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Abstract: 

The automation of 3D modelling from point clouds has emerged as a highly intriguing research area, offering significant potential 

value in the context of scan-to-BIM (Building Information Modelling) process. 3D modelling from point clouds is often performed 

manually, which is time-consuming and prone to errors. Most methodologies employed for the processing of building point clouds 

data rely on geometric information to extract objects, thereby ignoring radiometric information, which could provide a highly 

valuable addition to object detection. Emerging approaches integrate both geometric and radiometric data to enhance the robustness 

of the algorithms. The objective of this study is to develop an automatic method for the extraction and 3D modelling of building 

openings (doors and windows). The process makes use of both geometric and radiometric information, applied to both indoor and 

outdoor environments.  The resulting workflow enhances the accurate detection of openings, facilitating the creation of BIM objects 

for integration into a 3D model. Evaluation results are promising, demonstrating the effectiveness of combining geometry and 

radiometry in point cloud analysis. 

1. Introduction

Research on automating building modeling from point clouds 

began in the 1990s, initially targeting city modeling to 

streamline 3D urban representations. This effort transitioned 

from using aerial photogrammetry to the more precise LiDAR 

(Light Detection And Ranging) technology, which enabled 

detailed 3D data collection through high-density point clouds. 

Laser scanning now provides detailed, but unstructured point 

clouds that require conversion into structured models, 

especially for BIM.  

Despite the research advancements in this area, the automation 

of scan-to-BIM process remains challenging, particularly for 

accurately detecting architectural features like doors and 

windows. Current software requires significant manual 

operations, which is time-consuming and prone to error, 

especially with complex geometries and cluttered scenes. This 

work aims to automate the detection of doors and windows 

from point cloud and their integration in 3D models, providing 

an efficient solution for creating BIM models for existing 

buildings. 

The paper is organized as follows: section 1 presents a state of 

the art in detecting openings from point clouds. Section 2 

resumes the methodological workflow of our developed 

approach. While the third section highlights the obtained 

results and discusses the finding. The paper ends with a 

conclusion presenting the research perspectives. 

2. Related work

The automatic detection of architectural openings, such as 

doors and windows, is a complex task due to the intricacies of 

indoor environments, data noise, and the need to accurately 

capture detailed structural elements. Numerous studies have 

sought to address this challenge, each proposing different 

methods that vary primarily based on the data types used to 

extract essential information for defining these openings. 

These methods can be categorized into three main approaches: 

those based on the geometric characteristics of the point cloud, 

those that incorporate its radiometric properties, and those that 

rely on deep learning techniques. 

2.1 Opening detection based on the geometry of the point 

cloud 

These methods are based on the principle that openings appear 

as "gaps" in the point cloud and are treated as empty spaces. 

Among the earliest approaches explored in this context is the 

method proposed by (Pu and Vosselman, 2007), which 

interprets the absence of points on wall planes as an indication 

of the presence of openings. This method extracts openings by 

generating a TIN (Triangulated Irregular Network) and 

identifying opening boundaries based on the edge lengths of 

the triangles in the TIN. (Budroni and Böhm, 2010) adopt a 

similar approach by identifying areas without laser 

measurements in the 3D point cloud and then refining the 3D 

model of each detected object. The method proposed by (Adan 

and Huber, 2011) and (Nikoohemat et al., 2017) relies on ray-

tracing to reconstruct the acquisition rays. Using these rays, 

they label the voxels into three categories: empty, occluded, 

and occupied. The detection of openings is then performed 

using an algorithm that leverages these labels, along with 

depth edges identified by the Canny and Hough-

Transformation algorithms, to train a SVM (Support Vector 

Machine) model based on the size, shape, and location of the 

openings. (Tuttas and Stilla, 2013) adopted a similar 

approach, but instead used point distribution histograms and 

binary maps generated with vertical and horizontal masks, 

followed by a Fourier transform to identify the openings. 
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(Pexman et al., 2021) and (Cui et al., 2019) address wall 

openings differently by detecting gaps through the 

identification of points located between two parallel facades of 

a wall. The points within this space are analyzed using a point 

density histogram in both horizontal and vertical directions, 

with points grouped based on empty intervals in the histogram. 

