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Abstract 
 
The creation of Building Information Models (BIM) is driven by cutting-edge software applications, plug-ins, and APIs that constitute 
the backbone of BIM authoring tools. While free tools and APIs offer visualization and customization options, geometric modelling 
remains largely restricted to interactive work and proprietary platforms, which sometimes limits flexibility and efficiency. There are 
still only a few comprehensive workflows that fully automate the reconstruction of building elements from reality-based surveyed data. 
This paper introduces an innovative reconstruction pipeline developed for the Scan-to-BIM Challenge at the CVPR 2024 Workshop, 
where it achieved second place in the competition. A deep learning (DL)-driven BIM Module for parametric IFC reconstruction is 
designed to accurately reconstruct both primary and secondary building elements within a BIM framework, starting from unstructured 
point cloud data captured via Terrestrial Laser Scanning (TLS). By leveraging DL techniques, particularly Convolutional Neural 
Networks (CNNs) and Transformers Networks (PTv3), our approach uses late fusion instance segmentation across both 2D and 3D 
modalities to accurately identify and reconstruct class-specific elements. The pipeline ultimately generates Industry Foundation Classes 
(IFC) elements, enhancing modelling accuracy, parameter estimation, and consistency in subsequent stages. Results highlight the 
pipeline’s strong performance on various datasets, underscoring the crucial role of DL in advancing Scan-to-BIM workflows. 
 
 

1. Introduction 

The Scan-to-BIM concept has gained significant attention due to 
its increasing multi-sector application and interoperability, 
leading to the development of various BIM reconstruction 
methods from point cloud data, each utilizing different strategies 
(Bassier et al., 2016; Rashdi et al., 2022). Traditionally, the BIM 
industry has been dominated by proprietary authoring tools, 
which can sometimes hinder workflow efficiency for companies 
and engineering studios. As the demand for BIM solutions 
continues to rise, especially in Architecture, Engineering, and 
Construction (AEC) sector (Rocha and Mateus, 2021), there is a 
growing need for more efficient and open-source alternatives able 
to deliver comparable functionality and efficiency. Additionally, 
the growing focus on automating Scan-to-BIM processes has led 
to more efficient and advanced methods for reconstructing 
models directly from point cloud data.  
Despite the AEC industry's growing demand for Scan-to-BIM 
procedures, challenges in automation persist. Key benchmarks on 
this topic, such as ISPRS and CVPR 2024, focus on complex 
indoor scenes using single-storey LiDAR or RGBD data, with 
strict requirements for Industry Foundation Classes (IFC) and 
evaluations based on completeness, correctness, and accuracy. 
While comprehensive BIM benchmarks remain limited, 
advancements in machine learning (ML) and deep learning (DL) 
have significantly enhanced automation in Scan-to-BIM 
processes. Recent achievements in Scan-to-BIM automation 
leverage and integrate algorithms from computer vision and 
photogrammetry, such as octree and KD-tree spatial indexing for 
efficient data management and CNNs tailored for point-based 
data. These improvements have led to significant progress in 
semantic segmentation, instance segmentation, and class-specific 
reconstruction, enhancing both accuracy and automation. 
 

1.1 Objectives 

The presented work focuses on developing a comprehensive 3D 
building reconstruction pipeline from reality-captured data. The 
final goal is to enable a fully integrated pipeline that can 
accurately identify and reconstruct complex architectural 
elements within indoor spaces.  
In the initial phases of the pipeline, object detection and semantic 
segmentation are employed to precisely identify and classify 
primary structural elements, such as walls, floors, and ceilings, 
along with secondary components, in particular doors. 
The developed code and resources are available in the following 
GitHub repository: https://github.com/Saiga1105/Scan-to-BIM-
CVPR-2024. 
 

2. Background and related works 

In recent years, various Scan-to-BIM approaches have been 
developed, exploring different workflows and techniques. 
Typically, all the methods presented in the literature consist of 
the following steps:  
• Semantic segmentation; 
• Classification and instance segmentation; 
• the final reconstruction phase.  

