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Abstract 

 

Orthophotos offer a distortion-free and high-resolution depiction of architectural and mechanical elements, serving critical functions 

in reverse engineering, defect detection, and condition assessment. Recent advancements in low-cost sensors have made them 

increasingly popular for orthophoto generation due to their affordability and ease of use. However, reflective surfaces pose significant 

challenges in traditional photogrammetric workflows, leading to inaccuracies in feature matching and 3D reconstruction. This paper 

investigates the integration of Gaussian splatting into the orthophoto generation process as a solution to address these challenges. 

Gaussian splatting is particularly effective in handling irregular and sparse data, making it suitable for scenarios involving reflective 

surfaces. In this study, datasets containing reflective surfaces, such as metallic elements and urban environments, were used to evaluate 

the performance of Gaussian splatting compared to traditional photogrammetry workflow. Our findings indicate that Gaussian splatting 

effectively reduces artifacts caused by reflections while preserving geometric accuracy and critical detail in non-reflective areas. 

Additionally, this approach proves to be computationally efficient, making it ideal for low-cost sensor applications. Although 

limitations remain, such as smoothing effects that may reduce fine detail, the proposed methodology shows promise for improving 

orthophoto quality in complex environments. 

 

 

1. Introduction 

Orthophotos offer a high-resolution, distortion-free view of the 

current state of a building, site, or mechanical element. They 

serve critical functions in various applications, including reverse 

engineering, defect identification, and studies of wear and tear 

(Yastikli et al., 2017). In the context of architectural applications, 

orthophotos are essential for documenting the existing conditions 

of architectural elements, including facades, roofs, and structural 

components. By capturing the building as it stands, orthophotos 

provide a baseline reference for identifying areas in need of 

repair, deterioration, or modifications Karataş et al., 2022). This 

capability is particularly valuable in preservation efforts and for 

managing historical buildings, where maintaining the integrity of 

the structure is paramount. 

Recent advancements in sensor technology have led to 

substantial improvements in the quality of low-cost sensors. 

Modern smartphone cameras and compact sensors, often 

integrated into small unmanned aerial vehicles (UAVs), now 

offer high-resolution imaging capabilities, improved low-light 

performance, and enhanced image stabilization features 

(Elkhrachy, 2021). These sensors have gained popularity due to 

their low operational costs, ease of use, and versatility, making 

their applicability for orthophoto production increasingly 

investigated (Green et al., 2019). For instance, UAVs equipped 

with such sensors allow for efficient data collection over large 

areas, enabling rapid assessment and documentation of urban 

environments and natural landscapes alike (Lahoti et al., 2020). 

However, reflective surfaces, such as glass, polished metals, and 

water bodies, can introduce significant artifacts in the orthophoto 

generation process that compromise the quality of final product. 

These challenges arise on the one side because of artifacts like 

glare and reflections, where bright highlights and distortions can 

significantly affect the quality and accuracy of the data collected. 

On the other hand, non-Lambertian surfaces cause significant 

issues in the traditional photogrammetric workflow. 

During the image orientation phase, reflections can cause 

mismatches between corresponding points in different images, 

resulting in inaccuracies in tie points, which are crucial for 

establishing the geometric relationships between images. This 

issue is exacerbated by the presence of glare, which can distort or 

eliminate key visual features necessary for accurate feature 

extraction and matching. Multi-path reflections, wherein light 

bounces off multiple reflective surfaces before reaching the 

camera, create ghosting effects that can further confuse the 

matching algorithms (Karami et al., 2021). These ghosting 

artifacts not only introduce noise into the captured images but 

also complicate the dense matching process, which involves 

computing dense correspondences between image pairs. In such 

cases, the algorithm may incorrectly associate features from 

different reflections, leading to erroneous depth information and 

distortions in the 3D reconstruction (Nicolae et al., 2014). 

Consequently, the resulting models may fail to accurately 

represent the real-world scene, particularly in environments with 

a high prevalence of reflective materials, such as urban settings 

or industrial sites. 

The complexities introduced by reflective surfaces necessitate 

innovative approaches to mitigate their impact on 

photogrammetric processes. Researchers have explored various 

techniques, including adaptive filtering, radiometric 

normalization, and advanced sensor calibration methods. 

