
City2Twin: an open urban digital twin from data integration to visualization and analysis.

Benirina Parfait Rafamatanantsoa1, Imane Jeddoub 2, Anass Yarroudh 2, Rafika Hajji 1, Roland Billen 2

1 College of Geomatic Sciences and Surveying Engineering, Hassan II Institute of Agronomy and Veterinary Medicine,

Rabat 10101, Morocco (rafamatanantsoabenirinaparfait, r.hajji)@iav.ac.ma
2 GeoScITY, Spheres Research Unit, University of Liège, 4000 Liège, Belgium (i.jeddoub, ayarroudh, rbillen)@uliege.be

Keywords: Urban Digital Twin, Data integration, 3D data visualization, 3D data analysis, CityJSON, IoT.

Abstract

Urban Digital Twins have gained significant interest in the urban and geospatial fields, enabling interactive visualization and advanced

analysis of cities across various domains. However, current implementation approaches are heterogeneous in terms of data and

approaches. Furthermore, most implementations are based on specific needs. This project develops a comprehensive framework for

Urban Digital Twins, focusing on data integration, storage, visualization, and analysis, all using open-source tools. Our approach

integrates various data types, including 3D city models, dynamic air quality data, and external data imported from the client side, such

as vector data, 3D city models, and point clouds. We conducted a series of experiments for each step and tackled various challenges.

Many configurations are applied before integrating the 3D models, including ground reprojection, geometry type conversion, and

format conversion. For the data storage and management, we performed several comparative tests between 3DCityDB and CJDB,

which led us to choose CJDB for its simplicity and lightweight nature. A client interface built with the Giro3D framework (based on

Three.js) connects directly to the 3D model database via a Flask server. Dynamic data is retrieved via external APIs and stored in a

separate database following the SensorThings API standard, allowing time-series analysis. Our framework is standardized and designed

based on open-source software, emphasizing the openness, transferability, reusability, and maintainability of Urban Digital Twin. The

City2Twin project proposes significant improvements in data analysis, highlighting the importance of having a separate database for

storing static and dynamic data, as well as the importance of direct interaction between the client interface and the 3D database for data

updates and management. To the best of our knowledge, this work is the first Urban Digital Twin initiative that relies on the CityJSON

format, which defines itself as more «developer-friendly».

1. Introduction

Urban Digital Twins (UDTs) are the new paradigm that shifts

from traditional urban analytics to integrated, sustainable, and

evolving methods and tools for city management and

maintenance (Ketzler et al., 2020). Unlocking the potentialities

of UDTs starts by defining the minimum technical requirements

to implement an open, operational, and easy-to-use interface

(Jeddoub et al., 2023). The shift toward a web developer-friendly

approach and lightweight specifications and standards has led to

addressing some of the UDT challenges related to data

integration and interoperability, as well as serving users

(especially cities) with integrated and dynamic urban platforms.

Many questions about the suitable data models (Lehner et al.,

2024), database systems (Kasprzyk et al., 2024), and

visualization tools to create UDT platforms remain open to

research (Gitahi and Kolbe, 2024). An examination of the

literature reveals that most current implementations rely either on

specific applications, such as energy use, mobility, and urban

planning, etc., or on available data. Up to date, the state of the art

is not well developed regarding how UDTs are implemented in

practice and does not provide an in-depth analysis of the technical

requirements. Furthermore, all attempts to build UDT are based

on CityGML and there is no active initiative that relies on the

CityJSON format, which defines itself as more «developer-

friendly».

The aim of this work is to develop an open and standardized UDT

framework that addresses current challenges of multi-source data

integration and visualization in a lightweight format. The main

steps involve the preparation and integration of the data sets in a

standardized way, their storage using a database management

system, as well as the visualization using open-source tools. The

standardized framework is designed using an open software

approach that emphasizes openness, transferability, reusability,

and maintainability of UDT.

2. Related work

In recent years, several cities have taken the initiative to develop

UDTs to enhance urban management. Jeddoub et al. (2023)

established a comprehensive state-of-the-art review of current

UDT implementations. Some of these projects are still in the

prototype phase, others are under improvements, and some are

already fully operational.

The approaches for implementing UDTs generally depend on

specific needs and the availability of potentially heterogeneous

data. For instance, the EnSysLE project is used for building

energy simulation and Amsterdam 3D focuses on city planning.

As a result, various methods are developed based on different use

cases. Most cities, like Helsinki 3D, Livable City Digital Twin or

Berlin 3D, adopt web-based visualization, while others, such as

Virtual Gothenburg use game engine visualizations. Among

these implementations, some rely on commercial solutions, such

as 3D ArcGIS online for karlskrona city, rather than open-source

alternatives, which can be costly and offer limited flexibility and

customization. Several open-source tools are available for

visualizing UDTs on both web and desktop platforms. Most of

these viewers rely on CesiumJS with the 3D Tiles data format,

such as the Urban Energy Dashboard (Würstle et al., 2020) and

the Digital Twin of Sofia City (Dimitrov and Petrova-Antonova,

2021). Other viewers utilize the Three.js library, including Piero,

Ninja, and 3D Bag Viewer.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-387-2024 | © Author(s) 2024. CC BY 4.0 License.