Each of these stages is essential for converting unstructured 
point clouds into structured BIM representations. The 
following sections offer a more technical breakdown of these 
key steps.  

 
2.1 Segmentation and classification 

Recent innovations in semantic segmentation have introduced 
transformative methods like Segment Anything Model (SAM, 
Kirillov et al., 2023), which excels in zero-shot segmentation 
with prompt-based inputs, and DINOv2 (Liu et al, 2023), 
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leveraging self-supervised learning for dense predictions with 
robust, transferable features.  
K-Net (Zhang et al., 2021) represent a leap forward in object 
grouping, with transformer-based architectures providing better 
global context understanding and efficient segmentation. This 
approach highlights the growing trend of integrating transformers 
and self-supervised learning into segmentation tasks, 
significantly enhancing accuracy and adaptability across 
diverse applications.  
While DL methods, including Convolutional Neural Networks 
(CNNs) and Graph Neural Networks (GNNs), especially those 
based on Point Transformers, have experienced groundbreaking 
advancements from (Zhao et al., 2021) to the cutting-edge 
innovations by (Wu et al., 2024), the Random Forest (RF) 
algorithm continues to stand out as a powerful tool in ML. As 
underscored by Grilli and Remondino (2020), the RF algorithm's 
robustness and effectiveness remain highly relevant, 
demonstrating its enduring value and versatility in the ever-
evolving landscape of ML applications. 
 
2.2 Instance segmentation 

The most significant advancements have occurred in instance 
segmentation. Traditionally, this process relied on heuristic 
methods such as region growing (Yang et al., 2023b), connected 
components (Zhang et al., 2023), or scene graphs (Yang and al., 
2023a). Recent progresses, however, leverage sophisticated 
algorithms like Mask R-CNN (Sujatha et al., 2023), which 
integrates region-based convolutional neural networks with 
object detection and segmentation.  
In addition, end-to-end instance segmentation is achievable with 
some solutions like OneFormer3D, which learns instance queries 
directly from the data and achieves 70-80% of mean Average 
Precision (mAP), depending on the benchmark. This progress 
parallels advancements in computer vision, especially in 2D 
object detection, where techniques like Grounding DINO (Liu et 
al, 2023a) have significantly surpassed the state-of-the-art in 3D. 
 
2.3 Reconstruction 

Finally, reconstruction strategies can differ, exploring a wide 
range of approaches. This step incorporates RANSAC fitting 
(Hemmer, 2024), cell decompositions (Liu et al., 2023b), 
adjacency graphs (Damien et al., 2023), shape grammar (Stouffs, 
2022, Yang et al., 2023c). End-to-end deep learning methods, 
such as Scan2BIM-NET (Perez-Perez et al., 2021), focus 
primarily on improving semantic segmentation. Recent 
methodologies, like NeRF-to-BIM (Hachisuka et al., 2023), aim 
mainly to reduce object occlusions, while BIM-Net++ 
(Campagnolo et al., 2023) specifically concentrates on enhancing 
object detection within the Scan-to-BIM process. 
The most comprehensive and efficient reconstruction procedures 
have been presented by Bassier et al. (2020a), with a particular 
focus on walls reconstruction (Bassier et al., 2020b). These 
methods also incorporate graph-based pipelines, as detailed in 
(Bassier et al., 2024). Other methods employ statistical math 
pipelines based on Reversible Jump Markov Chain Monte Carlo 
(Tran and Khoshelham, 2020), or applying computational 
geometry through Topologic Maps (Roman et al., 2024), starting 
from edge extraction (Li et al., 2024). 
Models derived with these techniques are primarily used for 
structural monitoring (Jiang et al., 2022), evaluating structural 
features of existing buildings (Özkan et al., 2024), and tracking 
progress on construction sites (Kim et al., 2020). 
 
