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Abstract

People with speech impediments and hearing impairments,whether congenital or acquired, often encounter difficulty in speaking.
there is a strong need to actually communicate using vocalization. This aproach needs to pratice and speak correctly. To extract
features from data containing individual differences, deep learning methods are utilized. However Prior works extracts features
based on point cloud data for lip moving change in three dimensional space, it lacks consideration for temporal sequences.In this
work we first identify temporal depth sequences as a new unique sensory information of Japanese pronunciation. We utilized
P4Transformer as temporal-spacial model with point clouds. In this study, we performed identification of Japanese pronunciation
using point clouds video by machine learning. The accuracy of vowel and consonant identification was estimated to be 96.0% and
33.2% based on the results obtained from experiments.The estimation of vowels was 10% improvement.

1. INTRODUCTION

People with speech impediments and hearing impairments,whether
congenital or acquired, often encounter difficulty in speaking
(Kariyasu, M. 2016). Speaking is a means of communication.
Although it is possible to communicate using sign language,it
does not work for everyone.Thus there is a strong need to ac-
tually communicate using vocalization. This approach needs
to practice and speak correctly.(Hoshina 1978) The hearing im-
paired however,cannot hear their own voice. It is necessary to
interpret mechanism of Japanese pronunciation. Differences in
Japanese pronunciation are attributed to variations in air fric-
tion caused by differences in the position of the lips, teeth, and
tongue.Impediments and hearing impairments also communic-
ate by using lip reading and interpret pronunciation based on lip
movements.
Machine lip reading, an automated speech recognition system,
based on geometric features such as mouth height, width, area,
and perimeter to identify pronunciation, has been actively con-
ducted. For example, sensing modalities include acceleromet-
ers(Kwon 2023) and EMG(Deng 2023) acquire lip movements
from muscle movements with sensor on the face.This method
However depends on specialized equipment,recent advancements
in deep learning and the availability of large scale datasets have
enabled the development of more sophisticated and accurate
techniques for visual feature extraction of pronunciation. These
methods employed multiple modalities, the most common one
of which is RGB videos(Kondo 2024). Despite usually using
RGB video,lip moving change in three dimensional space. In
recent years, depth sensing has garnered significant attention
duo to have ability to capture 3D information and become more
accessible as they are now incorporated into common devices
such as the iPhone 12 mini. Prior research on identification of
pronunciation(Xue 2024) capture visual data with depth sensor
and recognize pronunciation.
Sato(Sato 2022) proposed recognition Japanese pronunciation
with point cloud. While this approach extracts features based
on point cloud data. However Japanese pronunciation involves
movements in the articulators, such as the mouth , it lacks con-

sideration for temporal sequences.In this work we first identify
temporal depth sequences as a new unique sensory information
of Japanese pronunciation.
In contrast to the alphabet, Japanese, as a 50-sylable language,
combine vowel and consonant sounds. In Japanese pronun-
ciation, vowels are typically articulated following consonants,
and unique lip shapes and articulatory features are observed in
each consonants and vowels.In this work, we evaluate the ap-
proach through classification of vowel and consonant classes.

2. PRIOR WORKS

2.1 Image Processing-based Classification Method

Identification of Japanese pronunciation with lip reading is more
complicated.The variability such as mouth opening, speed, shape,
and detail movement among individuals presents a significant
challenge for machine lip reading in visual feature. To ex-
tract features from data containing individual differences, deep
learning methods are utilized.(Berkol 2024) In particular,in the
field of image processing, to owning ability to capture spatial
hierarchies in data, convolutional neural network(CNN) based
approach are commonly employed. In alphabet visual speech
recognition, Lipnet was the first to improve the accuracy of the
recognition at the high end-to-end sentence level(Yannis 2016).
In this method, With RGB video data,Spatio-temporal Convolu-
tional Neural Networks (STCNN) also known as 3-dimensional
CNN(3DCNN) is used to extract visual and temporal sequence
feature for lip reading in RGB video. In Japanese pronunci-
ation, Saitoh(Saitoh 2007) proposed a method for pronunciation
estimation using RGB images. This method’s accuracy is low
at 59% due to be indistinguishable from similar lip shapes such
as ’a’ and ’e’ with the only 2D visual information.