387

about:blank
about:blank
https://transfer.hft-stuttgart.de/pages/ensysle/application/Dithmarschen/index.html
https://3d.amsterdam.nl/
https://vc.systems/en/solutions/3d-city-models/
https://lcdt-project.unsw.edu.au/
https://www.virtualcitymap.de/
https://dtcc.chalmers.se/virtual-gothenburg-the-citys-digital-twin/
https://karlskrona.maps.arcgis.com/
https://cesium.com/platform/cesiumjs/
https://city.gate-ai.eu/Cesiumjs/Apps/Lozenets.html
https://piero.giro3d.org/?tour=none
https://ninja.cityjson.org/
https://3dbag.nl/en/viewer

The use of different standards ensures data compliance and

interoperability. The CityGML1 standard defines a conceptual

model and an exchange format for the representation, storage,

and sharing of virtual 3D city models. It can be encoded in

several formats, including GML, which is considered verbose

and heavy. An alternative encoding is CityJSON, a JSON-based

format that is lighter and easier to understand. Due to its

simplicity, several tools and programs have been developed to

create, analyze, visualize, and edit CityJSON files, such as Ninja,

3dfier, and Cjio. Another method for storing the 3D model is

database encoding, either in a relational database such as 3D City

Database 3DCityDB, the most widely used, or CityJSON

Database CJDB (Powałka et al., 2023) for CityJSON-based

storage, or in a NoSQL database like MongoDB (Kasprzyk et al.,

2024). These databases not only store the 3D model but also

enable efficient management.

Dynamic data is an essential component that enriches the UDTs,

and there are several ways to store and manage these data. For

example, dynamic data can be integrated via a «Dynamizer»

extension for CityJSON-based visualization (Boumhidi et al.,

2024), or through the «Dynamizer» module, which ensures the

direct integration and representation of urban object properties

through time-series data in CityGML 3.0 (Kutzner et al., 2020).

This data can also be stored in a database following the

SensorThings API (STA) standard, which manages not only the

data itself but also the various elements related to data flows

(Santhanavanich and Coors, 2021).

3. Method

We have proposed a generic methodology, supported by a series

of technological considerations. This methodology is divided

into three major steps: (1) data preparation and integration; (2)

data storage and management; and (3) data visualization and

analysis. For each step, multiple tests were conducted to ensure

the selection of the most suitable tools and approaches for

optimal results.

3.1. Study Area and Datasets

The data used consists of two different types: static data and

dynamic data. The static data represents the 3D models of urban

objects according to the CityGML standard and encoded in JSON

format (CityJSON). This 3D model covers the Outremeuse

district in the municipality of Liège, Belgium, and contains urban

objects of the type of buildings, vegetation, roads, and city

furniture. This model is the outcome of the previous project

introduced in (Ballouch et al., 2024).

The dynamic data used in this project represents the air quality

data of the city of Liège which is provided by the ISSEP and

retrieved via APIs. They are measured by sensors placed on lamp

posts distributed across the city.

3.2. Data Preparation and Integration

This is a necessary step in our approach, given the heterogeneous

nature and sources of the data, which include geodata and sensor

1 https://docs.ogc.org/guides/20-066.html

data. This step involves carrying out all the necessary

preprocessing and configuration.

3.2.1. Static Data Integration

When implementations are based on a specific domain, they do

not allow the integration of multiple types of data. This

framework, however, aims to support the integration of various

data types, such as 3D city models, vector data, and 3D point

clouds. Before integrating this data, it must comply with the

different tools and methods used. All urban objects in the

CityJSON data, such as buildings, trees, and roads, were

projected onto the ground for two reasons. First, the surface of

base maps in web viewers has a Z value of 0; however, our data

includes elevation values, causing objects to float above the

ground surface. We attempted to import a Digital Elevation

Model (DEM) from online sources, but it does not perfectly

match the actual terrain variation. As a result, some buildings

appear to float while others sink into the ground. Another reason

for this process is that roads, which are not projected onto the

ground and therefore are not flat, cannot be imported into the

CJDB database (as this is the chosen tool for storage). We

assumed that the «CJDB import» functionality requires a flat

geometry to populate the «ground_geometry» column, whereas

our road objects do not have a flat geometry. To achieve the

reprojection, a Python script was developed to determine the

minimum Z value for each object and subtracted this value from

all other Z values in the same object.

The 3D objects of the City Furniture type (lamp posts) have a

geometry type called «Geometry Instance». This type of

geometry is difficult to parse and load with our visualization tool.