Other methods rely on segmentation and geometric shape 

analysis in point clouds to identify typical opening features, 

such as straight edges, closed contours, and standard door and 

window dimensions, using precise geometric criteria to 

distinguish openings from other architectural elements for 

easier extraction and integration into the BIM model. Several 

object extraction methods from point clouds are based on 

techniques that utilize 2D images generated from the projection 

of these 3D point clouds. For example, (Jung et al., 2018) 

project the wall points onto an inverse binary map, where the 

contours of the openings are analyzed to check if they are 

rectangular by using the perimeter-to-area ratio (P²/S). The 

segmentation is then refined using the Douglas-Peucker 

algorithm. (Ambrus et al., 2017) incorporate the rectangularity 

criterion in identifying potential openings. The issue of 

occlusions on walls, especially in indoor environments, is 

crucial to consider. (Michailidis and Pajarola, 2017) propose an 

approach that combines contour extraction on a binary image 

with the reconstruction of occluded areas on the wall.  

Projection onto a binary map can result in the loss of depth 

information when detecting openings. Therefore, (Wang et al., 

2011) recommend using the point cloud directly by converting 

it into voxels to maintain three-dimensional analysis. The 

extraction of borders is performed by analyzing the 

neighborhood relationships between each point and its 

neighbors. To precisely locate openings, the method uses a 

combination of projection and the Plane-Sweep Principle 

(Mesolongitis and Stamos, 2012). Similarly, (Boulaassal et al., 

2010) and (Wang et al., 2011) begin opening detection by 

identifying façade planes using the RANSAC algorithm, then 

extract contours with Delaunay triangulation, decompose them 

into straight segments and arcs, and generate connection points 

from segment intersections to create an accurate geometric 

model of the façade contours.  

2.2 Opening detection by adding radiometric component 

of point cloud 

Traditionally, opening detection primarily relies on the 

geometric characteristics of points, such as their X, Y, and Z 

coordinates. However, windows and doors in walls can have 

distinct colors and materials compared to the wall, leading to 

intensity variations, that can be exploited to identify openings 

more accurately. The use of radiometric data can help overcome 

the limitations of purely geometric detection, especially when 

the geometry of the opening is very similar (without gaps or 

recesses). Radiometric information typically includes intensity 

and color of the points, with some researchers even utilizing the 

thermal spectrum (Jarząbek-Rychard and Maas, 2023),which 

can significantly improve the accuracy of opening detection 

results. One of the first radiometry-based point cloud 

segmentation methods is that of (Zhan et al., 2009), which relies 

on region growing and region merging algorithms. 

(Macher et al., 2021) separately utilize intensity and color for 

segmentation. First, to exploit intensity, they analyze the 

intensity histogram to identify peaks using a density estimation 

curve, then iteratively extract points corresponding to maxima 

(walls) and minima (openings). To add robustness to detection, 

geometry is not completely abandoned; instead, the mean plane 

of the façade is used as a filter, retaining only the points 

corresponding to openings. Second, to exploit colorimetry, the 

approach uses the region-growing algorithm to group dense 

regions by calculating Euclidean distances for each point in a 

3D color space (RGB). This space is expanded into a 6th 

dimension by adding geometry (XYZ), thus incorporating 

XYZ information into the calculation of Euclidean distances 

between points. This combination of geometry and color is also 

adopted by (K. Ait El Kadi et al., 2014) by refining RANSAC-

generated plane segments with a region-growing algorithm and 

color similarity criteria, resulting in homogeneous surfaces in 

terms of coplanarity and radiometric similarity.  

In some cases, radiometric information may not be directly 

integrated into the point cloud but instead added using ortho-

images where each pixel contains both radiometric and depth 

information. (Adán et al., 2020) combine this information with 

labeled voxels of the wall (Adan and Huber, 2011). Their 

method is based on analyzing discontinuities in the 4D RGB-D 

space (Red, Green, Blue, and Depth) and utilizing knowledge 

of the visible regions of the wall, with color and depth 

components processed separately and combined sequentially. 

2.3 Deep Learning approaches 

The use of deep learning in automatic object detection from 

point clouds, particularly in indoor environments, has 

significantly evolved in recent years. By combining advanced 

neural networks with segmentation and classification 

techniques, it becomes possible to automatically extract both 

structured and unstructured elements, while reducing errors 

caused by noise and occluded areas. The approaches of point 

cloud processing can be classified into three categories: 

Voxel-Based approaches, Point-Based approaches, and 

Image-Based approaches.  