2.2 Point Cloud-based Classification Method

Depth sensors have improved drastically in precision and resol-
ution, changing them into a popular sensing solution for a wide
array of interactive systems.Specifically,point cloud can repres-
ent high density information about geometric details of object’s
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shape.Unlike images, point cloud retain three dimensional in-
formation and can capture movements around the mouth that
cannot be captured in two dimensions.
Sato (Sato 2022) proposed a method using PointNet,representative
deep learning model with point clouds to Identification Japan-
ese vowel. PointNet which is trained on 3D point cloud data in
the lip region as input, and has shown an accuracy of 85.20 %
in the estimation of Japanese vowels.In contrast to grid repres-
entations such as 3DCNN, while maintaining invariance to per-
mutations of the input data, involves extracting features of lip
shape from inputs that closely represent raw point cloud data.
However, this method did not consider temporal feature of the
lip moving. In order to handle point clouds video in machine
learning, it is necessary to combine spatial feature extractors
with models capable of capturing temporal dependencies.

2.3 TimeSeriesProcesssing

Lip shape during Japanese pronunciation affects not only the
3D visual appearance but also exhibits temporal changes over
time. For instance, Japanese character ’sa’ is compose of vowel
’a’, visual appearance of the mouth open and the tongue posi-
tioned low in the mouth after consonant ”s”,visual appearance
of closing teeth.
Time series models of machine learning, such as recurrent neural
network (RNN) and Long Short Term Memory (LSTM) net-
work, are effective for extracting temporal sequential features.
Especially, this model extract continuous changes from the past
to the future within time series data. Recently, Bi-RNN and
Bi-LSTM, extract features in both directions of past and future
have been proposed. Compared with RNN and LSTM, Trans-
former have substantial advantages in long term processing.　
By utilizing attention mechanism including Transformer, the
model extract features between non contiguous elements in a
sequence. As a result, the attention mechanism allows for flex-
ible feature extraction within the sequence, enabling the model
to dynamically focus on relevant elements regardless of their
positions In time series processing of visual data, features are
initially extracted using CNN layers and subsequently passed
to a time series model for sequential analysis. Lip-Interact (Sun
2018) , English 20 command recognition technique with RGB
videos as input achieving an accuracy of 96.18% This model
composed of CNN and Bi-GRU takes 20 feature points of a
user’s lip as input. In time series processing of point cloud, fea-
tures are initially extracted using CNN or PointNet subsequently
passed to a time series model such as LSTM, GRU for sequen-
tial analysis commonly used, similar to models in RGB image
as input. P4Transformer(Fan 2021) composed of 4D Convolu-
tional neural network with point cloud and Transformer achieve
acuracy of 90% of classification on 3D recognition tasks such
as action recognition and scene flow estimation. Wang(Wang
2024) achieve CER and WER by 4.13% and 8.06%.This method
consisted of 4DCNN and GRU and Transformer classification
30 command used in every conversation.
Despite the advancements in prior research, several challenges
remain limitations, particularly limitation of previous studies is
the inability to effectively distinguish between lip movings dur-
ing Japanese pronunciation with three dimensional or temporal
differences. These limitations indicate a need for improved ap-
proaches that can overcome these shortcomings.

3. PROPOSED METHOD

We propose a new identification framework of Japanese pro-
nunciation by learning temporal-spacial feature of lip moving

in point cloud video. As shown in Figure 1, the proposed ap-
proach consists of several stages, including Data acquisition ,
Data Preprocessing, and Model Training.

Figure 1. Proposal method Flow

3.1 Data Acquisition

Lip movements are essential component of Japanese pronunci-
ation, such as the opening and closing of the lip, spatial po-
sition of the tongue and teeth. we utilized depth sensing as
low cost sensing to capture high spatial resolution of depth data
in the form of point clouds to reconstruct user pronunciation.
In depth sensing, Time-of-Flight (TOF) and stereo cameras are
two distinct methods. TOF sensors calculate depth by measur-
ing the time it takes for light to bounce back from an object.
In contrast, stereo cameras measure depth using parallax with
two or more lenses. In this work,TOF camera are utilized for
providing precise distance measurements even in low-light con-
ditions such as oral cavity,ambient brightness. Specifically, We
utilize Light Detection and Ranging (LiDAR) , known for its
cost-effectiveness and high performance, similar to the one in-
tegrated in iPhone 12 mini.(Foix 2011)