Therefore, it has been converted to a «Multi Surface» type using

the CJDB export, which automatically converts geometries of the

«Geometry Instance» type into a «Multi Surface» type during the

export.

The database used in this project does not directly support

CityJSON files. They must be converted into a CityJSON Text

Sequence format with a «. city.jsonl» or «.jsonl» extension. This

allows for the potentially large CityJSON file to be broken down

into individual entities. This conversion was performed using the

cjio library.

The measurement stations (lamp posts) on which the sensors are

placed are also stored as city objects in the 3D model database.

Only the stations in our study area are represented by detailed 3D

models (CityFurniture), while those outside the area are

represented as points. However, they must conform to the 3D

database schema (i.e., adhere to the column type and data

structure requirements).

3.2.2. Dynamic Data Integration

Dynamic data is retrieved via external APIs. Since this data may

vary over time, it is not optimal to store it directly in the model

to avoid overloading the 3D model, which is already heavy itself.

Thus, the dynamic data is stored in a database following the

SensorThings API standard. This database enables not only the

storage, but also better management of various elements related

to datastreams, such as the description of the sensors used, the

observed properties, and more. Before recording the data, the

entities shown in Figure 1 need to be created. For each

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-387-2024 | © Author(s) 2024. CC BY 4.0 License.

388

https://www.ogc.org/publications/standard/citygml/
https://www.cityjson.org/
https://ninja.cityjson.org/
https://tudelft3d.github.io/3dfier/index.html
https://github.com/cityjson/cjio
https://www.3dcitydb.org/3dcitydb/
https://github.com/cityjson/cjdb
https://ganys.github.io/Measur3D/
https://www.issep.be/
https://github.com/cityjson/cjio

measurement station, it must be associated with a «Thing» that

represents the station, along with its «Location», the

«ObservedProperty» corresponding to different pollutants and

temperature, the «Sensor» measuring the observed properties,

and «Datastream» that links the sensor used and the observed

property for each «Thing». To optimize storage, different

properties measured by the same sensor (such as the case for

PM10 and PM2.5) are grouped into a «MultiDatastream». In this

work, we focused on the measurement station in our study area,

and the entities were created only for this station. However, it can

be easily expanded to include all stations.

Creating these entities in the STA database can be accomplished

using the FROST server, a server implementation of the OGC

STA, which is deployed using Tomcat. The server is linked to the

STA database to execute all queries for creating these entities.

Observations can also be recorded via the Frost server; however,

this can complicate the process since another server must be

maintained. Therefore, we wrote an SQL script on our backend

server that executes a query every 5 minutes to record the

observations in the database.

Figure 1. UML diagram of the STA data model (Source:

https://developers.sensorup.com/)

3.2.3. External Data Integration

External data can be directly imported into the platform without

being stored in a database, allowing users to work with their own

data without the constraints of database permissions. They can

import CityJSON files, GeoJSON files, or 3D Point Clouds from

their local machine. For GeoJSON files, the used visualization

tool supports the import of this type of data. However, there is no

default support for CityJSON, so to parse and load the CityJSON

data into the Three.js scene (the visualization tool adopted in this

work), a library called «cityjson-threejs-loader» is used.

Similarly, the visualization tool does not allow for direct

visualization of point cloud files in «.LAS» format; therefore, it

must be converted into a 3D Tiles point cloud using the Python

library «py3dtiles».

Since the data may have a different Coordinate Reference System

(CRS) than the default one (EPSG:3812), reprojection must be

performed; however, this conversion is not applied to the entire

3D model but rather to the transformation matrix that positions

the object correctly in the scene. The conversion can be done

using libraries such as MapTiler or proj4js.

3.3. Data Storage

We used two separate databases for both static and dynamic data

to effectively store and manage them. Both databases are

interrelated. The data model is implemented in PostgreSQL.

3.3.1. Selection of the 3D Database

Since there are several approaches to storing 3D data in a

database, a choice had to be made. Several criteria were

considered, including simplicity, query speed, storage volume,

and support for geospatial functionalities. We had to choose

between two databases that are most suitable for our project:

3DCityDB and CJDB. Various tests and research were

conducted, allowing to establish the comparison.

To better analyze the performance between the two databases in

terms of query speed and storage, we conducted tests (similar to

those conducted by (Powałka et al., 2023) using our own data.

We maintained the same dataset for both databases, which

consists of a 3D model in CityJSON format containing nearly

9,500 urban objects.

Once the model is imported into both databases, we already

notice a difference in the size of the databases, as presented in

Table 1. This can be explained by the complexity of the

3DCityDB schema, which stores the different elements of the 3D

model in separate tables. The physical model in this database

contains 66 tables, in contrast to CJDB, which compresses the

model and contains only 3 tables. In CJDB, the geometries and

attributes are stored in a single table called «city_object». The 3D

geometries are stored in a column of JSONB type.