Voxel-Based approaches transform the space into voxels to 

create 3D tensors, which are then used for applying CNNs 

(Convolutional Neural Network), particularly for object 

classification (Hackel et al., 2017). 3D ShapeNets is one of the 

most widely used methods in this context. It involves 

reconstructing 3D-shaped objects using a CNN applied to a 

3D voxel grid (Wu et al., 2015). This approach learns the 

distribution of complex shapes from raw CAD models, 

automatically discovering a hierarchical representation of 

object parts, and supports object recognition, shape 

completion from 2.5D depth maps, and active recognition 

through optimal view planning. VoxNets is also used as a 

voxel-based deep learning model (Maturana and Scherer, 

2015). The system relies on two main components: a 

volumetric grid representing the estimated spatial occupancy 

of the segment and a 3D CNN that directly predicts the 

object's class from this occupancy grid.  

Unlike Voxel-Based approaches, the Point-Based methods 

work directly with point cloud data using architectures that 

include only fully connected layers and pooling layers, rather 

than convolutional layers. PointNet classifies point clouds in 

their entirety or performs semantic segmentation of a 3D 

scene (Qi et al., 2017). For object classification, the point 

cloud is sampled from a shape or pre-segmented from a scene, 

and the deep neural network generates scores for each 

candidate class. For semantic segmentation, the model 

processes individual objects or sub-volumes of a 3D scene, 

assigning scores to points for the corresponding semantic sub-
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categories. The PointNet model has led to the development of 

several variants tailored for specific segmentation objectives, 

including models like PCT, PointASNL, RandLA-Net, and 

SCF-Net, which are considered highly effective for the 

automation of opening reconstruction. (Qi et al., 2017) 

enhanced the PointNet model with PointNet++, which 

incorporates hierarchical point grouping and optimized layers 

to capture local contexts. 

A third category of methods, known as image-based or multi-

view approaches, applies neural networks to 2D tensors 

created from selected scene views. In shape retrieval tasks, the 

multi-view approach captures various images of the 3D mesh 

to perform classification through neural networks. (Boulch et 

al., 2018) propose a model called SnapNet that generates 

snapshots of the 3D scene to use as inputs for a 2D CNN. This 

model performs dense labeling on the images, followed by 

projecting the semantic segmentation results back onto the 

original point cloud. 

3. Methodology

After reviewing various methods in the state of the art, it was 

established that a deep learning approach would not be 

suitable due to the limited availability of training data, 

particularly for the detection of openings. Instead, a 

combination of geometric and radiometric techniques could 

significantly enhance the detection and modelling of 

openings. This section outlines the methodology developed to 

achieve this goal. It focuses first on the criteria for extracting 

information from point clouds to build hypotheses for the 

subsequent steps. Then, it presents the design of an automatic 

approach for detecting openings, followed by a semi-

automated method for integrating detection results into a 

digital model. 

3.1 Data acquisition 

The Faro Focus Premium 150 scanner was used for data 

acquisition. It offers high-speed, high-resolution captures and 

advanced features like Hybrid Reality Capture™ for fully 

colorized 3D data. The scan site comprises sections of the INSA 

building, including the north and west facades and specific 

interior areas, selected for their architectural complexity and the 

diverse types of openings present across indoor and outdoor 

environments. The post-processing and adjustment of the point 

cloud are performed using the Faro Scene software (Figure 1). 

It is important to note that our opening detection method relies 

on the assumption that wall segments are already identified and 

modeled. 

The geometric characteristics of the point cloud play a crucial 

role in characterizing and analyzing the structures, particularly 

for automatic opening detection. This information varies 

between indoor and outdoor environments, as illustrated in 

Table 1. The geometry of the exterior facade point cloud is 

relatively simple, with clear visibility of elements and 

unobstructed openings, making detection easier. In contrast, 

interior walls are more complex geometrically due to 

occlusions and obstructions, which affect point distribution and 

quality, complicating structure identification. Additionally, the 

similarity in geometry and color between certain objects and 

openings can create ambiguities, leading to eventual 

misidentification of objects as openings 

Figure 1. Point cloud data; (a) Exterior view (b) Interior view 

Outdoor Indoor 

+ -Simple façade geometry

- No occlusion

- Unobstructed openings

- Replaces the lack of

points due to outdoor

oblique acquisition

- - Lack of points due to

oblique scanner

acquisition

- Occlusion

- Details with the same

shape and colour

Table 1. Advantages and disadvantages of point cloud geometry 

for outdoor and indoor walls 

The intensity of points in a laser point cloud is strongly 

influenced by the reflective properties of the scanned materials. 

