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Abstract

The rapid advancement in indoor 3D building modeling has led to increased interest in low-cost solutions for 3D data acquisition.
While Terrestrial Laser Scanning (TLS) and Mobile Mapping Systems (MMS) produce detailed 3D models, their high cost and
complex workflows make them impractical for many applications. In this paper, we investigate the effectiveness of using low-cost
sensors, specifically RGB-D camera and iPad Pro for 3D modelling. Through a series of experiments, we evaluate these devices in
terms of data accuracy, processing speed, and qualitative analysis using 3D point clouds and heat map visualizations, comparing the
results with MMS data as the ground truth. Three distinct environments: an office room, a corridor, and a staircase were scanned
to assess performance across varying levels of scene complexity. The results show that both devices are effective for indoor 3D
modeling, but the RGB-D camera was more accurate, with an average C2C distance of 0.0245 meters compared to the iPad’s 0.0465
meters. However, the iPad Pro was faster, completing scans 30% quicker, making it better suited for tasks that require speed over
precision.

1. Introduction

In recent years, 3D modeling using low-cost devices has gained
growing interest. Numerous authors have proposed stud-
ies using RGB-D sensors for indoor 3D modeling. For in-
stance,(Wang et al., 2012)introduced a method that uses mul-
tiple structured light-based depth cameras, (Henry et al., 2012)
focused on dense 3D modeling of indoor environments. Their
contributions served as the cornerstone for employing RGB-
D devices in the field of building reconstruction. (Li et al.,
2020)further advanced this research area by automating the
generation of as-built Building Information Models (BIM) us-
ing RGB-D devices. Such automation simplifies the process
of creating detailed models for architectural and construction
purposes. More recent research has continued to focus on
the potential of RGB-D devices for 3D building reconstruc-
tion.(Zhou et al., 2022) and (Wahbeh, 2021) explored meth-
ods to improve model accuracy in complex environments, while
(Delasse et al., 2022) and (El Haouss et al., 2022) examined
the potential and limitations for RGB-D sensors. (Rached et
al., 2024) highlighted the importance of enhancing model ro-
bustness, particularly when reconstructing intricate details in
challenging environments. These studies collectively emphas-
ize that while low-cost sensors show significant promise in 3D
building reconstruction, more research is needed to enhance
the precision and robustness of the generated models. There
has also been an increasing interest in combining the advant-
ages of multiple low-cost sensors, such as RGB-D devices and
iPad equipped with LiDAR, to complement one another in 3D
modeling tasks. For example, IPad Pro’s LiDAR capabilities

have been explored by (Ancona et al., 2015) in the context of
mobile, user-friendly devices for interior design applications.
Other low-cost alternatives, such as panoramic multi-camera
systems, have proven to be effective for photogrammetric mod-
eling of indoor spaces. These systems offer the advantage of
capturing 360-degree views, so reducing the number of images
needed to cover a scene (Barmpoutis et al., 2020). Although
panoramic cameras have been used for indoor modeling, RGB-
D cameras, which combine depth information with RGB im-
ages, offer a more comprehensive solution for generating tex-
tured 3D models without the need for key points. Furthermore
combining data from TLS and RGB-D devices can improve the
quality of 3D models, especially in cases where the TLS can-
not access certain areas (Yang et al., 2018). While low-cost
sensors provide ease of use and reduce cost, additional data pro-
cessing is often required to achieve a finished 3D model. Tra-
ditionally, manual modeling techniques were necessary to pro-
duce high-accuracy models, but automatic approaches, such as
surface-based methods, volumetric primitives, and shape gram-
mars (Yang et al., 2018), have gained prominence for their effi-
ciency and cost-effectiveness. The advancements in deep learn-
ing and automated reconstruction techniques have also contrib-
uted to this field. Neural networks have been applied to 3D
depth estimation from single images , and methods like 2D se-
mantic segmentation and 3D volumetric segmentation are in-
creasingly used for RGB-D data modeling. Despite these ad-
vancements, challenges such as occlusions, lack of semantic
information, and varying point densities remain key issues in
automatic 3D modeling, particularly in indoor environments
(Yang et al., 2018). The literature suggests that RGB-D cam-
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eras and other low-cost sensors hold significant potential for 3D
modeling applications. However, complex architectural envir-
onments are still a challenge when using these sensors. There-
fore combining the strengths of different sensors, such as RGB-
D cameras and LiDAR-equipped devices, could lead to more
accurate and complete 3D models, offering an accessible and
cost-effective solution for various modeling tasks. In this pa-
per, we aim to fill this gap by conducting a comparative analysis
between the Microsoft Kinect Azure camera (RGB-D device)
and iPad Pro (equipped with a LiDAR sensor). To this end,
we evaluate the performance of both devices across different
indoor environments with varying complexities, such as office
rooms, corridors, and staircases. By analyzing their accuracy,
processing speed, and overall model quality, we aim to determ-
ine whether these low-cost devices can be used complementar-
ily or if one outperforms the other in certain contexts. This pa-
per provides valuable insights into the feasibility of using these
tools for 3D indoor modeling and contributes to improving the
quality and robustness of models generated by low-cost sensors.
The remainder of this paper is organized as follows: Section
2 presents the methodology, section 3 presents the experiment
which encompasses the case study project, data acquisition pro-
tocols, devices used for scanning, the data processing workflow,
and the 3D reconstruction process. Section 4 focuses on the
results and discussion, providing a comparative analysis of the
performance of each device. Finally, Section 5 concludes the
study and outlines potential directions for future research.