Adaptive filtering aims to enhance image quality by reducing the 

effects of glare and reflections, allowing for more accurate 

feature extraction (Calantropio et al., 2020). Radiometric 

normalization techniques are employed to adjust the brightness 

and contrast of images, aiming to compensate for variations in 

illumination caused by reflections. However, despite these 

advancements, reflective surfaces remain a significant challenge 
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in photogrammetry, often leading to inaccuracies that complicate 

data analysis and interpretation. 

The persistent difficulties in accurately reconstructing scenes 

with reflective surfaces have driven further research into 

alternative methodologies. For example, recent studies have 

investigated the integration of machine learning techniques, 

which can help to identify and classify reflective surfaces more 

effectively, potentially improving the accuracy of feature 

matching (Ma et al., 2014). Additionally, emerging approaches 

such as NeRF and Gaussian splatting have shown promise in 

enhancing the robustness of reflective surface generation by 

effectively managing reflections and providing more visually 

appealing renderings (Croce et al., 2024). 

This paper investigates the orthophoto generation process by 

integrating Gaussian splatting into the workflow. Gaussian 

splatting is a novel technique that involves projecting Gaussian 

functions onto a 2D image plane to represent 3D points 

effectively. Each point in 3D space is represented as a Gaussian 

blob or "splat," which inherently encapsulates information about 

its location, size, and shape. This representation allows for the 

distribution of the point’s influence over a region of the image, 

leading to smooth and continuous renderings that accurately 

capture the spatial distribution of the underlying data. The 

inherent properties of Gaussian splats allow for smoother 

transitions and gradients in the rendered images, which can 

significantly enhance the quality of orthophotos produced in 

challenging environments. These factors collectively suggest that 

Gaussian splatting may represent a promising alternative to 

produce orthophotos, particularly in the context of low-cost 

sensors and reflective surfaces. In this paper, we are evaluating 

the feasibility of Gaussian splats for orthophoto generation. 

 

2. Gaussian splats overview 

Gaussian splatting has emerged in the fields of computer 

graphics, photogrammetry, and remote sensing, effectively 

addressing the challenges associated with rendering and 

visualizing 3D data. Unlike traditional rendering methods that 

rely on meshes or point clouds, Gaussian splatting represents 3D 

points as Gaussian distributions, or "blobs." Each point in a 3D 

point cloud is associated with a Gaussian function defined by its 

mean, which indicates the location of the point, and its 

covariance, which determines the spread or "blur" of the 

Gaussian. Mathematically, this can be expressed as: 

  

 𝐺(𝑥, 𝑦, 𝑧) = 𝐴 ⋅ 𝑒𝑥𝑝 (−
(𝑥−𝜇𝑥)

2+(𝑦−𝜇𝑦)
2
+(𝑧−𝜇𝑧)

2

2𝜎2 )   (1) 

 

where:  

 

A represents the amplitude of the Gaussian,  

μx,μy,μz  denote the coordinates of the center of the splats  

σ controls the Gaussian's spread 

 

This approach allows the influence of each point to be distributed 

over a region of space, leading to a smooth representation that 

captures local variations in the data (Kerbl et al., 2023). 

The rendering process in Gaussian splatting consists of several 

key steps. Initially, the 3D points are projected onto a 2D image 

plane using the camera's intrinsic and extrinsic parameters. 

Following this projection, the contribution of each Gaussian to 

the pixel values is calculated based on its distance from the pixel; 

points closer to the pixel have a stronger influence. Subsequently, 

the contributions from multiple overlapping Gaussians are 

accumulated, resulting in a final pixel color value that represents 

the combined influence of all contributing Gaussians. To enhance 

visual quality, post-processing techniques such as tone mapping 

and filtering can be applied to the rendered image, reducing 

artifacts and improving the overall appearance (Wu et al., 2024). 

Efficient computation of the splatting operation is critical, 

especially for large datasets. Techniques such as the Fast Fourier 

Transform (FFT) can be employed to speed up the convolution 

process, as Gaussian functions are particularly amenable to 

frequency domain manipulation. 