The recorded intensity depends on factors such as color, texture, 

and composition, with darker or rougher surfaces absorbing 

more light and resulting in lower intensity values, while lighter 

or reflective surfaces, like metal, reflect more light, producing 

higher intensity values. Other factors, such as the angle of 

incidence of the laser beam and the distance between the 

scanner and the object, also affect intensity values. We found 

that a perpendicular angle and shorter distance generally 

resulting in higher intensity, as observed in the point cloud. A 

near-normal incidence angle (perpendicular to the surface) and 

a short scanner-target distance generally led to higher intensity, 

and vice versa. These phenomena are clearly noticeable as 

illustrated in Figure 1. 

For the colorimetry, in outdoor environments, lighting 

conditions are generally favorable, ensuring good visibility and 

better data quality. In contrast, indoor environments may have 

less optimal lighting, leading to heterogeneous color values. 

This variability is often caused by uneven sun exposure, 

creating shaded areas in some regions and very bright areas in 

others, complicating surface analysis. These lighting variations 

must be considered when interpreting the acquired data to 

ensure optimal accuracy. The HDR (High Dynamic Range) 

mode reduces lighting discrepancies, particularly indoors, by 

capturing a wider range of brightness, preserving details in 
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bright areas and illuminating shadows, leading to more accurate 

color representation and better surface analysis.  

Figure 2. Influence of scanner position on intensity value; (a) 

Exterior wall, (b) Interior wall, (c) Portion of exterior façade. 

Intensity increases from blue to red. 

3.2 Assumptions 

This method, based on point clouds geometry, is improved with 

additional radiometric data. During the processing and selection 

of attributes for point cloud analysis, we found that the 

radiometry of the point cloud is significantly affected by 

acquisition conditions, such as ambient lighting, scanner-to-

target distance, and angle of incidence, as described in section 

3.1. We managed to reduce the impact on color by using a laser 

scanner equipped with a camera with HDR mode. But intensity 

values remained highly influenced by these conditions. The 

required corrections for intensity proved to be too complex and 

time-consuming, leading us to abandon its use, despite its 

potential benefits if properly corrected and to focus on the 

contribution of color. Two scenarios have been considered: One 

deals with the openings that has contrast with their wall host. A 

second one aims to search for openings that have the same color 

as their wall host. It's not a fixed rule, but generally speaking 

the first situation occurs mostly indoors and the second occurs 

outdoors. 

3.3 Automatic detection of openings from point clouds 

Our work involves processing point clouds through a filtering 

process that isolates and retains only boundary points of 

openings (Figure 3). These boundary points are crucial for 

accurately defining the dimensions of openings, which are 

necessary for their integration into the 3D BIM model. The first 

step is to extract only points that match the color of the openings 

(opening leaf and/or casing) using color-based extraction. The 

GMM (Gaussian Mixture Model) is used as an unsupervised 

learning algorithm in this initial extraction. Throughout each 

subsequent step, it is important to bear in mind that our 

objective is to progressively reduce noise and focus solely on 

isolating the openings. By "noise" we refer to all remaining 

points at each processing stage that are considered details other 

than the openings. Secondly, the resulting point cloud 

undergoes geometric processing, starting with plane extraction 

using the RANSAC (RANdom SAmple Consensus) algorithm, 

followed by boundary extraction with Alpha-Shape algorithm. 

After extracting the contour points, we apply the DBSCAN 

(Density-Based Spatial Clustering) algorithm for clustering 

dense regions.  

This process yields clusters representing windows and residual 

noise. The DBSCAN clustering is designed to facilitate the 

individual treatment of these clusters in subsequent steps. 

Thirdly, the points of each contour line are clustered by using a 

RANSAC line extraction algorithm. Looking for rectangular 

openings, two vertical lines and two horizontal lines are sought. 

For each point cloud forming a line, we calculate the median 

coordinates of points, resulting in a set of coordinates (xi, yi, zi) 

for each line. 

Horizontal Lines are divided into two sub-categories: 

• Upper Line: This is the horizontal line with the highest

median z-coordinate (zmax ) .