To analyze the query speed on both databases, we selected

several queries for comparison. The first three queries are applied

to attributes, while the fourth one focuses on geometries.

Although the queries are not exactly the same due to differences

in the database schemas, they generally return similar results

corresponding to our requests. The time results of these queries

are presented in Table 1.

Q1: Retrieve a building object using its ID

Q2: Add a new attribute to objects of type «Building»

Q3: Retrieve buildings with a Level of Detail 2

Q4: Retrieve geometries of 100 buildings in 3D GeoJSON

format

Criteria\Database

3DCityDB

 CJDB

DB volume (MB) 252 97

Q1 (ms) 33.36 33.54

Q2 (ms) 53.75 76.87

Q3 (ms) 191 302

Q4 (ms) 92 48

Table 1. Comparison of database sizes and query times for CJDB

and 3DCityDB

After conducting several tests and comparisons between the two

databases, we can confirm the results of the test conducted by

(Powałka et al., 2023), which shows the maturity of 3DCityDB

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-387-2024 | © Author(s) 2024. CC BY 4.0 License.

389

https://fraunhoferiosb.github.io/FROST-Server/
https://tomcat.apache.org/
https://github.com/cityjson/cityjson-threejs-loader
https://py3dtiles.org/v9.0.0/
https://docs.maptiler.com/client-js/coordinates/#transform
https://github.com/proj4js/proj4js
https://www.3dcitydb.org/3dcitydb/
https://github.com/cityjson/cjdb

in handling semantic surfaces and attributes (Q1, Q2 and Q3)

with consistency. However, the main advantage of using CJDB

lies in its simplicity of use and understanding, as well as its

method of storing 3D geometries, which makes them easy and

rapid to retrieve (Q4), and results in smaller sizes in the database.

In addition, CJDB is the most suitable database solution for the

CityJSON-based encoding with the direct approach of

visualization presented in section 3.4.1. Given that most current

UDT implementations are generally based on the 3DCityDB, we

found it interesting to further explore the performance and

limitations of CJDB. Several optimizations have been applied to

the database to enhance its performance.

3.3.2. Optimization of the CJDB Database

According to the CJDB database schema, the footprints of each

object are stored in a PostGIS geometry-type column, called

«ground_geometry». During data import, the CJDB importer

retrieves the ground geometry of each object; however, in some

cases, this function is not properly executed. For example, for

some objects in our CityJSON data, the column

«ground_geometry» contains only an empty Multipolygon

instead of a Multipolygon with geometries.

We assumed that this issue occurs because, during data import,

the CJDB importer tries to detect a flat ground surface, meaning

that the Z values of the polygons are identical or have minimal

differences. If this is not the case, it returns an empty geometry.

To ensure that the footprints are always stored, regardless of the

case, a Python script was written and should be executed once the

data has been properly imported into the database. The script

retrieves the ground geometries of each object and adds them to

the «ground_geometry» column.

3.3.3. CityThings concept

The CityThings concept relies on the SensorThings and

CityGML standards to establish a connection between the sensor

and the 3D model on which the sensor data is measured

(Santhanavanich and Coors, 2021). We extended this concept

based on CityGML and 3DCityDB with light encodings (e.g.,

CityJSON and CJDB). It allows linking the static and dynamic

databases, where an urban object (lamp post stored in CJDB)

corresponds to an object where a sensor is placed (measurement

station stored in STA Database as a « Thing »). By using this

approach, we can retrieve information about the 3D urban object

corresponding to the sensor data flows, and vice versa (see Figure

2).

Figure 2. The CityThings concept applied to a sensor in our

study area.

Technically, to ensure this link, the instance of «Thing » defined

in the UML diagram of the STA data model stores as a property

the unique identifier of its corresponding 3D urban object (which,

in our case, is the ID of the lamp post). Figure 3 shows an

example of how the urban object identifier is stored in the « Thing

» entity.

Figure 3. Example of storing the 3D object identifier in the

«Thing» entity properties.

3.4. Data Visualization:

3.4.1. Choice of visualization tool and approach

This step involves retrieving objects from the database and

visualizing them on web-based platforms. We have selected web

visualization as it is more optimal and does not require any

additional software or hardware installation by the user. At this

stage, we have compared two existing approaches in the

literature:

- The direct approach: the objects are retrieved directly from the

database by running an SQL query. The returned object is in

GeoJSON or CityJSON format, including both attributes and

geometries. In this approach, there is a direct connection between

the client and the 3D database. Updates are made automatically

after any modification, such as the deletion or modification of

urban objects. However, loading time and visualization can be

quite slow and require more resources, as the data is loaded in a

format that is not suitable for large data visualization.