2. Methodology

The methodological workflow, as illustrated in Figure 1, out-
lines the steps to evaluate and compare the performance of the
RGB-D Camera and the iPad Pro LiDAR for 3D building recon-
struction. The workflow begins with the data acquisition phase,
where both devices capture 3D data in three distinct environ-
ments: an office room, corridor, and staircase. In the data pro-
cessing phase, the RGB-D data is processed using Open3D to
extract RGB and depth images, while the iPad Pro data is pro-
cessed through the Sitescape, a mobile application that lever-
ages the iPad Pro’s LiDAR capabilities to capture and export
high-resolution 3D point clouds for use in modeling and ana-
lysis. The 3D reconstruction phase involves generating point
clouds from both data sources, followed by the comparison
and analysis phase, where the generated point clouds are eval-
uated and compared to the MMS ground truth (MS-96). Both
quantitative and qualitative assessments are performed, includ-
ing the calculation of mean and standard deviation of Cloud-
to-Cloud (C2C) distances, as well as a heat map visualization
for model accuracy. Lastly, processing speeds are compared,
and the results are analyzed to draw conclusions regarding the
accuracy, speed, and overall quality of the models produced by
both devices.

3. Experiments

In this study, we focus on three distinct environments as shown
in Figure 2, each representing varying levels of complexity: an
office room filled with equipment, a corridor with architectural
features, and a staircase with intricate spatial arrangements.
These environments were chosen to reflect common indoor set-
tings where accurate 3D modeling is essential for applications
such as facility management, renovation planning, and virtual
tours. The office room served as a controlled environment, al-
lowing for the assessment of the devices’ capabilities in captur-
ing detailed features, such as furniture and equipment, within a

Figure 1. ”The Methodological workflow ”.

confined space. The corridor was selected for its linear struc-
ture, providing an opportunity to evaluate the devices’ perform-
ance in a longer, narrow space with limited visibility. Finally,
the staircase was included to challenge the devices with vertical
elements and varying perspectives, requiring effective handling
of occlusions and depth variations.

Figure 2. Selected indoor environments for 3D modeling -
Office Room, corridor, and staircase.

3.1 Data acquisition

For this study, two low-cost devices were used for data ac-
quisition: the Microsoft Kinect Azure RGB-D device and the
iPad Pro 11, equipped with a LiDAR sensor and dual RGB
cameras. Both devices captured RGB images. Additionally,
a Mobile Mapping System (MMS) MS-96 Mobile Mapping,
Viametris was used as a reference for comparing the accuracy
and quality of the point clouds generated by the two low-cost
devices. The MMS provided high-precision 3D data, which
served as a benchmark for evaluating the performance of the
Kinect Azure and iPad Pro. Detailed specifications for each
device are presented in Table 1.