Gaussian splatting also incorporates concepts from kernel density 

estimation (KDE), allowing it to represent point distributions in 

a more statistically robust manner. Each Gaussian blob can be 

viewed as a kernel that contributes to a density estimation of the 

spatial data, which helps in visualizing point clouds with varying 

densities. This flexibility in handling data distributions makes 

Gaussian splatting particularly effective in scenarios where 

traditional methods struggle, such as in the presence of 

occlusions or varying reflectivity across surfaces. Furthermore, 

the ability to adjust parameters like bandwidth and spread enables 

users to fine-tune the output for specific applications, whether for 

architectural documentation or complex scene reconstruction. By 

employing techniques like adaptive bandwidth selection, 

Gaussian splatting can adapt to local data characteristics, 

enhancing its usability in real-world applications (Chen and 

Wang, 2024). 

The advantages of Gaussian splatting are particularly 

noteworthy. One significant benefit is its ability to handle sparse 

and irregular data effectively. This is especially useful in 

scenarios where point clouds may be unevenly sampled or where 

data acquisition is inherently challenging, such as in 

environments with reflective surfaces. Furthermore, the smooth 

nature of Gaussian functions minimizes the visibility of artifacts 

that are common in traditional rendering approaches, leading to 

visually appealing images, with less noticeable artifacts 

compared to traditional methods that can suffer from issues like 

aliasing and noise Additionally, Gaussian splatting is 

computationally efficient, making it suitable for use with low-

cost sensors in resource-constrained environments. Its rapid 

generation of high-quality visualizations provides significant 

advantages in real-time applications. 

Recent studies have demonstrated the potential of Gaussian 

splatting in various applications, including virtual reality, 

augmented reality, and environmental monitoring (Li et al., 

2025). Its adaptability to different data types and its ability to 

produce high-quality visual outputs make it an appealing option 

for researchers and practitioners in the fields of photogrammetry, 

virtual and augmented realty. As the demand for accurate and 

reliable 3D models continues to grow across diverse sectors, the 

integration of Gaussian splatting into orthophoto generation 

workflows could represent a significant advancement in the field. 

A notable comparison arises between Gaussian splatting and 

Neural Radiance Fields (NeRF). While both techniques are used 

for 3D representation, they operate on fundamentally different 

principles. NeRF utilizes deep learning to synthesize novel views 

of a scene by modelling the volumetric scene as a continuous 

function. It takes a set of images from different viewpoints and 

learns to predict the colour and density of points in space, 

allowing for photorealistic view synthesis (Mildenhall et al., 

2021). This approach excels in creating complex lighting effects 

and can generate images with intricate details and shading, 

particularly in well-lit environments. However, it often requires 

substantial computational resources and training data, which can 

be a limiting factor in real-time applications. 

In contrast, Gaussian splatting simplifies the rendering process 

by directly representing points as Gaussian distributions. This 

method allows for efficient processing of sparse and irregular 

datasets without the need for extensive training or computation, 

making it more suitable for real-time applications and scenarios 

with limited resources. Gaussian splatting focuses on the spatial 
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distribution of data rather than learning a complex model, which 

can be advantageous in certain environments, especially those 

involving reflective surfaces or incomplete data. 

 

3. Materials and method 

3.1 Orthophoto workflows 

In this paper, we aim to test and compare two different workflows 

for orthophoto generation: the conventional photogrammetric 

method and a Gaussian splatting-based approach. An overview 

of both methodologies is provided in Figure 1, illustrating the key 

stages of each process.  

