined use of photogrammetry and TLS point clouds is 
becoming increasingly common. However, these datasets may 
have differing resolutions and accuracies, leading to 
inconsistencies when co-registering point clouds generated by 
the individual technologies. Several fusion approaches are 
available in the literature, predominantly for aerial datasets, while 
terrestrial cases are typically addressed by commercial solutions 
that can perform poorly when the LiDAR point cloud lacks 
colorimetric data. This method proposed in this paper aims to 
advance the integration of terrestrial laser scanning and 
photogrammetry for precise and efficient 3D reconstruction 
purposes. Leveraging novel matching approaches based on 
neural networks robust to significant radiometric variations in the 
image set, a new approach for RGB to LiDAR co-registration is 
presented. Specifically, we demonstrated the capability of deep 
learning matching algorithms to co-register individual TLS scans 
with a photogrammetric set of images that is thus referenced and 
scaled to the TLS coordinate system. Furthermore, we presented 
a simple method to incorporate LiDAR observations as additional 
constraints within the photogrammetric adjustment, enhancing 
the accuracy of the final photogrammetric point cloud. 
Therefore, multi-modal matching can rely on neural network-
based matchers trained to be robust to strong perspective 
distortions and significant lighting variations. Tests have shown 
that only SuperPoint local features combined with LightGlue and 
SuperGlue exhibits sufficient invariance to handle multi-modal 
matching between RGB images and TLS renders. The only non-
automatic step in the described procedure is the selection of the 
TLS renders resolution and RGB images to maximize the number 
of tie points in the multi-modal pairs. In future work, this could 

be automatized by extracting keypoints on an image pyramid 
with multiple scales. 
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