3.1.1 Microsoft Kinect Azure RGB-D aamera The Kin-
ect Azure, the successor to the widely-used Kinect v2, rep-
resents a significant advancement in 3D modeling and indoor
mapping technologies. This device integrates a high-resolution
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RGB camera with a depth sensor, allowing for the simultan-
eous capture of color and depth data. This capability is cru-
cial for creating detailed 3D models, aligning with the acquis-
ition pipeline described by (Bernardini and Rushmeier, 2002),
which emphasizes the importance of capturing both geometric
and appearance data. Traditionally, 3D modeling methods re-
quired separate processes for acquiring geometry and texture,
leading to increased complexity and costs. The introduction of
RGB-D cameras, like the Kinect Azure, has streamlined this
process, making it more accessible and affordable. Research-
ers such as(Zollhöfer et al., 2018) have explored the advance-
ments and challenges of RGB-D technology, highlighting its
expanding role across various fields. The Kinect Azure’s abil-
ity to effortlessly gather comprehensive 3D data has unlocked
new opportunities for applications such as indoor mapping and
3 modeling (Rached et al., 2024) and (El Haouss et al., 2022),
and augmented reality, as noted in the survey (Xu et al., 2019).

3.1.2 Ipad 11 Pro The iPad Pro, equipped with a LiDAR
sensor and dual RGB cameras, offers a mobile and cost-
effective solution for 3D model generation, as shown in re-
search conducted by (Teo and Yang, 2023), the iPad Pro’s
LiDAR sensor has demonstrated effectiveness in generating
highly accurate point clouds, with minimal deviations when
scanning is performed with proper distance and stability. Fur-
thermore,(Ingman et al., 2020) compared various low-cost
sensor systems, including an RGB-D device, a low-end ter-
restrial laser scanner, and a panoramic camera, for automatic
cloud-based indoor 3D modeling. Their findings emphasized
the potential of LiDAR-equipped devices like the iPad Pro in
providing accurate and efficient 3D data acquisition for a range
of applications.

3.1.3 MS-96 Viametris To establish a robust ground truth
reference for evaluating the low-cost devices, this study util-
ized an MS-96 Mobile Mapping, Viametris. The system typic-
ally comprises a combination of high-accuracy laser scanners,
inertial measurement units, and high-resolution cameras. Dur-
ing data acquisition, the MMS is mounted on a mobile platform
and moved through the environment, systematically capturing
point cloud data with precise positional information.

Type of
device

Sensing
techno-
logy

Range
(m)

RGB
resolu-
tion

Field of
view

Kinect
Azure

Structured
light 0.5–5 1920x1080

pixels 120°

iPad Pro 11
Time-
of-flight
(LiDAR)

0.2–5

12 MP
(wide),
10 MP
(ultra-
wide)

70°
LiDAR,
120°
ultra-
wide
RGB
camera

MS-96
Viametris

Laser
scanner +
GNSS/IMU

0–120 4×24
MP

360°
scanning

Table 1. Technical characteristics of used sensor systems

3.2 Scanning and data processing

We captured videos using the Kinect Azure camera, systemat-
ically scanning the walls and details by moving in a unidirec-
tional manner and incorporating upward movements to ensure
comprehensive coverage of the floor and ceiling. Similarly, for
the iPad Pro, the LiDAR sensor was used to scan the environ-
ment with a handheld motion, covering the key areas from vari-
ous angles to fill in data gaps and ensure detailed depth capture.

After the data collection phase for both devices, initial prepro-
cessing steps were applied, including the removal of noise and
outliers from the generated point clouds. This step was essen-
tial in improving the quality of the 3D models by eliminating
artifacts that may have been introduced due to environmental
factors or minor inconsistencies in the scanning process. These
preprocessing actions helped enhance the accuracy and reliabil-
ity of the point clouds from both the Kinect Azure and the iPad
Pro.