Both workflows typically begin with image acquisition, where 

UAVs or ground-based cameras capture images of the target area 

or object from multiple viewpoints to ensure comprehensive 

coverage. This stage is critical as the quality and consistency of 

the images directly affect subsequent steps. However, when 

dealing with reflective or transparent materials, such as glass or 

metal surfaces, specific challenges arise. These materials can 

distort imagery due to specular reflections and refraction, which 

alters the appearance of the object and complicates the 

reconstruction process. Reflections from sunlight or artificial 

light sources often create glare, obscuring key features and 

causing difficulties in accurately identifying and matching points 

between images. Once the images are captured, both workflows 

require image alignment and orientation, a task typically 

achieved through a structure-from-motion (SfM) strategy. SfM 

operates by extracting key points from overlapping images and 

using these points to reconstruct both the camera's position and 

orientation. In addition, it generates a sparse 3D point cloud 

composed of tie points—the corresponding features identified 

across multiple images. For well-textured, opaque surfaces, this 

process generally works efficiently, with the algorithm reliably 

matching features between images. However, for reflective or 

transparent surfaces, specular reflections and refraction can 

introduce significant challenges. Reflected light may result in 

mismatches between corresponding points, as the visual features 

captured in different images may vary based on the angles of 

reflection or refraction. This can lead to erroneous or insufficient 

tie points, significantly affecting the accuracy of the overall 

orientation. In cases where the number of extracted tie points is 

too low, the compensation may fail to compute an accurate 

orientation, resulting in a poorly alignment of the images. Next, 

the workflow involves georeferencing where Ground Control 

Points (GCPs) or other forms of real-world data, such as camera 

positions computed with Post-Processed Kinematic (PPK) 

techniques, are used to align the model within a geographic 

coordinate system. This step ensures that the 3D model and the 

resulting orthophoto is spatially accurate and can be used in 

applications like mapping or site analysis. 

At this stage, the two workflows begin to diverge. In the 

conventional photogrammetric workflow. Multi-view stereo 

(MVS) is used to generate a dense 3D point cloud by estimating 

depth information from overlapping images. While MVS 

typically excels at reconstructing well-textured surfaces, 

reflective and transparent materials pose significant challenges. 

Reflections can confuse the MVS algorithms, as light bouncing 

off different surfaces may be misinterpreted as depth 

information. This can result in distorted or incomplete 

reconstructions, particularly in areas where reflections dominate 

the captured images. Similarly, transparent objects, such as glass, 

may refract light in ways that lead to incorrect depth calculations, 

further complicating the model. Finally, the actual orthophoto 

generation takes place, where the images are projected onto the 

3D model to produce a distortion-free view associated with 

georeferencing information such as pixel size of the orthophoto 

and its location. The accuracy of the orthophoto largely depends 

on the quality of the 3D reconstruction. For standard, opaque 

surfaces, this process yields high-resolution, geometrically 

accurate images. However, for reflective or transparent objects, 

the artifacts and distortions introduced in earlier stages often 

result in poor-quality orthophotos. These artifacts manifest as 

ghosting, blurring, or gaps in the orthophoto, particularly in 

regions where reflections dominate the image. To create 

orthophotos using the conventional photogrammetric approach, 

we employed Metashape, a widely used software known for its 

robust structure-from-motion (SfM) and multi-view stereo 

(MVS) capabilities. Metashape enabled us to orient images, 

generate 3D meshes and create orthophotos. 

 

 
Figure 1. Workflows for orthophoto generation compared in this paper: the canonical photogrammetric workflow (in orange on the 

right) and the proposed Gaussian splatting workflow (in blue on the left). 
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In parallel, we evaluated the Gaussian splatting workflows. The 

first step in the Gaussian splatting workflow involves using 

Jawset PostShot (https://www.jawset.com/), a software tool 

designed for advanced 3D rendering based on Gaussian 

functions. The process begins with importing the image 

orientation parameters generated by Metashape. This choice was 

made to ensure consistency with the orientation used in the 

conventional photogrammetric workflow, rather than computing 

the image orientation directly in PostShot using the COLMAP 

implementation available within the software package. Importing 

parameters from Metashape allows us to maintain the alignment 

and spatial relationships established during the initial processing 

stages. At this stage, it appears that adding control points directly 

in PostShot is not feasible. This limitation emphasizes the 

importance of having a reliable orientation framework in place 

before transitioning to the Gaussian splatting workflow. After 

importing the orientation parameters, it is important to set the 

images to their original size within PostShot. This is a critical 

step because altering the image dimensions can lead to changes 

in the calibration parameters, ultimately affecting the accuracy of 

the Gaussian splatting process. Keeping the original size 

preserves the spatial fidelity of the captured data and prevents the 

introduction of geometric distortions that could compromise the 

final output. At this point the Gaussian splats are computed using 

the sparse point cloud data obtained as result of the orientation 

phase. Each 3D point is represented as a Gaussian blob, allowing 

for smoother visual representations. In this stage, the software is 

configured to use all images for training and perform 30,000 

iterations, a parameter that plays a significant role in determining 

the quality of the rendering. Higher iteration counts typically lead 

to more refined and detailed visual outputs, as they allow the 

algorithm to converge on an optimal representation of the 3D 

data. Currently, PostShot supports two distinct splat profiles, 

each designed to optimize the rendering process for different 

scenarios: 