Figure 2. Capture data

3.2 Data Preprocessing

Identification of Lip Shape during Japanese Pronunciation re-
lies on the fact that human faces have distinctive shape changes
resulting from movements of lips, tongue, teeth, and jaw during
speech. To prevent factors that may hinder learning, the re-
gion of interest (ROI) around the mouth is defined. To prevent
factors that may hinder learning, we define the region of interest
(ROI) around the mouth and perform lip segmentation.In con-
ventional approaches that utilize the ROI of lips is determined
using pretrained machine learning based face detectors, such
as Dlib. However, Using a feature extractor for ROI extrac-
tion results in a lack of flexibility in adapting to varying con-
ditions,for instance too big face. In this work,we utilize Face
Recognition as python library Built using dlib’s state of the art
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face recognition built with deep learning. With this method,
we detect face and annotate using the 68 landmark frontal face
markup scheme.(Deng 2019).In ROI of English Pronunciation,
conventional approaches demonstrated that the region around
the mouth, which includes the lips but excludes the jaw and
nose, yielded the highest accuracy.(Xue 2024) We extract re-
gion around the mouth indicated in the Figure2. Since clipping
only the mouth region results in an excessive number of points,
downsampling technique is applied. We utilize Farthest Point
Sampling (FPS). This approach is particularly effective for cap-
turing the structural shape of objects because it selects points
that are maximally distant from the nearest previously selected
points, thereby promoting greater spatial separation within the
point clouds. Consequently input data are preserved the shape
of the tongue, lips, and teeth

3.3 Model Training

Identification of lip shape during Japanese pronunciation in-
clude the variability such as mouth opening, speed, shape, and
detail movement among individuals presents a significant chal-
lenge for machine lip-reading in visual feature,we utilize deep
learning. Especially. there are very few deep learning mod-
els that take into account both point cloud and temporal se-
quences.　 As a result, deep learning model with point clouds
usually are combined with some architecture. Due to the lim-
itations observed with CNN-GRU methods in achieving high
accuracy solely with visual features, In this work, we utilized
P4Transformer as 4DCNN-Transformer based approach with
point clouds. The input data is tensor(3 × L × N) as point
clouds (x,y,z) and video frame number ’L’, N samples par frame
with mouth parts extracted by preprocessing. In this work,
We conduct experiment with N=4096 sample and L=26 frame.
4DCNN extract local spatio-temporal features with Input transfered
grid data and self-attension help the model focus on meaning-
ful spatio-temporal correlations across frames. Finally, multi
layer perceptron(MLP) classify vowel or consonant with extrac-
ted feature.

4. EXPERIMENTS AND DISCUSSIONS

4.1 Enviroment

The experiment was conducted in the environment illustrated.
Data acquisition was performed using an Intel RealSense LiDAR
Camera L515. The distance between the subject ’s face and
the camera was approximately 30 cm, close to the camera ’s
minimum effective range of 25 cm, to maximize detail capture.
Capture was conducted in a well lit room without specialized
ambient lighting or backgrounds. Given the LiDAR sensor’s
capability and the targeted extraction of the mouth region dur-
ing preprocessing, these environmental conditions are not ex-
pected to affect the accuracy of the estimation.

4.2 Datasets

To ensure the accuracy and reliability of our proposal method
performance, we collected Japanese Pronunciation dataset in
our data collection process. Speaker is non-impediments and
Japanese without any discernible accents. In conventional data-
set, the number of frames per character is limited, which hinders
the ability to fully capture the visual dynamics of each articu-
lation. Consequently, the model may inadvertently learn lin-
guistic patterns, including word occurrence probabilities, rather
than focusing solely on visual features, thereby deviating from

Figure 3. Intel RealSense LiDAR Camera L515

the primary objectives of this study purpose, vocal practice for
hearing-impaired people with interpret pronunciation based on
lip movements. In addition, The dataset is composed of in-
dividual recordings of each of the Japanese character as 50-
sylable language to avoid including irrelevant information of
natural language such as complex grammar. This datasets in-
clude RGB images and point cloud data captured at 30 fps with
a resolution of 640× 480. To establish consistent timing during
recording, a metronome was employed to guide the timing of
each capture. Especially, participants were instructed to speak
in sync with a metronome set to 70 bpmas 0.857 second. As
shown in Figure. 4, Japanese character as 50-sylable language
compose of 5 vowel as ’a’,’i’,’u’,’e’, and ’o’, and 9 consonants
as ’k’, ’s’, ’t’, ’n’, ’h’, ’m’, ’y’, ’r’ and ’w’. However, Some in-
dividuals fail to differentiate between the sounds of ’wo’ and ’o’
in speech and ’nn’ Vocalized with closing lip, this work evalu-
ate classification performance using 5 vowel and 8 consonants
without ’w’. The data was partitioned into training, validation,
and test sets with a distribution of 60%, 20%, and 20%, respect-
ively.