 

3. Methodology 

This work introduces a BIM module for 3D reconstruction, 
designed to integrate with DL networks and create a fully 
automated, end-to-end BIM reconstruction pipeline. The module 
streamlines the process from raw data input to BIM model 
output, adhering to IFC standards to ensure interoperability and 
structured data organization. The current focus is on achieving 
consistent and detailed BIM reconstructions through a late fusion 
detection approach, which combines outputs from separate 
models at the final stage to enhance detection performance by 
leveraging diverse information sources, ultimately improving the 
subsequent reconstruction phase. 
 
3.1 Datasets 

The dataset used in this work is sourced from the IEEE/CVF 
CVPR 2024 Scan-to-BIM challenge (https://cv4aec.github.io/), 
comprising 3D building models from 16 floors across 8 
buildings. Data are provided as point clouds in LAZ format files. 
Due to the high density and complexity of these point clouds 
(Table 1), the processing requires substantial computational 
power, including high-performance CPUs, large memory 
capacity, beyond the capabilities of a standard computer. For this 
reason, some pre-processing phases are required. 
 

 
Figure 1. Partitioned point cloud. 

 
3.2 Data pre-processing 

The pre-processing steps start with the subsampling of the point 
cloud data to a resolution of 1 cm. As illustrated in Figure 1, the 
dataset has been partitioned into smaller subsets according to a 
pre-defined grid, ensuring more efficient processing while 
maintaining the integrity of the data. 
Additionally, a training dataset for the instance segmentation 
task needs to be created by manually segmenting class elements 
within the point clouds. Finally, RDF graphs are generated, 
incorporating metric metadata for each point and linking these to 
corresponding BIM objects. This approach facilitates object 
tracking throughout the reconstruction process, following the 
Geomapi toolbox guidelines (Bassier et al., 2024). 
 
3.3 Detection 

In the detection phase, instance segmentation is performed for 
both primary structural classes (walls, ceilings, floors, columns) 
and secondary classes (doors).  
The semantic segmentation is conducted using PTv3 (Wu et al., 
2024; Zhao et al., 2021) and Pointcept (Section 2.1). Two scalar 
fields are assigned to the unstructured point clouds: first, a class 
label is assigned to each point from a total of seven categories 
(floors, ceilings, walls, columns, doors, and unassigned), while 
the second scalar field associates each ID to each labelled object.  
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The combination of PTv3 and Pointcept is highly effective for 
segmenting unstructured point clouds, accurately identifying, in 
particular, walls, ceilings, and floors. 
For these categories, as evidenced by validation with training 
data, they yield high mean Intersection over Union (mIoU) (Table 
2), while the results in other classes have been less reliable. 
 

Table 1. Characteristic of the partitioned input point cloud. 
 

File name Million 
points 

Weight 
(MB) 

RGB 

05_MedOffice_01_F2 26,30 63.60 ✘ 

19_MedOffice_07_F4 35,19 153.70 ✔ 

32_ShortOffice_05_F1 26,75 118.85 ✘ 

32_ShortOffice_05_F2 24,67 111.05 ✔ 

35_Lab_02_F1 75,97 344.30 ✘ 

35_Lab_02_F2 59,21 258.13 ✘ 

The results from semantic segmentation (PTv3) and instance 
segmentation (Pointcept) are stored in a JSON graph file. Each 
element is represented as a node, recording its geometric features 
and positions. 
 

Class Mean 
(%) 

Std Dev 
(%) 

Count 
parts 

mIoU 
(%) 

mAcc 
(%) 

floors 12.5 4.8 41 92.5 95.0 
ceilings 17.7 6.9 40 92.7 94.1 

walls 30.9 8.3 40 82.9 85.8 

columns 0.7 0.4 12 38.6 40.1 

doors 0.9 0.5 39 42.9 58.5 

unassigned 40.6 17.7 42 91.3 100.0 

Table 2.	Summary statistics and performance metrics for various 
classes. 
 