- The indirect approach is the most widely adopted in most UDT

implementations. It consists of exporting manually 3D models in

3D tiles format, storing them on cloud servers such as Cesium

Ion and retrieving them by ID. The use of these adapted formats

guarantees rapid visualization. However, a direct link between

the visualization and the database where the objects are stored

and managed is not assured. This means that any changes to

urban objects require a new export for visualization.

Given that this project focuses on a neighborhood with around

10,000 3D objects, its scale is relatively small. Moreover, this

project aims to implement a solution that is not restricted by

limitations such as the lack of a direct link between the database

and the client or the need for manual data export and conversion

into a web-streamable format. It also aims to further explore the

use of a database in the backend for the management of 3D

objects within the context of UDT. Consequently, the direct

approach was adopted.

Common UDT visualization tools and frameworks have been

implemented and fully tested. Their differences lie in loading

speed, supported formats, built-in features, and other aspects. We

investigated two JavaScript libraries, CesiumJS and Three.js, to

parse and load data in an interactive way. These are both web-

based graphics libraries used to create interactive 3D graphics in

a browser.

CesiumJS is more specialized for geospatial applications and

offers advanced geospatial features. However, with the direct

approach, 3D data will be retrieved and viewed in 3D GeoJSON

format to facilitate data flow from the database, through the

server, and to the client. This method is very slow and requires

more memory. For Three.JS, while it lacks built-in support for

geospatial functionalities, it can efficiently visualize data in

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-387-2024 | © Author(s) 2024. CC BY 4.0 License.

390

https://cesium.com/platform/cesium-ion/
https://cesium.com/platform/cesium-ion/
https://cesium.com/platform/cesiumjs/
https://threejs.org/

CityJSON format in a shorter time by using the « cityjson-threejs-

loader » library. Since we conducted our first attempt with the

approach based on CesiumJS and 3D GeoJSON, we observed

that the approach based on Three.JS and CityJSON brings

significant improvements in loading speed, memory usage, and

navigation fluidity. To address the lack of geospatial

functionalities in Three.js, we used the Giro3D framework. It is

a recent open-source JavaScript framework designed to visualize

and interact with heterogeneous data in 2D, 2.5D, or 3D.

Although it is based on Three.JS, it integrates support for

geospatial functionalities by using the Openlayers library.

3.4.2. 3D Data Retrieval

Initially, when the user loads the page, an HTTP request is

immediately sent to the server, which is a Flask server, that

retrieves 3D data from the CJDB database. This database

automatically exports data in CityJSON Lines format using the

CJDB Exporter function. Once the data is retrieved, it must be

converted to CityJSON format to be readable by the visualization

tool. This conversion can be done using CjSeq, a program for

creating, processing, and modifying CityJSONSeq files, as well

as converting them to CityJSON files (Ledoux et al., 2024). The

CityJSON data is then sent to the client side to be parsed and

loaded into the Giro3D scene.

Figure 4 illustrates the UML sequence diagram of this

architecture.

Figure 4. UML sequence diagram of 3D Data Loading.

3.4.3. Dynamic Data Visualization

The approach used for visualizing dynamic data is independent

of the one applied to static data. This data is retrieved through

APIs and can either be directly displayed on the interface or

saved in the STA database for time series analysis.

● Displaying Punctual Data

First, a request is made to fetch information about available

sensors, such as their 2D position, ID, address, etc. This initial

request allows the sensors to be displayed in the scene and

enables modifications to the database if new sensors are added or

removed.

The second request is sent when the user clicks on a specific

sensor. This request retrieves the latest measurements taken by

the sensor, including the concentration of each pollutant,

temperature, air quality index (AQI) value, and the timestamp of

the measurement (aqi_timestamp). Figure 5 illustrates an

example of the results from the second request, which are then

displayed in a graph using the Chart.js JavaScript library.

Figure 5. Example of retrieved data for a specific sensor.

● Displaying time series data from the database

The time series values are retrieved from the STA database. An

SQL query is executed to extract data from the

«OBSERVATIONS» table, ordering the results by date and time.

The results are then processed to group the data by date. Each

date is associated with a dictionary containing values for various

pollutant concentrations, temperature, and a calculated air quality

index value (since this value is not stored in the STA database

and must be calculated based on pollutant concentrations). The

data is then formatted into a JSON dictionary, where the keys

represent the date and time. These data are then returned and

displayed in a graph (see Figure 9).

3.5. Technical Architecture of the UDT

Based on the various tests and comparisons, Figure 6 represents

the final technical architecture to be adopted for the

implementation of this project. The three main stages are

presented along the vertical axis, and at the top of the diagram,

there are the different types of data (static and dynamic) to be

integrated, such as data to be injected into the database or data

that will be directly visualized on the platform. The two databases

(CJDB and STA Database) are connected via the CityThings

concept. A Flask server is implemented to handle various

requests and perform certain calculations and conversions.