• Splat MCMC Profile: This profile employs a Markov 

Chain Monte Carlo (MCMC) approach, which allows 

users to limit the number of splat primitives generated. 

By doing so, it effectively reduces the memory and disk 

space requirements of the resulting model. This is 

particularly advantageous when working with large 

datasets or in resource-constrained environments, as it 

streamlines the rendering process without significantly 

compromising visual fidelity. 

• Splat ADC Profile: Similar to the Splat MCMC profile, 

the Splat ADC (Adaptive Density Control) profile also 

controls the number of primitives used. However, it 

differs in its method of producing scene detail during 

the training phase. The ADC profile focuses on 

adapting the density of the splats based on the 

complexity of the scene, allowing for more nuanced 

detail in areas requiring higher fidelity. This approach 

can enhance the quality of renderings in scenarios 

where fine details are essential, such as reflective or 

transparent surfaces. 

In our test we used Splat MCMC Profile with maximum splats 

count to 5,000. 

Once the training phase of Gaussian splatting is complete, the 

resulting Gaussian model is exported as a PLY file. This format 

is widely used for storing 3D Gaussian splatting models. The 

exported PLY file can then be imported into Supersplat. 

(https://github.com/playcanvas/supersplat). In Supersplat, users 

have the capability to refine their 3D models by performing 

various editing tasks. One of the key features of this software is 

its ability to identify and remove artifacts, such as ghosting 

effects. This tool allows for precise manipulation of splat 

properties, ensuring a cleaner and more accurate representation 

of the scene. Once the necessary edits are made in Supersplats, 

the refined model is imported into Spline (https://spline.design/), 

a platform specialized in 3D modelling and rendering. Within 

Spline, users can conduct further edits, including cropping the 

area of interest, adjusting parameters such as splat size, position, 

and opacity to enhance the final output, contributing to a more 

realistic rendering. A crucial step in preparing for orthophoto 

generation is defining the orthogonal plane. This plane serves as 

the reference for creating orthographic renderings, ensuring that 

the final output maintains geometric accuracy. Finally, once the 

orthogonal plane is established, Spline can generate the 

orthographic rendering of the scene. 

 

3.2 Test datasets 

The proposed methodology was tested on several datasets 

captured in different scenarios like, metallic mechanical 

elements, urban environments with a prevalence of reflective 

surfaces and compared with the traditional photogrammetric 

workflow. 

In particular, three main datasets were used (Figure 2):  

• “San Michele” dataset; 

• “Industrial and transparent” dataset; and 

• “Architectural reflective” dataset. 

A summary of the datasets is presented in Table 1. 

 

 

Dataset Typology Number of images 
Camera type and 

image size 
Description 

San Michele UAV dataset 224 
DJI Mavic 3E 

5280×3956 

Cultural Heritage, 

Good texture, 

Complex shape 

Industrial and 

transparent 

(Synthetic_Metallic) 

Synthetic close-range 

dataset 
300 

Virtual pinhole camera, 

1080x1920 px 

Textureless, 

Complex, 

Reflective, 

Industrial and 

transparent (Bottle) 
Close-range dataset 300 

Huawei p20 pro, 

1080x1920 px 

Complex shape, 

Highly refractive 

Architectural Glass 

Case 

Architectural reflective 140 Samsung A32 

2604x4624 px 

Architectural, highly 

reflective, glass 

surfaces 

Table 1. Test dataset overview and data. 
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a.  b.  c.  d.  

Figure 2. Test dataset overview: “San Michele” (a), “Synthetic_Metallic” (b), “Bottle” (c) and “Architectural Glass Case”. 