This structure allows for precise oriented bounding boxes and 
spatial relationships (Figure 2), which can be enriched with 
additional data for further applications. 

 
Figure 2. Metadata structure for building elements in graph node 
file. 
 

3.3.1 Columns detection 
 
Columns are often occluded and represent only 0.7 % of the 
scene (Table 2), leading to a stagnation in training results at 40 
%. To address this, we applied a vision-based approach (Figure 
3) for columns that capitalizes on the grid pattern of structural 
elements, as explained in Equation 1:   
 

𝐶! =  𝐶" + (𝐶# ∩ 𝐺) (1) 
 
Where: 
• Cf is the final cluster of columns; 
• Cg is the columns cluster inferred by geometric features; 
• Cv is the columns cluster inferred by visual-based 

approach; 
• G is the grid defined by visual-based network. 

 
We trained a YOLO v8 (Varghese and Sambath, 2024) model 
using eight distinct training datasets, optimizing for maximum 
recall. Subsequently, candidate columns were analysed in 3D, 
where they were evaluated based on detection scores, grid 
compliance, and point cloud signatures. 
 

 
Figure 3. Visual-based detection approach for columns 
identification. 

 
3.3.2 Openings detection 
 
The door detection process (Figure 4) is applied after the wall 
reconstruction phase and leverages the GroundingDINO pre-
trained model to identify doors with remarkable accuracy. The 
detection utilizes both the reconstructed meshes of walls, and the 
wall point cloud as inputs.  The first input is used to compute the 
main axis of each wall, defined by the vector formed between the 
start and end points of the walls in the xy plane. From this axis, 
a 1-meter offset is applied to both sides, ensuring an accurate 
orthographic projection of the wall in 3D space. This projection, 
incorporating the point cloud as second input, is transformed into 
a raster image, where each unit is finely sampled at 0.01 pixels 
in both length and height. Rays are cast across the scene to detect 
visible surfaces, avoiding self-intersections, and generating 
orthographic images of the walls. Using these images, the 
GroundingDINO pre-trained model identifies potential door 
locations through predicted oriented bounding boxes. These 
detections are refined by applying thresholds based on real-world 
dimensions. In particular, let w represent the opening width of a 
door, and h represent the opening height of a door. The 
dimensional requirements for a valid door are specified in 
Equation 2: 
 

𝑡!"#_%"&'( = 0.50	𝑚 ≤ 𝑤 ≤ 𝑡!)*_%"&'( = 3.00	𝑚
𝑡!"#_(+",(' = 1.50	𝑚 ≤ ℎ ≤ 𝑡!)*_(+",(' = 2.30	𝑚 

(2) 
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If ℒref represents the reference level, defined as the distance 
between the floor and the opening, the condition for the topology 
and positioning of a door can be expressed as following (Eq. 3): 
 

L$%! < 0.50	𝑚 (3) 
 
This ensures that the object is positioned close enough to the 
ground, satisfying the criteria for being identified as a door. 
 

 
Figure 4. GroundingDINO Zero-shot object detection for 
openings recognition. 
 

These additional filters help eliminate false positives, ensuring 
that only valid door candidates are retained. Once identified, the 
doors are reconstructed as 3D point clouds, allowing for precise 
extraction of their geometry and spatial positioning. The result is 
a comprehensive geometric representation of potential doors, 
ready for use in architectural restitution and analysis. 
 
3.4 Multi-modal fusion results 

After completing various object detection tasks, we fuse the 
results and update the RDF graph files to report the new data. This 
multi-modal approach optimizes detection accuracy across 
different data environments and scales. The detected objects are 
grouped into point clusters, which are enclosed within oriented 
bounding boxes, featured by metadata, including geometric 
properties, object IDs, locations, and orientations, and finally 
stored in a JSON graph file. 
 