3.2.1 RGB-D image processing The raw data consists of a
video stream that combines RGB images and depth maps. To
begin the processing workflow, we decomposed the captured
video into its constituent frames, each containing an RGB im-
age paired with a depth map. Once the frames were extracted,
depth maps were aligned with the RGB images to form a con-
sistent dataset. We used Open3D python library’s for 3D recon-
struction (Zhou et al., 2018)

3.2.2 iPad data processing For the data acquired using the
iPad Pro 11, we utilized SiteScape. SiteScape enables the effi-
cient import and refinement of point cloud data collected via the
iPad’s LiDAR sensor, allowing for noise reduction and filtering
to enhance data quality. The software provides interactive 3D
visualization, enabling users to explore the captured environ-
ment and identify areas needing attention.

3.3 3D reconstruction

3D reconstruction from RGB-D data is performed using
open3D (Zhou et al., 2018). The reconstruction process con-
sists of four key steps:
1.Make fragment: build local geometric surfaces (referred to
as fragments) from short subsequences of the input RGBD se-
quence. This part uses RGBD Odometry, Multiway registra-
tion, and RGBD integration.
2.Register fragments: the fragments are aligned in a global
space to detect loop closure. This part uses Global registration,
ICP registration, and Multiway registration.
3.Refine registration: the rough alignments are aligned more
tightly. This part uses ICP(Iterative closest point) registration,
and Multiway registration.
4.Integrate scene: integrate RGB-D images to generate a mesh
model for the scene. This part uses RGBD integration. For the
iPad Pro data, the 3D reconstruction was handled using SitS-
cape, which processes the LiDAR data from the iPad to gener-
ate point clouds.

3.4 Model evaluation

Following 3D reconstruction, each model underwent a rigorous
evaluation to assess its quality and accuracy. Key metrics
included:
Model quality: Quantitative metrics were employed to evalu-
ate model accuracy by comparing the processed models against
the MMS ground truth data. Cloud-to-cloud (C2C) Distance
Analysis was used to compute the distances between the con-
structed point clouds and the MMS ground truth point cloud.
From this analysis, key metrics were extracted to quantify the
accuracy of the point cloud reconstructions. Specifically, we
focused on the following metrics:
•Mean C2C Distance: This metric represents the average
deviation between corresponding points in the two point
clouds. A lower mean C2C distance indicates higher geometric
precision and better alignment with the MMS ground truth.
•Standard Deviation of C2C Distances: This metric captures
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the variability of the distances, providing insight into the
consistency of the reconstruction. A lower standard deviation
suggests more uniform accuracy across the model.

The standard deviation (σ) of the C2C distances was computed
using the formula:

σ =

√√√√ 1

N

N∑
i=1

(di − µ)2

where N is the total number of points in the point cloud, di
represents the individual C2C distance for the i-th point, and µ
is the mean of the C2C distances, calculated as:

µ =
1

N

N∑
i=1

di

4. Results and analysis

In this section, we present the findings from our comparative
study of the RGB-D camera and the iPad Pro for indoor 3D
modeling. We analyze the performance of both devices in terms
of data accuracy, processing speed, and model quality across
three distinct environments: an office room, a corridor, and a
staircase.

4.1 Quantitative assessment

After aligning the point clouds captured by the devices with the
MMS ground truth, a Cloud-to-Cloud (C2C) distance analysis
was conducted. The C2C distances were calculated to measure
the deviations between the model and the ground truth, helping
to assess the accuracy of each device in capturing the geometry
of the environment. The histograms for the Cloud-to-Cloud
(C2C) absolute distances as shown in Figure 3 provide a clear
representation of the average deviations between point clouds
captured by both the iPad Pro LiDAR and RGB-D camera sys-
tems across different environments. In terms of C2C distances,
the RGB-D camera consistently shows lower mean values, in-
dicating higher accuracy in aligning point clouds with minimal
discrepancies. For instance, in both the office and stairway en-
vironments, the RGB-D camera achieves a mean C2C distance
of around 0.0245 m, demonstrating its ability to generate ac-
curate point clouds that are closely aligned with the reference.
On the other hand, the iPad Pro LiDAR exhibits higher mean
C2C distances, ranging from 0.0465 m in the office and stair-
way environments to 0.0511 m in the corridor. These higher
mean values suggest that the iPad Pro is less precise, produ-
cing larger deviations in the captured data, which may result in
less accurate point cloud models when compared to the RGB-D
camera. However, the iPad LiDAR still captures a significant
portion of the data within an acceptable range, making it useful
for capturing larger areas quickly, even with more deviations.