 

The first test dataset, referred to as "San Michele", was a 

feasibility study conducted using a typical UAV dataset aimed at 

surveying the church of San Michele. This dataset is particularly 

challenging due to the presence of complex architectural features, 

such as the bell tower, along with the surrounding buildings 

within the hamlet. Furthermore, the nearby presence of trees 

introduces an additional challenge, as vegetation can complicate 

the generation of high-quality orthophotos due to irregular 

textures and occlusions. Despite these complexities, the dataset 

presents well-textured surfaces that are expected to pose minimal 

issues for both the conventional photogrammetric workflow and 

the Gaussian splatting method. The objective of the San Michele 

test is to assess the viability of the proposed approach, ensuring 

that orthophoto with Gaussian splatting can effectively handle 

diverse and complex structures, as well as natural obstructions, 

in comparison to traditional methods. The "San Michele" 

complex was surveyed with 224 UAV images. The raw data of 

the GNSS receivers of the drone were used to compute in PPK 

mode the camera positions. As a base station a virtual master 

station was computed in the areas using the network of permanent 

GNSS stations SPIN3 GNSS (https://www.spingnss.it/). 

The second dataset, referred to as "Industrial and Transparent", 

was constructed using data from the publicly available NeRFBK 

dataset (Yan et al., 2023), accessible on GitHub 

(https://github.com/3DOM-FBK/NeRFBK). This dataset offers a 

comprehensive collection of images and 3D data, specifically 

curated for the evaluation of view synthesis methods and 3D 

reconstruction techniques. The NeRFBK dataset is particularly 

valuable for testing in challenging environments due to its 

diverse range of materials, including transparent and reflective 

surfaces—factors that often pose significant difficulties in 

traditional photogrammetric workflows. The dataset's inclusion 

of industrial scenes, with their complex geometry and reflective 

materials, makes it ideal for assessing the capabilities of both 

canonical photogrammetric techniques and the proposed 

Gaussian splatting approach. This allows for rigorous testing of 

reconstruction accuracy and the handling of difficult materials 

like glass and metal. For our "Industrial and Transparent" dataset, 

we utilized two subsets: "Synthetic_Metallic" and "Bottle." The 

"Synthetic_Metallic" dataset is a synthetic collection featuring a 

metal mechanical part with complex geometry, minimal texture, 

and a highly reflective surface. This dataset was generated using 

a virtual pinhole camera, capturing 300 images at a resolution of 

1080x1920 pixels. Its poor texture and reflective properties pose 

challenges for traditional photogrammetric techniques. The 

second dataset, "Bottle," consists of 300 real images captured 

using a Huawei P20 Pro smartphone, documenting a transparent 

glass bottle from various angles. The primary processing 

challenge for this dataset lies in image matching, as refraction 

and specular reflections caused by light passing through the 

bottle surface significantly complicate feature detection and 

matching. Both datasets test the robustness of Gaussian splatting 

and photogrammetric methods when dealing with challenging 

material properties such as reflectivity and transparency. For this 

dataset, the ground truth data was used to establish the scale and 

align the model within a consistent reference system. This 

alignment also provided a basis for evaluating the performance 

of the two reconstruction techniques and orthophoto generation 

workflows. 

 

 

  Conventional workflow Gaussian splatting workflow 

Dataset 

Orientation 

and 

georeferencing 

Dense 

Reconstruction and 

mesh generation 

Orthophoto 

Gaussian 

spalts 

generation 

Orthophoto 

San Michele Achieved 
No evident artifacts or 

gaps 

No artifacts on 

the buildings 

some artifacts 

on vegetation 

No evident 

artifacts or 

gaps 

No artifacts on buildings, 

overall resolution bit lower 

than the one of 

conventional workflow 

Industrial and 

transparent 

(Synthetic_Metallic) 

Achieved 
Evident artifacts and 

missing parts 
Evident artifacts 

No evident 

artifacts or 

gaps 

No evident artifacts or gaps, 

surface smoother than 

original photos 

Industrial and 

transparent (Bottle) 
Achieved Not achieved Not achieved 

Some artifacts 

and ghosts 

effects 

Some artifacts and ghosts 

effects 

Architectural Glass 

Case Achieved 
Evident artifacts and 

missing parts 
Evident artifacts 

Some artifacts 

on the roof of 

the case 

No evident artifacts or gaps 

Table 2. Results overview for the different datasets. 

