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Abstract

This paper investigates the use of geospatial mesh data for visual localization, focusing on city-scale aerial meshes as map repres-
entations for locating ground-level query images captured by smartphones. Visual localization, essential for applications such as 
robotics and augmented reality, traditionally relies on Structure-from-Motion (SfM) reconstructions or image collections as maps. 
However, mesh-based approaches offer dense spatial representation, memory efficiency, and real-time rendering capabilities. In this 
work, we evaluate initialization strategies, image matching techniques, and pose refinement methods for mesh-based localization 
pipelines, comparing the performance of both traditional and deep-learning-based techniques in image matching between real and 
synthetic views. We created a dataset from nadir and oblique aerial imagery and accurately georeferenced smartphone images to test 
cross-modal localization. Our findings demonstrate that combining global feature retrieval with GNSS-based spatial filtering yields 
significant improvements in accuracy and efficiency, achieving submeter positional and subdegree rotational errors. This study 
advances scalable visual localization using meshes and highlights the potential of integrating smartphone GNSS data for improved 
performance in urban environments.

1. Introduction

Visual localization is crucial for numerous applications, includ-
ing robotics, augmented reality (AR), and autonomous navig-
ation, where accurate and reliable localization is necessary for
interaction with the physical world. Its power lies in the ability
to obtain a position and orientation estimate without the need
for GNSS sensors, which are increasingly becoming targets of
attacks (Radoš et al., 2024, Figuet et al., 2022), and in indoor
settings where no GNSS signal is available (Taira et al., 2018).

Visual localization has been a prominent research area in the
computer vision community for more than a decade (Li et al.,
2010). Visual localization can be defined in general as the
process of finding the pose, Pq , at which a query image, Iq,
was captured, given a preexisting map of the environment in
which the image was taken. The term map, as used in the
visual localization community, is rather broad encompassing
3D reconstructions obtained from Structure from Motion (SfM)
software (Sarlin et al., 2019), collections of geo-located im-
ages (Berton et al., 2024), and even the weights of a neural
network (Brachmann et al., 2023).

Most visual localization methods rely on a Structure from Mo-
tion (SfM) solution as map (Sarlin et al., 2019), where each 3D
point is linked to the reference images through a local descriptor.
Localization is achieved by establishing 2D-3D correspondences
by matching Iq with those descriptors. However, this approach
has several limitations. First, descriptors are inherently tied to
the viewing angles of reference images, which poses challenges
in scenarios with domain gaps, such as matching aerial images
with ground-level images (Fanta-Jende et al., 2019). Second,
testing new descriptors requires recomputing the entire map
and, finally, storing these descriptors becomes increasingly im-

practical when working with large environments (Mera-Trujillo
et al., 2020).

An emerging research avenue involves the use of mesh-based
representations (Panek et al., 2022). Mesh-based representa-
tions offer multiple benefits: (i) dense spatial representation,
(ii) greater memory efficiency compared to SfM methods, and
(iii) real-time rendering from arbitrary views, thanks to modern
renderers and hardware.

In this work, we investigate the use of city-scale aerial meshes,
see Figure 2, to locate images captured at ground level with a
smartphone. Smartphones are particularly suited for visual loc-
alization due to their portability and widespread use, although
the techniques presented are applicable to other devices as well.
We conduct an extensive series of tests on state-of-the-art im-
age matching techniques and pose initialization strategies, in-
cluding how to leverage the smartphone internal GNSS. We
evaluate both the final accuracy and the execution time of these
strategies.

To the best of our knowledge, there is currently no public data-
set for cross-modal (aerial-to-ground) visual localization with
full 6 degrees of freedom reference poses for the ground-level
query images and nadir-oblique reference aerial images. To ad-
dress this gap, we created a custom dataset, and we describe the
generation process in detail in Section 3.

An overview of our proposed visual localization method can be
seen in Figure 1. In this work, we implement a two-stage pose
estimation strategy, the Pose Initialization step aims at provid-
ing an initial coarse pose estimate, P i

r , in the subsequent Pose
Refinement step we render an image, Ir and associated depth
buffer Dr , to be used for relative pose estimation. In this paper,
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Figure 1. Overview of proposed approach: In an offline step, a typical photogrammetric pipeline generates a mesh out of a series of
reference images. Additionally, we compute a database of geo-tagged image embeddings, global descriptors, to aid in the

initialization phase. At testing time, the query image, and optionally a pose prior, is used to render the image corresponding to the best
embedding. Using 2D-3D correspondences between the query and reference image we recover the pose at which the query image was

captured was captured.

we investigate three main components of a mesh-based visual
localization pipeline:

i Dataset Generation: Propose new best practices to gen-
erate a dataset for aerial-to-ground Visual Localization

ii Pose Initialization: Strategies to select a pose to render
views from. We explore strategies which rely exclusively
on image data and also strategies which instead take ad-
vantage of the smartphone GNSS pose estimate, we show
how this increases both the speed and accuracy of the ini-
tialization.

iii Pose Refinement: Image-to-Image matching techniques
to match the rendered image with the query image to find
correspondences for pose resectioning. We test a wide
range of approaches spanning from those which claim state
of the art in accuracy to those which claim the state of the
art when it comes to inference speed.