IfcBuildingElement Parameters 

IfcWallStandardCase  
 

IfcLocalPlacement (p1, p2)  
Wall Thickness (m) 
base constraint (URI) 
base offset (m)  
top constraint (URI) top offset (m)  
 

IfcColumn  
 

IfcRectangleProfileDef.XDim (m) 
IfcRectangleProfileDef.YDim (m)  
IfcLocalPlacement (c) 
base constraint (URI)  
top constraint (URI)  
 

IfcDoor  
 

IfcLocalPlacement (p1, p2)  
IfcRectangleProfileDef.XDim (m) 
IfcRectangleProfileDef.YDim (m)  
base constraint (URI) 
top constraint (URI) top offset (m)  
 

Table 3. IFC reconstruction parameters. 
 
3.5 Reconstruction 

Building on the advanced 2D and 3D reconstruction techniques 
outlined in recent studies (Bassier et al., 2020b; Bassier et al., 
2024), this approach concurrently generates parametric BIM 
geometries along with their topological structures, ensuring full 

compliance with IFC standards. IFC objects are computed for 
each cluster Ci (see Table 3 for parameter details), detecting each 
identified object.  
The BIM models are reconstructed in a hierarchical order, 
starting with the primary elements such as IfcWallStandardCase, 
IfcColumn, and IfcSlab, and then secondary elements, in 
particular IfcDoor elements. Secondary elements are closely 
linked to primary ones, as they are often embedded within them 
(e.g., doors within walls).   
 
3.5.1 Walls reconstruction 
 
The IfcWallStandardCase script initializes a set of nodes for 
walls (𝒲), ceilings (𝒞), and floors (ℱ) from the graph file. These 
nodes are fundamental to define the minimum (zbase) and 
maximum (ztop) z-coordinate value of each wall's vertical extent. 
The algorithm finds and links the nearest reference levels Ltop
 and Lbase for the top and base of the wall, in particular (Eq. 4): 
 
𝐿top = min

$!
&𝑧top − 𝑧$!& 	 and	 𝐿base = min

$!
&𝑧base − 𝑧$!&	

 

(4) 

Where zLi denotes the height of the i-th reference level. 
The topology of walls is then defined by performing a plane 
segmentation using RANSAC (Hemmer, M., 2024) to detect the 
dominant plane of the wall (p//), as shown in Equation 5, and the 
wall's normal vector (p⊥): 
 

p ∥ : 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0	  (5) 
 
The algorithm fits a plane to the set of 3D points 𝑷"  =
 (𝑥" , 𝑦" , 𝑧"), minimizing the error function (E), as in (Eq. 6): 
 

E =B
(𝑎𝑥" + 𝑏𝑦" + 𝑐𝑧" + 𝑑).

𝑎. + 𝑏. + 𝑐.

/

"01

 
(6) 

 
Walls thinner than a specified threshold (tth = 0.12 m) are not 
reconstructed, and the remaining are grouped into clusters Ci 
based on two criteria: distance and orientation. In particular, for 
distance (Eq. 7): 
 

𝑑(𝐶" , 𝐶2) = min
3!∈5!,3"∈5"

|𝑃" − 𝑃2| ≤ 𝑡& (7) 

 
And for orientation (Eq. 8): 

θ(𝐶" , 𝐶2) = arccos P
Q𝑛5#SSSSS⃗ QQ𝑛5"SSSSSS⃗ Q
𝑛5#SSSSS⃗ ⋅ 𝑛5"SSSSSS⃗

V ≤ 𝑡2 
(8) 

 
Finally, analysing both equation we will merge clusters (Eq. 9): 
 

if d(𝐶" , 𝐶2) ≤ 𝑡&	and	θ(𝐶" , 𝐶2) ≤ 𝑡2. (9) 
Where: 
 

• td is a distance threshold; 
• to is a threshold for orientation similarity; 
• Ci is the i-th cluster of a wal; 
• Co is the i-th cluster of a wall. 