 

The third and final dataset, referred to as the "Architectural Glass 

Case," focuses on the survey of a structure primarily composed 

of glass surfaces. This dataset presents a particularly challenging 

scenario due to the extensive presence of reflective glass 

elements, which constitute the majority of the building’s exterior. 

The reflective nature of these surfaces captures and mirrors 

nearby objects, such as surrounding buildings and trees. 

Additionally, while there are some opaque surfaces within the 
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scene, these are entirely textureless, further increasing the 

difficulty of reconstruction.The primary aim of this dataset is to 

assess the feasibility of using Gaussian splatting to generate 

orthophotos for complex, reflective architectural structures. The 

dataset consists of 140 images captured from various angles 

around the glass structure using a smartphone. To establish an 

accurate scale and georeference the model, six points measured 

with a laser scanner were incorporated. 

 

a.    

b.  

 

c.  

d.    

 

Figure 3. Results of orthophoto derived from gaussian splatting models: a) “San Michele” dataset (from left to right: image of the 

dataset, orientation results, gaussian splatting orthophoto results); b) “Synthetic Metallic” dataset (from left to right: image of the 

dataset, orientation results, orthophoto form standard approach, and orthophoto from gaussian splatting approach); c) “Bottle” dataset 

(from left to right: image of the dataset, orientation results, dense clods reconstruction results, gaussian splatting orthophoto results); 

and d). “Architectural Glass Case” dataset (from left to right: image of the dataset, orientation results, orthophoto form standard 

approach, and orthophoto from gaussian splatting approach) 

 

4. Results 

Results on the different datasets are summarised in Table 2 and 

Figure 3. In comparing the conventional workflow for orthophoto 

generation with the Gaussian splatting workflow, we can observe 

notable differences in outcomes across various datasets.  

For the San Michele dataset, which includes the complex 

architecture of the church along with surrounding vegetation, the 

conventional workflow demonstrated effectiveness in generating 

a dense mesh without evident artifacts. The overall resolution 

was maintained, providing a reliable reconstruction of the scene. 

However, minor artifacts were noted in areas with vegetation, 

likely due to the challenges posed by shadows and reflections 

from the foliage. The Gaussian splatting workflow demonstrated 

comparable completeness but showed slightly lower resolution in 

the resulting orthophoto compared to that produced by 
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conventional workflows. This suggests that while the Gaussian 

splatting method is effective in generating a complete and 

reliable orthophoto, the conventional workflow remains superior 

for this type of application. Moving on to the Industrial and 

Transparent dataset, specifically the Synthetic Metallic 

component, the conventional workflow produced evident 

artifacts and gaps in the reconstruction due to the highly 

reflective nature of the metallic surface. These artifacts can 

distort the final orthophoto in a significant way determining 

evident inaccuracies (Figure 4a). Conversely, the Gaussian 

splatting workflow managed to achieve a smoother surface 

without these evident artifacts. This success can be attributed to 

the method’s ability to handle the complexities of reflective 

surfaces more adeptly. The Bottle dataset, which presents unique 

challenges due to its transparent nature. The conventional 

workflow struggled significantly, producing artifacts and 

ghosting effects, particularly around the areas of refraction where 

light passes through the glass. This workflow failed in generating 

a reliable model and an orthophoto. In contrast, the Gaussian 

splatting method not only avoided these ghosting effects but also 

delivered a more refined output overall. The approach's ability to 

represent complex light interactions, such as those found in 

transparent objects, showcases its potential advantages in 

situations where traditional methods fail. The results from the 

"Architectural Glass Case" dataset demonstrate promising 

outcomes for both the glass surfaces and the textureless areas. In 

the glass panels, the Gaussian splats method successfully 

captures details such as the glass stickers, which are entirely 

absent in traditional mesh-based reconstructions. Similarly, the 

Gaussian splats orthophoto provides a more complete 

representation of the textureless metallic panels, which are only 

partially reconstructed in the conventional workflow. By using 

Gaussian splats instead of traditional mesh-based methods, this 

approach effectively captures areas with fewer distinct features, 

like smooth glass panels, by applying a smoothing effect that 

reduces inconsistencies commonly encountered in 

photogrammetric workflows. This smoothing also mitigates 

issues related to glare and reflections, offering a clearer and more 

accurate visualization of reflective and low-texture surfaces. 