• Lower Line: This is the horizontal line with the lowest

median z-coordinate (zmin ) .

For vertical lines, the endpoints are defined by the coordinates 

(xi, yi, zmin). 

The coordinates of these points allow us to extract the geometric 

parameters of the vertical contours of the opening, as described 

in Table 2. 

Figure 3. Methodological workflow for automatic detection of 

openings 

Parameter Formula 

Height H 

Width E 

Insertion point  

(Centre of lower 

horizontal 

segment; Revit) X 

Table 2. Structural parameters of openings 
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At this stage, we can clearly identify openings in the walls and 

determine their dimensions and insertion points based on the 

detected lines. With shape constraints, only clusters with 

reasonable dimensions are retained to avoid preserving details 

that may look like openings but have unreasonable dimensions. 

This ensures that only the clusters corresponding to actual 

openings are kept. 

3.4 Semi-automatic modeling of the detected openings 

The openings are automatically integrated in the BIM model 

created in Revit thanks to Dynamo, a visual programming tool. 

The parameters of openings are exported to csv files. A 

Dynamo script developed by C. Gourguechon was adapted to 

implement a processing chain for automatically positioning 

windows in the digital model. It reads the csv file and uses the 

information from each entry (dimensions and insertion points) 

to generate and accurately place the corresponding objects, such 

as doors and windows, into the 3D model. The families of 

openings used are created in such a way that they can be adapted 

according to the dimensions reported in the csv file. 

Figure 4. Flowchart of the stages involved in inserting openings 

into the digital mode 

4. Results and discussion

In this section, results obtained at each stage of the developed 

methodology are analyzed, from the automatic detection of 

openings to their semi-automatic insertion into a BIM model. 

Additionally, an evaluation of the approach has been 

conducted. 

4.1 Automatic detection of openings from point 

The detection of openings in our approach relies on three key 

steps: (1) extraction based on colorimetry, (2) extraction of 

principal planes, (3) contour detection and classification into 

straight segments. This processing sequence is designed to 

eliminate points not belonging to the opening class at each 

stage, retaining only the points that define the contours of the 

openings. The processing results with and without the 

colorimetry-based extraction step clearly demonstrate that, in 

indoor environments, color extraction is crucial. As illustrated 

in Figure 5, without this step, the RANSAC algorithm often 

struggles to correctly identify the main plane containing 

openings, due to occlusions and numerous wall details. Color-

based segmentation significantly reduces unnecessary details, 

making the algorithm’s task easier and enhancing its overall 

performance. The residuals, which share the same color as the 

openings, still pose a challenge. To remove this noise and 

address issues related to the lack of points, whether due to 

occlusions or variations in lighting conditions, we introduce the 

geometric component in the processing step of our approach. 

The second step involves extracting plane segments using the 

RANSAC algorithm to obtain the main planes of a facade. 

Since we have chosen to use radiometric information for the 

initial extraction, the point cloud input to our RANSAC 

algorithm will be derived from this extraction based on 

colorimetry. For exterior facades, we found that applying the 

RANSAC algorithm directly to the facade point cloud produces 

nearly identical results to using the GMM extraction Figure 6. 

This is due to the simple geometry and lack of clutter on exterior 

facades. Therefore, we can skip the initial color-based 

extraction and use the original point cloud directly as input for 

the RANSAC algorithm.  

In the next stage of the method, contours were extracted from 

the RANSAC planes of the openings using the alpha-shape 

algorithm, which retains only the points on the edges of the 

openings. An additional analysis is required to identify only the 

straight-line segments that define the outer rectangular edges of 

the openings, assuming all openings are rectangular. In our 

approach, we use the DBSCAN algorithm to group dense 

regions into clusters, allowing us to analyze the specific 

parametric characteristics of each opening. Thus, the position 

and dimension parameters of each opening can be calculated. 

The results show a significant elimination of noise at each step 

of the process. Furthermore, as we progress through the 

processing chain, we are able to detect openings with increasing 

precision. This is particularly evident in the stages of contour 

extraction and object dimensioning. A visual comparison 

between reality and the detected openings shows that all 

openings are accurately detected without errors in an outdoor 

point cloud of a simple façade. The same is true for tests carried 

out on indoor wall point clouds with many hidden areas. The 

detection results are very satisfactory (Figure 7), and the 

precision and accuracy of this detection will be evaluated in 

section 4.4. 