 
Thickness and orientation of walls are conditioned by both 
distance threshold td and orientation threshold to. All walls 
geometric features are computed using maximum orthogonal 
distance, normal vectors and recreate bounding box points, 
analysing also intersections between wall axes (Bassier and 
Vergauwen, 2020b). Finally, the script creates a visual 
representation of the wall using a TriangleMesh (Figure 7). 
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To compute the geometric features of walls, such as the curves 
representing the wall's start and end points, consider a wall node 
characterized by a normal vector n and a wall thickness t.  
The orthogonal start point of the wall is determined by calculating 
𝒑𝒐𝒓𝒕𝒉𝒐, 𝒔𝒕𝒂𝒓𝒕 = 𝑝>')?' +

'
.
𝒏 and 	𝒑𝒐𝒓𝒕𝒉𝒐, 𝒆𝒏𝒅 = 𝑝+#& +

'
.
𝒏. 

Furthermore, for each wall node n, we collect the start and end 
points: 𝑝)*">,C2"#'>  = {𝑝>')?',  𝑝+#&}, as well the corresponding 
orthogonal points, defined as 	𝑝2'(2,)*"> =
^𝑝2?'(2,>')?',  𝑝2?'(2,+#&_. These points are derived from the 
wall's geometry and serve as the basis for determining the 
relationships between walls. The nearest neighbour (NN) search 
is employed to find the closest walls within a threshold distance 
𝑡"#'+?>+D'"2#.  In particular, given two segment lines: 
 
• Wall n, defined by 𝑝>')?'# , 𝑝+#&# , 
• Wall w, defined by 𝑝>')?'% , 	𝑝+#&% . 

 
the intersection point pintersection is found by solving the following 
system of linear equations, both in 2D or 3D (Eq. 10a, 10b): 
 

𝑝#(𝑡) = 𝑝start# + t(𝑝end# − 𝑝start# ) 
𝑝%(𝑠) = 𝑝start% + s(𝑝end% − 𝑝start% ) 

(10a) 
(10b) 

 
The final intersection point is determined by solving the equation 
presented in Equation 11. 
 

𝑝start# + t(𝑝end# − 𝑝start# ) = 𝑝start% + s(𝑝end% − 𝑝start% ) (11) 
 
where t and s are determined from these equations. 
The subsequent process verifies the accuracy of wall connections 
by identifying neighbour walls at each node’s start and end points 
and determining which walls intersect or connect based on 
proximity and alignment. These connections are cross-referenced 
with ground truth (GT) data to evaluate overlap consistency, 
where overlap ratios measure the alignment between computed 
and GT neighbour IDs. To validate the accuracy of these 
computed connections, the algorithm calculates an overlap ratio 
𝑂#	by comparing each node’s computed neighbours 𝑁D,#	 with the 
ground truth (GT) neighbours 𝑁,',#	. This ratio is defined by the 
Equation 12: 
 

𝑂# =
Q𝑁D,# ∩𝑁,',#Q

Q𝑁,',#Q
 

(12) 

 
A high overlap ratio, close to 1, indicates that the computed wall 
connections closely reflect the GT structure, confirming accurate 
connectivity and structural continuity within the model. This 
validation step ensures that the model accurately represents real-
world wall connections, which is essential for reconstruction 
fidelity. 
 
3.5.2 Columns reconstructions 
 
The IfcColumn, based on Ci column clusters, is reconstructed 
using a multi-step process to minimize noise and accurately 
restore rectangular columns. First, an oriented bounding box 
(OBB) is calculated, including noise points. Then, points in the 
Ci cluster are projected onto a plane at their average 𝑧,̅ effectively 
flattening them onto a plane. Furthermore, the bounding box is 
aligned along the x and y axes, through rotation matrix 
computation and projected at the average height 𝑧 ̅(Eq. 13):  
 

𝑃"
proj = (𝑥" , 𝑦" , 𝑧̅) (13) 