Meshes can serve as an effective map representation, enabling
Visual Localization techniques to scale to city-wide maps while
maintaining high accuracy and robustness, with a median trans-
lation error below 1 meter and median rotation error below 1 de-
gree. This level of accuracy is achieved through the use of aerial
oblique and nadir images as references, with a ground sampling
distance of 7.5 cm and independently sampled Ground Control
Points. To the best of the authors’ knowledge this is the most
accurate result for cross-view localization at city scale (Sarlin
et al., 2023b, Berton et al., 2024, Sarlin et al., 2023a). It is
important to note that using reference images captured from a
lower flying drone or ground vehicle would further improve the
quality of the map.

2. Related Works

Visual localization methods are often categorized based on the
type of map representation they use; see (Miao et al., 2024) for
a recent comprehensive review. Early approaches constructed
maps from a set of reference images Iref, typically numbering in
the thousands, to create a Structure-from-Motion (SfM) recon-
struction of the environment. A subset of these images, along
with their descriptors, was withheld to form the query test set
Itest, usually consisting of hundreds of images, enabling eval-
uation against the constructed map (Sattler et al., 2018). Such
maps often contain millions of 3D points, each representing a

track built from multiple 2D descriptors, leading to the com-
munity focus on accelerating search over these large descriptor
sets (Sattler et al., 2012a).

Hierarchical methods (Sarlin et al., 2019) use global descriptors
to quickly retrieve the most similar reference images to a query
image Iq. The retrieved reference images are grouped based on
co-visibility, then matches are established between local descriptors
from Iq and the reference images’ mapped local descriptors.
These correspondences are then used to estimate the pose of Iq.
By leveraging ever more powerful local descriptors and match-
ers(DeTone et al., 2018, Edstedt et al., 2024b, Potje et al., 2024,
Wang et al., 2024, Edstedt et al., 2024a) these methods have
achieved remarkable accuracy and robustness. However, these
methods are insufficient to deal with cross-view localization as
the appearance change between aerial and ground point of view
is too extreme for retrieval and matching techniques to over-
come. Moreover, since they require to store a full SfM model,
including the descriptors associated to each 3D point, these ap-
proaches end up being large to store.

Fully learned models aim to learn how to regress the pose of
Iq by training on a set of reference images and their poses,
Iref and Pref from the same scene. Of these Scene Coordin-
ate Regressors (SCRs) (Brachmann et al., 2023), predict per-
pixel scene coordinates, followed by pose estimation using ro-
bust PnP algorithms. These models are extremely fast, accur-
ate, and robust but tend to scale poorly to larger, building-sized
scenes. Conversely, Visual Place Recognition (VPR)(Keetha et
al., 2023) networks are trained to create distinctive image em-
beddings, also called global descriptors, and are used to build
extensive databases of geo-tagged global descriptors. The same
networks then generate the global descriptor for Iq and its pose
is approximated to that of the closest global descriptor. VPR
networks are extremely scalable but offer only limited accuracy.
(Sarlin et al., 2023b) introduces SNAP, an approach to ground-
to-aerial localization by using a neural network to generate a
neural map from orthorectified aerial images. The same neural
map is generated from ground query images, and by aligning
the two, it is possible to determine the pose of Iq. However, the
pose is only determined in SE(2) and with meter-level accuracy.

Recent works have explored the use of meshes for visual local-
ization. Under this paradigm, query images are matched against
rendered views, Ir, to establish 2D-2D correspondences. Local
2D-2D matches are then lifted to 3D using the rendered depth
map, Dr . (Panek et al., 2022) demonstrated the feasibility of
this approach by generating a mesh of the popular dataset from
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Figure 2. In the center, the reference trajectory of the camera in blue, the smartphone’s internal GNSS pose estimate in red, and the
sampled views in orange, over imposed to a satellite image of the area. On the left and right side we show four examples of the query

images and the view rendered from its reference pose

(Sattler et al., 2018), rendering views from the original refer-
ence poses Pref, and using those synthetic views to localize Iq

following a standard hierarchical approach. In their tests they
observed a drop in accuracy when using meshes and synthetic
views rendered from them, when compared to the original data.
Building on this, (Berton et al., 2024) leverages meshes, both
aerial and ground ones, obtained from the web and ground im-
agery to train neural networks to produce similar embeddings
for real and synthetic views of the same scene. By sampling
views around a city, they create a database of geo-tagged em-
beddings, which are used to predict the position ∈ SE(2) of
query images captured from the ground. We use the smallest
of their models (Berton et al., 2022) to compute the global
descriptors used in our initialization phase, we chose this model
due to its inference speed. The work of (Yan et al., 2023) is
closest in goal and data to ours, as they also perform Visual
Localization in SE(3) using an aerial mesh and a ground-based
smartphone. However, in their case, the aerial platform was a
low-flying drone, enabling more accurate 3D reconstruction but
limiting scalability. Their approach uses an iterative method to
converge to the correct view, trading speed for accuracy.