Finally, all data is visualized on a single platform using the

Giro3D framework.

Figure 6. Technical architecture of the UDT.

3.6. Various features integrated into the platform

To provide a fully featured and user-friendly platform, a variety

of functions have been implemented.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-387-2024 | © Author(s) 2024. CC BY 4.0 License.

391

https://github.com/cityjson/cityjson-threejs-loader
https://github.com/cityjson/cityjson-threejs-loader
https://giro3d.org/
https://openlayers.org/
https://github.com/cityjson/cjseq
https://www.chartjs.org/

- Retrieving information related to an object by its ID

By using the raycasting principle, we can retrieve information

about the clicked object such as their «object_id», the attributes

of this object and the ID of the semantic surface if it exists. A

«div overlay» is then displayed, containing this information.

- Retrieving information related to a specific surface

If the model contains information about surfaces (e.g., wall

surfaces, roof surfaces, or other attributes), this information can

be retrieved using the surface ID obtained through the raycasting.

- Attributes manipulation

The «div overlay» that appears after double-clicking on a specific

object contains three buttons for modifying, adding, and deleting

attributes. The process for these three functionalities is similar.

After identifying the concerned 3D object, a filter is applied using

its ID. Operations are then performed on this object: either

assigning a new value to an existing attribute, adding a new

attribute, or deleting an attribute. To update the database,

endpoints are created to execute an SQL query that modifies the

database. If the attributes concern semantic surfaces, we modify

the «semantics» property instead of the «attributes» property.

- Multi-layer management

A layer management section has been added to handle multiple

data sets loaded in the scene. For each layer, we can toggle its

visibility, zoom in on the layer, or download the layer for use in

other applications (see Figure 8-a).

- Filtering objects

For filters based on attributes, we specify first which layer the

filter will be applied to. After setting various conditions based on

the object type and attributes (see Figure 7-a), these conditions

are grouped and then applied to the current city model to create

and load in the scene a new city model containing only the

desired objects.

For spatial filters, this functionality has not yet been integrated

on the client side. It must be executed on the server side of the

database using PostgreSQL's spatial extension «PostGIS» and

the «ground_geometry» column in CJDB, which contains the

objects' footprints in PostGIS geometry format. First, we specify

the type of object, the type of spatial functions (DWITHIN,

DWITHOUT, INTERSECT, or DISJOINT), and the type of

geometry to be drawn directly on the base map (see Figure 7-b).

These parameters are then sent to the server, and a spatial query

is executed in the database, which returns the desired objects.

 (a) (b)

Figure 7. a) Attribute filter: buildings of type «Building», trees

< 20m, and roads for national use; b) Spatial filter: buildings

located within 10m around a road segment.

- Optimization of visualization

All visualization and control parameters can be adjusted based on

the user’s needs using the Dat.GUI library. The user can change

the sky color, adjust the light intensity, display objects based on

the Level of Detail (LoD), and change the colors of urban objects

based on a specific attribute. Additionally, they can customize

the colors according to the type of object (e.g., Building, Road,

etc.) or the semantics of the building (e.g., RoofSurface,

WallSurface, etc.).

- User management

To manage different permissions for modifying data in the

database, a user management system has been integrated. A

separate database is used to store user information, including

name, email address, password, and role, which can either be

«admin» or «user». Once the database schema is created,

endpoints for login, logout, and registration are established.

Users must have the «admin» role to access the database

modification capabilities; however, they can modify the data they

have imported.

4. Results and Use Cases

This section presents an overview of the results we have obtained

and explains the use cases that have been implemented within the

platform. These use cases demonstrate the platform's ability to

operate across various fields and highlight the advantages of

digital twins in urban environments.

4.1. City2Twin Platform

The City2Twin platform is designed to be simple and intuitive,

enabling users to navigate efficiently while offering enhanced

visualization features, as shown in Figure 8.

Figure 8. The CITY2TWIN overview: (a) layer management

panel, (b) controls panel, (c) attribute and spatial filters, (d)

urban analysis (air quality and energy simulation panel), (e)

import external data, (f) documentation, (g) user management.

To ensure the platform's capability in handling large datasets, we

imported a CityJSON LoD 2 file of Zurich city from the client

side, containing approximately 200,000 objects and sized at 300

MB. The model was successfully loaded.

4.2. Use Cases

In the fourth sidebar (see Figure 8-d), two applications are

presented. The first section contains the application dedicated to

air quality analysis, while the second focuses on energy

simulation in buildings.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-387-2024 | © Author(s) 2024. CC BY 4.0 License.