The analysis of standard deviation in figure 4 provides insight
into the spread or variability of the C2C distances, reflecting
how consistently each device captures point cloud data. Across
the board, the RGB-D camera shows lower standard deviations,
indicating a tighter clustering of points around the mean. This

Figure 3. ”Comparative analysis of C2C absolute distances for
RGB-D and iPad liDAR in Office Room, corridor, and staircase

environments”.

suggests that the RGB-D camera consistently captures points
with minimal variation, offering a more reliable and precise
representation of the environment. For example, the standard
deviation in the corridor environment is around 0.0243 m, re-
flecting minimal variation in the point cloud, and similar tight
spreads are observed in other environments. Conversely, the
iPad Pro LiDAR shows higher standard deviations, with values
such as 0.0375 m in the stairway environment and 0.0336 m
in the corridor. These higher standard deviations indicate more
variability in the captured data, meaning that the point cloud
contains more outliers or points with larger deviations from the
mean. This variability could be attributed to the iPad’s less pre-
cise LiDAR system, which is more prone to errors in capturing
fine details or complex geometries. In conclusion, the RGB-D
camera provides a more consistent point cloud with fewer de-
viations, while the iPad, though more variable, offers broader
coverage in less controlled environments.

4.2 Processing speed

The processing speed for 3D data acquisition and model gener-
ation was systematically evaluated for both the RGB-D camera
and the iPad Pro across the three environments. The acquisition
times are summarized in Table 2 below, detailing the time taken
for each environment, along with the total processing times for
both devices. This summary allows for a clear comparison of
the efficiency of each device in capturing and processing 3D
data.

As shown in Figure 5, the RGB-D Camera spends signific-
antly more time on processing than the iPad Pro, with 25.4%
of the total time allocated to processing (18 minutes), com-
pared to 12.7% for the iPad Pro (9 minutes). Both devices
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Figure 4. ”Standard deviation comparison for RGB-D Camera
and iPad Pro across the three environments”.

Device Enviro-
nment

Acquis-
ition
time
(min)

Proces-
sing
time
(min)

Point
cloud
gen-
era-
tion
(min)

3D
Model
gen-
era-
tion
(min)

Total
time
(min)

RGB-
D
Cam-
era

Office
Room 4 6 4 2 16

Corridor 3 6 3 1 13
Stairs 3 6 3 1 13

iPad
Pro

Office
Room 4 3 3 1 13

Corridor 2 3 3 1 9
Stairs 2 3 3 1 9

Table 2. Acquisition, processing, and 3D model generation
times for RGB-D camera and iPad Pro

have a relatively balanced distribution of time spent on acquis-
ition and point cloud generation. For acquisition, the RGB-
D Camera takes 14.1% of the total time (10 minutes), while
the iPad Pro is slightly faster, spending 11.3% of the time on
acquisition (8 minutes). For point cloud generation, both the
RGB-D Camera and the iPad Pro allocate 14.1% and 12.7% of
their time, respectively, which translates to 10 minutes for each
device. The 3D model generation stage is the quickest for both
devices, with the iPad Pro completing it in 4.2% of the total
time (3 minutes) and the RGB-D Camera in 5.6% of the time (4
minutes). In summary, the RGB-D Camera spends more time
on processing (18 minutes), enhancing precision and accuracy
but making it slower overall compared to the iPad Pro. The
iPad Pro is quicker across all stages, making it ideal for time-
sensitive tasks, although it may not provide the same level of
detail or accuracy as the RGB-D Camera.