Figure 5. Plane extraction by RANSAC from a raw point cloud 

without extraction based on colorimetry (3 RANSAC planes of 

an interior wall). 

Figure 6. Extraction of a plane by RANSAC (exterior façade) 
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Figure 7. Automatic detection of openings from wall point 

cloud 

4.2 Limits of opening detection 

After this detection stage, it is appropriate to emphasize the 

limits encountered. In order to analyze each opening separately 

and subsequently determine its specific parametric features, we 

opted to cluster the dense regions using the DBSCAN 

algorithm. This approach is essential to our methodology, but it 

has a limitation when dealing with adjacent and tightly spaced 

openings. Moreover, the principle of using RANSAC for 

extracting the opening plane implicitly assumes that all 

openings on a facade belong to the same plane, which is not 

always the case. These two aspects were observed on one of the 

exterior facades in our point cloud. The application of our 

approach on that point cloud fails to extract the openings. 

Therefore, specific modifications were introduced (Figure 8): 

- Adjacent openings are considered as a single opening. In the

automatic insertion into the BIM model, a family of openings

consisting of 4 sub-openings is defined.

- The extraction of the main plane using RANSAC does not

directly provide the plane that contains the openings. Therefore,

we list all possible planes and select the one that we consider to

be holding the openings.

Figure 8. Proposed solution for detection on a complex exterior 

façade: (a) point cloud, (b) selected RANSAC plane, (c) contour 

extraction, (d) clustering by DBSCAN, (e) classification of 

straight segments. 

4.3 Semi-automatic modeling of detected detection 

openings 

To ensure semi-automatic insertion of detected openings into a 

BIM model of structural entities (walls and ceilings) created 

manually, a Dynamo script was used. This script takes a CSV 

file containing the parameters of our detected openings as input 

and inserts them into the corresponding walls. Instead of 

defining fixed families for windows and doors, we adopted 

adaptable families based on dimensions (height, width) defined 

in the CSV file for each object. As a result, two main families 

(generic door and window) were created, along with a specific 

window family for four adjacent openings, tailored to our 

building's particular case. Ultimately, all openings were 

successfully inserted into the digital model, along with 

structural elements. 

Figure 9. Result of semi-automatic insertion of openings in the 

digital model: (a) point cloud of the north facade of the 

building, (b) BIM model with openings, (c) point cloud of the 

west facade. 

4.4 Assessment of the detection and insertion results 

Our methodology is tested on a point cloud containing 119 

openings, including doors and windows, between the indoor 

and outdoor environments, and is subsequently evaluated to 

determine its performance level. Some algorithms used in the 

geometric part of our method require the definition of precise 

parameters. Therefore, it is crucial to consider a sufficient 

density of the point cloud to ensure efficient processing. A 

spatial sampling of 1 cm is applied from the outset before using 

the method. The parameters used in the selected algorithms are 

listed in Table 3. 

Parameters Value (m) 

Sampling threshold 0.01 

Plan segmentation threshold RANSAC 0.005 

Edge extraction threshold α-SHAPE 0.05 

Dense region separator DBSCAN 0.10 

Line segmentation threshold RANSAC 0.02 

Table 3. Threshold values adopted at a sampling value of 1cm 

for this project 

The developed method faces various challenges in extracting 

the contours of openings and calculating their parameters. 

However, by utilizing criteria that characterize openings in 

walls, we were able to devise an approach that overcomes these 

difficulties. As a result, more than 97% of the 119 openings 

were successfully detected, whether extracted from the exterior 

or interior point clouds. Table 4 details the result of detection 

for openings between indoor and outdoor environments. 
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Existing 

openings 

Detected 

openings 

Windows 

Detected 

Doors 

Detected 

Out- 

door 

89 100% 88 1 

In- 

door 

30 90% 17 10 

Table 4. Results of detections for openings 

Two windows were not detected because they are adjacent to 

other openings of the same color and partially obscured by 

objects in the interior environment. Additionally, our method 

failed to identify a door whose point cloud was heavily 

obscured and whose color was altered by shadows as shown in 

Figure 10. 