392

https://sbcode.net/threejs/dat-gui/

4.2.1. Air Quality Analysis

The dynamic data are used to perform air quality analysis. As

explained in the methodology, data is retrieved via an external

API and can either be stored or directly visualized. This near real-

time visualization informs users of the current air quality in the

area. Regarding time series data from the database, various

analyses can be conducted. The X-axis can represent dates and

times in chronological order, different hours of the day (from

00:00 to 23:00), or days of the week, while the Y-axis can

represent temperature, AQI values, or concentrations of

pollutants. The data can also be filtered for a specific period.

By combining different parameters on the X and Y axes and

adjusting date ranges, a more comprehensive and advanced air

quality analysis can be performed (see Figure 9). For example, it

is possible to identify the times of day or days of the week when

air quality is at its best, or simply to track the evolution of a

parameter over time. Seasonal trends can also be evaluated if

sufficient data is available in the database. These analyses

support decision-makers and governments in making informed

choices to improve citizens' quality of life.

Figure 9. (a) Concentrations of each pollutant at time t; (b)

Temperature variations from 08/01 to 08/26; (c) Average hourly

concentrations calculated between 08/19 – 08/26; (d) Average

daily air quality value calculated between 08/19 – 08/26.

4.2.2. Energy Simulation

Simulation results are typically provided in CSV or JSON files.

These files contain key-value pairs, where the key represents the

building ID, and the value is the associated result. Although a real

simulation cannot be performed due to the lack of necessary data

in our 3D model, an approach has been developed to support data

from these simulations. For this purpose, we created a JSON file

containing random data for testing (considered as a result of a

simulated energy demand). This file can be injected into the

model for visualization, as shown in Figure 10, and can also be

stored in the database as an attribute of urban objects.

Figure 10. Visualization of integrated simulation data on the

model.

5. Discussion

5.1. Used Tools

Based on the tests conducted on both databases, we observed the

importance of having an easily understandable schema, like the

one proposed by CJDB. However, one of the challenges

encountered with this database is the issue of schema

consistency. Unlike 3DCityDB, where attributes are stored in a

separate table with constraints on variable types, in CJDB, they

are stored in a JSONB column in the same table as the urban

objects. Consequently, no constraints on the attribute value types

are applied. We had to implement these constraints manually; for

instance, when updating an attribute value, it first compares the

type of the old value with that of the new one.

Although CesiumJS is the most widely used library, Three.js was

chosen for this project to reduce loading times and improve

performance while maintaining a direct link between the client

and the database. Additionally, Three.js enables compatibility

with CityJSON, allowing us to benefit from its various

advantages, such as support for handling semantic surfaces,

which is very challenging to achieve with CesiumJS and the 3D

GeoJSON format.

5.2. Evaluation

To assess the contributions of this project, we compared it with

existing operational viewers. Based on this comparison, we

conclude that City2Twin has introduced significant

improvements in data analysis, particularly with attribute and

spatial queries, as well as the semantic surfaces. Regarding

attribute manipulation, it offers a more intuitive interface

compared to the way attributes are modified in Ninja and also

implements constraints on value types to reinforce data

consistency.

The developed approach has demonstrated the importance of

having a 3D database that directly interacts with the client

interface, allowing for the manipulation or modification of urban

objects without relying on manual exports and file hosting on a

server. In addition to this database-based approach, it also

supports files imported from the client interface (such as 3D point

clouds, CityJSON, or GeoJSON). Thus, it can function as a

simple 3D visualization tool on the web without the need for

database configuration.

Although dynamic data can be injected into the model itself via

an extension, the use of the STA Database has facilitated the

management and storage of this data. This standard not only

allows for the storage of data but also includes the management

of various elements related to datastreams with their descriptions,

such as the sensor used, the observed properties, the station and

its location, etc.

The developed framework is a generic framework that can be

used for other applications requiring dynamic data or not: e.g.,

mobility, energy demand, urban planning, etc. All the tools and

solutions used in this project are open-source and free, facilitating

the development of extensions for specific needs.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-387-2024 | © Author(s) 2024. CC BY 4.0 License.

393

https://ninja.cityjson.org/

6. Conclusion

This project focused on developing a framework for the

implementation of an UDT that encompasses various data

integration, storage, visualization, and analysis. It has led to a

functioning open UDT, «City2Twin», that tackles the gap in the

literature regarding the technical requirements and enhances the

UDT developments while taking advantage of lightweight

standards and solutions. The developed framework is based on

the CityJSON encoding. This format offers several advantages

due to its lightweight nature and simplicity, facilitating its

manipulation and integration into a visualization platform. For

data storage and management, after various tests and

comparisons between CJDB and 3DCityDB, the CJDB database

was chosen for its simplicity, lightweight nature, and

compatibility with an approach based on CityJSON encoding.

Direct interaction with the database is a major advantage,

allowing for continuous maintenance and efficient data updates

without the need to export files manually. Additionally, the use

of a separate database (STA Database) with the «CityThings»

concept prevents the direct storage of dynamic data within the

model, which can already be heavy. It also enables effective

management of the various elements related to datastreams.