 
In this 2D space, we applied a ConvexHull polygon (Eq. 14): 

 
ℋ(𝑷) = {𝑝 ∣∣ 𝑝 = ∑ λ$𝑝$%

$&' , ∑ λ$%
$&' = 1,	 λ$ ≥ 0 } =

1𝑁(,* ∩ 𝑁+,,*1
1𝑁+,,*1

 (14) 

where λi are the convex coefficients used to define the convex 
hull of the set of points	𝑷.  
To refine the bounding box, each boundary of the previous OBB 
is divided into intervals, and a Gaussian distribution is computed 
based on the distribution of points within each interval. The peak 
of these distributions determines the correct x and y coordinate 
for the minimum bounding box (mOBB).  
 

 
Figure 5. Operational steps for column reconstruction and 
generation of the mOBB.  

 
This process (Figure 5) yields a more accurate, high-precision 
minimum oriented bounding box. The box is then returned to its 
original position (Figure 6) using the rotation matrix and 
translation (roto-translation). To determine the height of a 
column, the script follow the same one defined for the wall class. 
Additionally, to ensure structural integrity, columns with 
minimal size smaller than 0.15 m are excluded from 
reconstruction.  
So shortly, IfcColumn reconstruction uses mOBB to derive 
rectangular columns, with parameters like width, length and 
height, and the centre is placed at the base centre. 
 

 
Figure 6. Positioning of columns in the geo-referenced point 
cloud. 

 
3.5.3 Doors reconstruction 
 
As previously mentioned, door reconstruction is derived from 
the reconstructed walls integrating the door. The door 
reconstruction process begins with the detection of potential door 
candidates using a combination of geometric features and image 
analysis based on walls nodes and walls point clouds (Figure 9). 
Typically, doors in a point cloud are represented by clusters of 
points outlining their structure; however, in some cases, a door  
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 may instead be indicated by a gap or absence of points, where the 
empty space implies the presence of a doorway.  
Once a door is identified, its 3D point cloud is generated by 
sampling the surface between its start point 𝑃>')?' =	(𝑥1, 𝑦1, 𝑧1) 
and end point 𝑃+#& =	 (𝑥., 𝑦., 𝑧.). This point cloud accurately  
captures the door's 3D geometry, assuming that the door thickness 
matches the thickness of the wall. Additionally, the  
axis of the door’s bounding box is aligned with the wall’s axis, 
ensuring that the door's orientation corresponds with the 
structural elements. 
 

 
Figure 9. Door detection in the point cloud (top) and 3D door 
reconstruction (bottom). 

 
A comparison is made between the computed doors and the 
ground truth doors, focusing on geometric properties. The 
Euclidean distance between the center of the computed door and 
the ground truth door is calculated to measure positional 
accuracy. In addition to positional accuracy, the surface area of 

the door is also evaluated. The bounding box of the door is 
defined by its width w and height h, and the area A of the door is 
calculated as in Equation 15: 
 

𝐴	 = (𝑤	 × 	ℎ) (15) 
Where: 
 
• 𝑤 = |𝑥. − 𝑥1|	is the width of the door (horizontal distance 

between start and end points), 
• ℎ = |𝑧. − 𝑧1| is the height of the door (vertical distance). 
By comparing the surface area and the positional distance d 
between the computed and ground truth doors, this process 
ensures the accurate reconstruction of doors in 3D space, 
validating both the topology and spatial positioning. These 
comparisons ensure that the detected doors conform to real-
world dimensions and are correctly positioned within the 
reconstructed architectural model. 
 