Figure 10. Door detection error in an indoor environment 

To evaluate the results, we will rely on the coordinates of 

insertion points and the automatically calculated dimensions of 

openings:  

• Comparison between indoor and outdoor

In our evaluation data, we have 7 openings that are detected 

from both indoor and outdoor point clouds. By superimposing 

the two extracted point clouds, indoors and outdoors, on the 

same reference frame, it is observed that the difference between 

their coordinates occurs mainly along the Z axis (Figure 11). 

This may be due to a narrowing of the opening in depth between 

the interior and exterior. Table 5 summarizes the deviations 

obtained on Z coordinate. 

Z 

Deviation between indoors and outdoors 

Average 

deviation 

Standard 

deviation 

Mode 

(mm) 

Min 

(mm) 

Max 

(mm) 

Win

dows 

1 cm 3mm 7 5 11 

Table 5. Results of the Z differences between the detection of 

the indoor and the outdoor point cloud 

Figure 11. Superimposition of the detected edges from indoor 

and outdoor point clouds 

• Comparison with manually extracted data

To evaluate the automatic detection of all windows and doors, 

they were manually integrated into the BIM model using the 

point clouds as a reference. One may note that manual insertion 

of openings into the model is prone to errors, as this process can 

vary from one modeler to another. This variability can lead to 

differences in how openings are positioned, depending on the 

operator. The comparison between automatic and manual 

insertions is conducted, keeping in mind that manual 

positioning in Revit has an accuracy margin of several 

centimeters relative to real-world measurements. We note that 

we have excluded the windows from the previously identified 

edge case in section 4.2, as the proposed solution does not 

accurately reflect the true nature of the openings. The openings 

used for comparison are therefore 24 exterior windows and 10 

interior doors. 

Z 

Deviation between manually and 

automatically extraction 

Average 

deviation 

Standard 

deviation 

Mode 

(cm) 

Min 

(cm) 

Max 

(cm) 

Windows 

(outdoor) 

3 cm 4cm     3  1 4 

Doors 

(indoor) 

4 cm 5cm   2 1 6 

Table 6. Results of Z differences between automatic and 

manual insertion 

The average difference of 3 cm across all openings indicates 

highly satisfactory detection and insertion results. A maximum 

discrepancy of 6 cm for doors can be attributed to occlusions in 

the interior point cloud. This comparison leads us to validate 

our automatic detection method for openings, as well as their 

semi-automatic insertion into the 3D model with Dynamo. 

4.5 Discussion 

The developed method for extracting openings from point 

clouds has yielded highly satisfactory results in both indoor and 

outdoor environments, as demonstrated by the qualitative and 

quantitative evaluations. The approach achieved a 97% 

detection rate for 119 openings, though the accuracy of the 

opening dimensions is influenced by the complexity and 

occlusions in the point cloud data. Challenges related to 

occlusions were successfully addressed through the integration 

of various algorithms. The use of radiometry proved crucial for 

indoor openings detection, but issues with noise in the point 

cloud were mitigated by incorporating geometric components. 

The algorithm parameters depend on the specific point cloud 

being analyzed and may need adjustment or refinement based 

on the environment. While some cases, like the north facade of 

the INSA building, posed challenges in detecting individual 

openings, these issues can be managed with careful attention 

during the semi-automatic insertion stage 

5. Conclusion

In conclusion, a method for the automatic detection of openings 

from point clouds and the integration of openings into a BIM 

model was developed. The approach, which combines 

geometric and radiometric data, achieves a high detection rate 

and demonstrates good precision in detecting openings, with 

minimal deviation from manual identification. Although some 

challenges, such as the detection of adjacent openings and the 

need for user intervention in complex point clouds, were 

encountered, the method provides a solid foundation for semi-
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automated BIM modeling. This work contributes to improving 

the efficiency and accuracy of the BIM process in the context 

of structural modeling. Looking ahead, there are several 

opportunities for further improvement. Increasing the level of 

automation in detection could help reduce reliance on user 

intervention, particularly in complex structures, by integrating 

deep learning methods. For example, training a model for 

colorimetric classification could enhance the accuracy of the 

extraction based on colorimetry at the first step of the approach. 

Additionally, generalizing the approach to handle all types of 

point clouds, independent of their specific characteristics, 

would enhance its versatility. Finally, achieving full automation 

of the BIM model insertion process, eliminating the need for 

manual steps in Dynamo, would further streamline the 

workflow and improve the overall efficiency of the automation. 
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