In conclusion, the City2Twin framework demonstrates a robust

approach to urban management through the integration of 3D city

models and dynamic data. Although this work successfully met

our main objective, future improvements could focus on

optimizing data retrieval methods and expanding the platform's

capabilities to support more advanced urban analysis and several

types of data.

References

Ballouch, Z., Jeddoub, I., Hajji, R., Kasprzyk, J.-P., Billen, R.,

2024. Towards a Digital Twin of Liege: The Core 3D Model

based on Semantic Segmentation and Automated Modeling of

LiDAR Point Clouds. ISPRS Ann. Photogramm. Remote Sens.

Spatial Inf. Sci., X-4-W4-2024, 13–20. doi.org/10.5194/isprs-

annals-X-4-W4-2024-13-2024.

Boumhidi, K., Nys, GA., Hajji, R. (2024). Integrating Dynamic

Data with 3D City Models via CityJSON Extension. In: Kolbe,

T.H., Donaubauer, A., Beil, C. (eds) Recent Advances in 3D

Geoinformation Science. 3DGeoInfo 2023. Lecture Notes in

Geoinformation and Cartography. Springer, Cham.

doi.org/10.1007/978-3-031-43699-4_45.

DImitrov, H., Petrova-Antonova, D., 2021. 3D city model as a

first step towards digital twin of Sofia City. Presented at the Int.

Arch. Photogramm. Remote Sens. Spatial Inf. Sci., - ISPRS Arch.,

23–30. doi.org/10.5194/isprs-archives-XLIII-B4-2021-23-2021.

Gitahi, J., Kolbe, T.H., 2024. Requirements for Web-Based 4D

Visualisation of Integrated 3D City Models and Sensor Data in

Urban Digital Twins, in: Kolbe, T.H., Donaubauer, A., Beil, C.

(Eds.), Recent Advances in 3D Geoinformation Science, Lecture

Notes in Geoinformation and Cartography. Springer Nature

Switzerland, Cham, 707–725. doi.org/10.1007/978-3-031-

43699-4_43.

Jeddoub, I., Nys, G.-A., Hajji, R., Billen, R., 2023. Digital Twins

for cities: Analyzing the gap between concepts and current

implementations with a specific focus on data integration. Int. J.

Appl. Earth Obs. Geoinf. 122, 103440.

doi.org/10.1016/j.jag.2023.103440.

Kasprzyk, J.-P., Nys, G.-A., Billen, R., 2024. Towards a multi-

database CityGML environment adapted to big geodata issues of

urban digital twins. The Int. Arch. Photogramm. Remote Sens.

Spatial Inf. Sci., XLVIII-4-W10-2024, 101–106.

doi.org/10.5194/isprs-archives-XLVIII-4-W10-2024-101-2024.

Ketzler, B., Naserentin, V., Latino, F., Zangelidis, C., Thuvander,

L., Logg, A., 2020. Digital Twins for Cities: A State of the Art

Review. Built Environment 46, 547–573.

doi.org/10.2148/benv.46.4.547.

Kutzner, T., Chaturvedi, K., Kolbe, T.H., 2020. CityGML 3.0:

New Functions Open Up New Applications. PFG 88, 43–61.

doi.org/10.1007/s41064-020-00095-z.

Ledoux, H., Stavropoulou, G., Dukai, B., 2024. Streaming

CityJSON datasets. The Int. Arch. Photogramm. Remote Sens.

Spatial Inf. Sci., XLVIII-4-W11-2024, 57–63.

doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-57-2024.

Lehner, H., Kordasch, S.L., Glatz, C., Agugiaro, G., 2024.

Digital geoTwin: A CityGML-Based Data Model for the Virtual

Replica of the City of Vienna, in: Kolbe, T.H., Donaubauer, A.,

Beil, C. (Eds.), Recent Advances in 3D Geoinformation Science,

Lecture Notes in Geoinformation and Cartography. Springer

Nature Switzerland, Cham, 517–541. doi.org/10.1007/978-3-

031-43699-4_32.

Powałka, L., Poon, C., Xia, Y., Meines, S., Yan, L., Cai, Y.,

Stavropoulou, G., Dukai, B., Ledoux, H., 2023. cjdb: a simple,

fast, and lean database solution for the CityGML data model.

Santhanavanich, T., Coors, V., 2021. CityThings: An integration

of the dynamic sensor data to the 3D city model. Environment

and Planning B: Urban Analytics and City Science 48, 417–432.

doi.org/10.1177/2399808320983000.

Würstle, P., Santhanavanich, T., Padsala, R., Coors, V., 2020.

The Conception of an Urban Energy Dashboard using 3D City

Models., 523–527. doi.org/10.1145/3396851.3402650.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-387-2024 | © Author(s) 2024. CC BY 4.0 License.

394