Overall, these observations highlight the strengths and 

weaknesses of each approach in dealing with reflective and 

transparent materials. The conventional workflow demonstrates 

reliability in standard conditions but can struggle significantly 

when faced with complex surfaces that introduce light distortion. 

In contrast, the Gaussian splatting workflow shows great promise 

for improving orthophoto generation in challenging scenarios, 

particularly by providing more reliable outputs in environments 

where reflections and refractions complicate traditional 

photogrammetric processes. Initial observations indicate that the 

Gaussian spatting approach can be an effective technique for 

addressing the challenges posed by reflective surfaces in 

orthophoto generation. This was particularly evident in areas 

with complex reflective structures, where traditional methods 

would typically fail to produce usable orthophotos. The splatting 

process also preserved critical details in non-reflective regions, 

maintaining the overall sharpness and accuracy of the 

orthophotos without compromising the geometric accuracy of the 

final product. Moreover, the approach proved to be 

computationally efficient, making it suitable for use with low-

cost sensors that are often deployed in resource-constrained 

environments. The improved radiometric consistency and artifact 

reduction observed in the orthophotos suggest that the proposed 

methodology can significantly enhance the quality of 

orthophotos generated using low-cost sensors, broadening their 

applicability in various fields. 

One significant limitation of using Gaussian splatting for 

orthophoto generation is that the resulting orthophoto is not 

inherently georeferenced. This means that critical metadata files, 

such as a .tfw (text file), which typically provide information on 

the geographic position and scale of the orthophoto, are not 

generated by default. Although it is possible within the Gaussian 

splatting workflow to define the area of the image and set the 

desired resolution, thereby determining the pixel size, this only 

addresses the spatial scale of the orthophoto and not its absolute 

position in a coordinate system. This limitation presents a 

significant drawback for applications where georeferencing is 

crucial, where spatial accuracy is paramount for aligning the 

orthophoto with other geographic datasets. 

In practical terms, this limitation means that while the orthophoto 

produced by Gaussian splatting may have an accurate 

representation of size and scale, its position relative to real-world 

coordinates remains undefined unless additional post-processing 

steps are taken where users would have to manually georeference 

the orthophoto in a separate software. 

 

 

a.  b.  

 

Figure 4. Comparison of orthophotos for the “mechanical” datasets: a) “standard” approach results (see artefact in the top part of the 

element) and “gaussian splatting result”. 
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5. Conclusions 

While the proposed methodology of Gaussian splatting shows 

great promise, there are notable limitations that warrant careful 

consideration. One significant challenge is the reliance on 

accurately identifying reflective surfaces, which can be 

particularly complex in environments with varying lighting 

conditions and intricate geometries. This difficulty can lead to 

inconsistencies in feature matching and ultimately impact the 

quality of the generated orthophotos. Moreover, the smoothing 

effect inherent in the splatting process, while effective in 

minimizing artifacts, can inadvertently obscure fine details in 

critical areas, resulting in a loss of information that is vital for 

applications requiring high spatial resolution, such as 

architectural documentation and structural analysis between 

artifact reduction and detail preservation highlights the necessity 

for a balanced approach in implementing Gaussian splatting, 

especially in contexts where accuracy is paramount. As such, 

future work will focus not only on refining the splatting process 

but also on exploring its application to diverse types of imagery, 

including thermal and multispectral data. Integrating advanced 

machine learning techniques, such as convolutional neural 

networks (CNNs) and deep learning frameworks, can potentially 

enhance the effectiveness of Gaussian splatting by improving the 

classification of reflective surfaces and optimizing the blending 

of splats in varying conditions. 

Furthermore, develop robust evaluation metrics that can 

quantitatively assess the quality of orthophotos produced using 

this methodology, enabling to fine-tune parameters based on 

specific application requirements.  
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