4.3 Qualitative assessment

To enhance the visual inspection process, a heat map was em-
ployed. This heat map was generated as shown in Figures 6,7
and 8 to provide a more comprehensive view of the spatial dis-
tribution of errors across the scanned environments. The heat
map visualizes the density of point-to-point distances, indic-
ating areas where the reconstructed models from the RGB-D
camera and iPad Pro deviated most significantly from the MMS
ground truth. Office room case: As shown in Figure 6 in the
office room scenario, the RGB-D Camera continues to show
better accuracy, with most of the heat map consisting of blue

Figure 5. ”Total processing time distribution for RGB-D Camera
and iPad Pro across the three environments”.

and green areas, indicating that it captures the room’s general
structure well. Some yellow and orange spots appear around
the edges of the furniture and other complex geometries, sug-
gesting minor inaccuracies in capturing detailed features like
desks and corners. However, the overall model remains fairly
accurate. The iPad Pro, on the other hand, displays larger de-
viations, with more yellow and red areas, particularly around
the furniture and along the walls. This indicates that the iPad
has difficulty with fine details and sharp edges, leading to a less
accurate point cloud overall, especially around the desks and
other small objects. The iPad Pro’s limitations in capturing in-
tricate features are more apparent in this scenario, making its
model less precise compared to the RGB-D Camera.

Figure 6. ”Heat map for the RGB-D and iPad pro models
compared to MMS ground truth in office room”.

Corridor Case: As shown in Figure 7, In the corridor scen-
ario, the RGB-D Camera again performs well, producing a heat
map with mostly blue and green regions, indicating a high level
of accuracy in capturing the walls and ceiling. The model is
consistent, with sharp edges and minimal deviations, although
there are small patches of yellow near the junctions between
the ceiling and walls, where slight inaccuracies are observed.
On the other hand, the iPad Pro shows more significant devi-
ations, especially along the ceiling and wall junctions, where
red and yellow areas are present. These deviations suggest that
the iPad has difficulty accurately capturing the linear structures
of the corridor, particularly at the boundaries where walls meet
the ceiling. As a result, the iPad’s point cloud is less reliable in
capturing the fine details of this environment compared to the
RGB-D Camera. Stairs case: In the staircase scenario as shown
in Figure 8, the RGB-D Camera shows a high level of accuracy,
with mostly blue and green regions on the heat map, indicating
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Figure 7. ”Heat map for the RGB-D and iPad pro models
compared to MMS ground truth in corridor”.

minimal deviation between the point cloud and the reference
model. The steps are well-defined, and the edges are captured
with precision. Only small areas near the top of the staircase ex-
hibit yellow and red spots, which suggests slight deviations due
to either geometric complexity or possible occlusions. In con-
trast, the iPad Pro shows more significant deviations, with yel-
low and red areas appearing more prominently, especially near
the top of the staircase and along the edges. The iPad struggles
with edge definition, particularly where the steps meet the wall,
resulting in less accurate point cloud generation overall. The
larger deviations in the iPad’s model indicate that it has diffi-
culty capturing the fine details and edges in this environment.

Figure 8. ”Heat map for the RGB-D (a) and iPad pro (b) models
compared to MMS ground truth in stairs”.

5. Conclusion

This study demonstrates the strengths and limitations of the
RGB-D camera and the iPad Pro LiDAR in indoor 3D model-
ing tasks. Through the analysis of heat maps and C2C absolute
distances, it is evident that the RGB-D camera consistently out-
performs the iPad Pro in terms of accuracy, especially in envir-
onments with complex geometries such as staircases and office
rooms. The RGB-D camera excels at capturing sharp edges,
fine details, and linear structures, making it more suitable for
applications that demand high precision, such as heritage build-
ing information modeling (HBIM) or detailed architectural doc-
umentation. Conversely, the iPad Pro offers advantages in terms

of speed and ease of use, performing significantly faster in ac-
quisition and processing times across all environments. How-
ever, the iPad Pro shows larger deviations, particularly in re-
gions with complex features, such as furniture or ceiling-wall
junctions, reducing its suitability for precision-critical tasks. In
conclusion, the RGB-D camera is a potential choice for projects
that demand good precision while the iPad Pro may be more
appropriate for quick scanning tasks where speed is prioritized
over precision. Future work could explore hybrid approaches,
combining the strengths of both systems to enhance overall ef-
ficiency and accuracy in 3D modeling workflows. Additionally,
further research could evaluate the integration of these systems
into building information modeling (BIM) platforms to stream-
line the process of updating or maintaining architectural models
in real-time.
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