4. Results 

In the detection phase, the combination of PTv3 and Pointcept in 
this multi-modal data processing strategy significantly enhanced 
performance, achieving a notable 86.1% F1-score at a 5 cm 
detection range and a mean Intersection over Union (mIoU) of 
79.6%. Table 2 showed the results for the detection results. 
The reconstruction process of the CVPR challenge datasets 
follows a hierarchical approach, starting from primary elements 
like walls, floors and columns, to secondary elements. The 
evaluation, based on a IoU parameter, has been focused on these 
elements, and concretely, walls are represented as centrelines 
with thickness to ensure clarity at intersections, while columns 
and doors are defined by their centre points, and extensions.  
Table 4 summarizes the average reconstruction accuracy across 
all datasets, evaluated at 5 cm, 10 cm, and 20 cm thresholds, 
which represent the maximum allowable distances from ground 
truth points. Results (Figure 10) could be significantly improved, 
as PTv3 may perform better with additional training data, 
particularly for secondary building elements. As a result, the 
subsequent elements reconstruction may be more detailed and 
accurate.  
Moreover, the results show that 32_ShortOffice datasets, 
precisely the dataset 32_ShortOffice _05_F1 and the dataset 
32_ShortOffice _05_F2, consistently achieve the highest 
Precision, Recall, and F1 Scores, particularly at larger distances 
(20 cm), demonstrate the best overall performance. 

 
 

Figure 7. Reconstruction phases for the 35_Lab_02_F2 Dataset wall nodes. 

 
 

Figure 8.  Reconstruction error: column inaccurately mapped within the model due to detection inaccuracies. 
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 The 35_Lab_02_F1 also performs better than 35_Lab_02_F2, 
with higher Precision and F1 Scores, while MedOffice datasets 
show improvement in metrics with increased distance. However, 
all datasets maintain quite consistent IoU values, indicating  
stable overlap performance but with varying effectiveness in 
other metrics.  
Despite achieving high F1-scores for walls and columns, 
challenges remain with small variations impacting metrics such  
as mIoU, especially for walls due to their single-faced nature and 
scanning limitations, and for columns, which are often occluded 
during the surveying phase. 
 

Threshold 
(cm) 

 Columns (%) Doors (%) Walls (%) 

0.05  mIoU: 80.6 mIoU: 39.6 mIoU: 84.3 
 F1: 81.4 F1: 41.5 F1: 81.3 

0.10  mIoU: 88.7 mIoU: 55.4 mIoU: 91.5 
 F1: 89.5 F1: 58.0 F1: 88.3 

0.20  mIoU: 91.7 mIoU: 60.1 mIoU: 97.2 
 F1: 92.5 F1: 63.1 F1: 93.9 

Overall 
Average 

 mIoU: 72.9 mIoU: 53.2 mIoU: 67.8 
 F1: 87.8 F1: 54.2 F1: 87.8 

Table 4. Results for columns, walls and doors of the CVPR 
datasets, for three different thresholds (5 cm, 10 cm and 20 cm). 
 
 

5. Conclusions 

This research presents an advanced BIM reconstruction 
framework using DL techniques, achieving significant gains in 
segmentation accuracy for point cloud data with an F1-score of 
86.1% at a 5 cm detection range and a mIoU of 79.6%. Employing 
PTv3 and Pointcept within a late fusion framework, the multi-
modal pipeline accurately reconstructs primary elements like 
walls and floors and secondary elements like doors, aligning with 
IFC standards. Wall detection accuracy reached 82.9%, while 
occluded elements such as columns and doors posed more 
significant challenges, with mIoU of 38.6% and 58.5% and a 
lower recall for doors (37%).  

These results highlight areas for improvement, particularly in 
occlusion handling, though the pipeline maintained an average 
mIoU of 67.8% across all elements.  
Future work will focus on improving segmentation accuracy, as 
it directly impacts the reconstruction phase (see Figure 8), and 
can sometimes lead to incorrect reconstructions. Furthermore, 
the workflow will incorporate additional secondary features such 
as windows and enhance algorithms to more effectively mitigate 
noise and occlusions in point cloud data. By leveraging DL 
approaches, this will advance Scan-to-BIM automation within 
the AEC industry, in accordance with industry standards. 
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