Figure 4. Japanese character as 50-sylable language

4.3 Result

The learning environment used in this study consists of loss
function 　 as stochastic gradient descent (SGD), batch size
was 8, learning rete=0.01, Python and PyTorch. and Nvidia’s
CUDA toolkit

Accuracy(%) Precision(%) Recall(%) F-Measure(%)
vowel 96.0 96.0 96.0 96.0
consonant 33.2 37.2 32.9 34.9

Table 1. Result.
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Figure 5. The confusion matrix of vowel

Figure 6. the confusion matrix of consonant

4.4 Discussion

The results of the experiment to verify the accuracy of the Ja-
panese identification are shown in Table 1. The results show
that the accuracy of the Japanese vowel is increased by more
than 10 percent compared to the previous accuracy of 85.2%.
The confusion matrix shown Figure .5 described that the highest
accuracy when classifying the vowel ’a’, followed closely by
the vowel ’o’. These sounds are characterized by the tongue
contacting the base of the mouth, which positions it in a way
that allows for greater visibility into the back of the oral cav-
ity. As a result, distinct depth based differences appeared in the
depth data, contributing to the model’s ability to identify effect-
ively. Furthermore, the lowest identification was found for ’i’
with 92 % accuracy, which was mistaken for ’e’ with an error
rate of about 8 %. Especially, This result frequently misclassi-
fied the sound ’ri’ as ’e’ likely due to the similarity in tongue
movements for both sounds. Specifically, the‘ ri’involves the
tongue briefly contacting the upper part of the mouth, while the

Figure 7. point cloud of vowel ’a’(up),’o’(down). Top-down
view(left), front view(right)

Figure 8. ”i” 20 frame

Figure 9. ”e” 20 frame

Figure 10. point cloud of frame start of ’ri’ as ’r’(left),’frame end
of ’ri’ as ’i’ (center), vowel ’e’(right), Top-down view(down),

front view(up)

production of‘ e ’similarly requires the tongue to be raised
toward the roof of the mouth. This resemblance in articulation
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can create visual ambiguities, leading to challenges in accur-
ately distinguishing between the two sounds.
In the results of consonant’s identification, due to the lack of
existing studies focusing on the estimation of Japanese conson-
ants, a direct comparison with prior work is not feasible. There-
fore, we report the achieved accuracy of our model to provide a
baseline for future research in this area. Our approach yielded
an accuracy of 33.2%, demonstrating the potential effectiveness
of this model for Japanese consonant identification and offering
a preliminary benchmark for similar tasks. The confusion mat-
rix of Japanese consonant shown Figure .6 described that the
highest accuracy when classifying the consonant ’r’, followed
closely by the consonant ’s’, The high accuracy observed for the
consonant ’r’ can be attributed, in part, to the model’s tendency
to predict ’r’ more frequently than other consonants. This pre-
diction bias may inflate accuracy for ’r,’ as the model is more
likely to classify ambiguous cases as ’r,’ which increases the
overall count of correct ’r’ predictions. This trend suggests that
the model may favor certain classes, impacting the balance of
recognition across different consonants. The production of the
’s’ involves a close positioning of the teeth, creating a narrow
passage for airflow to pass through. This positioning generates
a characteristic frictional noise as the air is forced between the
teeth, which gradually transitions into the vocalization of a fol-
lowing vowel. This friction driven articulation makes ’s’ acous-
tically distinct and can be challenging for models to accurately
capture, especially as it requires precise tracking of both the air-
flow and the subsequent vowel transition. Moreover, the con-
sonant ’h’ is lowest accuracy. ’h’ as a voiceless fricative is pro-
duced with minimal visible movement in surroundings of the
mouth, as it primarily involves the friction of breath against the
inner surfaces of the oral cavity rather than articulated move-
ments of the tongue, lips, or teeth. Due to the lack of distinctive
oral movements, ’h’ is challenging to capture visually, as its
production does not create prominent visual features that mod-
els can easily detect.
Overall, classes with pronounced visual changes achieved higher
accuracy, indicating that the model more effectively recognizes
distinctive visual cues. Conversely, subtle depth variations were
not consistently captured, suggesting limitations in the model’s
ability to distinguish finer depth-based distinctions.

Figure 11. ”sa”

5. Conclusion

We present the first identification approach of lip shape dur-
ing Japanese pronunciation using deep learning in point cloud
Video. In this work, we identified depth sensing thinking about

Figure 12. ”ha”

time series as the new advantageous information source for Iden-
tification of Japanese pronunciation dataset for Japanese pro-
nunciation and evaluated. The identification of vowels showed
an accuracy 96.0% and consonants showed a 33.2%.The estim-
ation of vowels is 10% improvement compared to the previous
accuracy of 85.2%.

Below we list our key contributions:

• identified depth sensing thinking about time series as the
new advantageous information source for Identification of
Japanese pronunciation

• dataset for Japanese pronunciation and evaluated to clas-
sify vowel and consonant

• approach to identification of Japanese pronunciation through
visual comprehension
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