3. Method

In this work, we propose a comprehensive analysis of the design
space for mesh-based visual localization approaches, along with
a set of best practices for dataset generation.

3.1 Dataset Generation

Visual localization datasets typically consist of two sets, one
of reference images Iref and one of query images Iq. Dataset
creation typically involves co-registering both sets in a single
Structure-from-Motion (SfM) solution, with the resulting poses
considered as ground truth. Since SfM models are non-metric,
scale information is recovered from additional data sources,
such as by manually aligning the 3D model to online maps (Sat-
tler et al., 2012b). However, this method is not without limit-
ations; prior studies (Brachmann et al., 2021) have observed
that the reference pose generation procedure can significantly
influence the error for different sets of algorithms .

In this study, we separate the map-building process from ground
truth pose estimation, using independently measured Ground
Control Points (GCPs) to co-register and scale both compon-
ents. The aerial mesh was generated from nadir and oblique im-
ages captured by a Vexel Osprey, resulting in an average ground
sampling distance (GSD) of 7.5 cm with 80% along-track and
70% across-track overlap. The Skyline software was used to
create the mesh, with an example provided in Figure 2.

To test our mesh-based localization pipeline, we captured image
data using a handheld smartphone rigidly attached to a tactical-
grade inertial navigation system (INS), see Figure 3. The im-
ages were resampled to a resolution of 960x1280, yielding an
average GSD of 4 cm. Post-processed kinematics (PPK) were
applied to estimate the smartphone trajectory, achieving a stand-
ard deviation of a few centimeters under favorable conditions.
The PPK solution was computed using Inertial Waypoint Ex-
plorer by NovAtel (Novatel, 2024). In post-processing, the
dataset was subjected to a structure-from-motion and bundle ad-
justment pipeline, incorporating GCPs and Check Points (CPs),
the first measured in the field with a survey-grade GNSS re-
ceiver, the latter sourced from the Cyclomedia Explorer1. This
adjustment achieved a Root Mean Squared Error (RMSE) at
GCPs of (6, 7, 2) cm in X, Y, and Z directions, respectively,
with mean errors at CPs of (7, 4, 1) cm. Image exterior orienta-
tion (EO) parameters were obtained with a mean error of 1.5 cm
in X and Y, 0.7 cm in Z, and standard deviations of 6mm and
2mm. Rotational components exhibited a mean error of 0.02◦

with a standard deviation of 0.04◦.

3.2 Visual localization

Our mesh-based visual localization pipeline is presented in Fig-
ure 1 and consists primarily of two stages: Pose Initialization
and Pose Refinement. Although our test data was acquired
sequentially, we compute the pose estimation for each query
image independently. While leveraging information from the
previous pose estimate could improve the initialization of the
current pose estimation, we deliberately choose not to rely on
temporal information. This decision allows us to test the visual

1 https://www.cyclomedia.com/en/street-smart
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Figure 3. Smartphone rigidly mounted to INS system to capture
query data.

localization module in isolation, ensuring that its performance
is evaluated without the influence of sequential data dependen-
cies.

3.2.1 Pose Initialization The Pose Initialization goal is to
estimate a pose from which to render an image that visually
overlaps the query image. In the offline stage, we generate
reference data comprising of two main components: an aerial
mesh of the area and a database of geo-tagged global descriptors.
These descriptors are computed using a neural network (Ber-
ton et al., 2022), fine-tuned specifically for real and synthetic
image pairs (Berton et al., 2024). To populate the database,
we create synthetic images by sampling along the road net-
work, which is obtained from publicly available OpenStreet-
Map data. Our sampling strategy involves extracting latitude-
longitude coordinates at regular intervals of 5 meters along the
road network. At each sampled coordinate, we render eight syn-
thetic views, equally spaced around the Z-axis of the map. The
sampled nodes can be seen in Figure 2 overlayed on the map.

We implement and test four distinct initialization strategies in-
spired by different approaches attempted in the literature. Many
visual localization methods assume that no pose prior is avail-
able and thus use a Global-Feature-Retrieval (GFR) approach
to acquire visually similar images from the set of reference im-
ages. Global feature retrieval is often not sufficient to disam-
biguate between visually similar images and thus often GFR is
followed by Local Feature re-ranking (LFr) (Cao et al., 2020).

Subsequently we test how to leverage the smartphone’s GNSS
pose estimate, in the first case using a simple retrieval of all
the images within a specified radius from the pose estimate -
starting from 5m, expanding to 10m and then 20m, if no im-
ages are retrieved by the earlier threshold - we indicate this as
retrieving the Spatial Nearest Neighbors (SNN), we then find
the best image among the retrieved ones using LFr. Finally we
combine image data and pose prior in our fourth test where we
first retrieve the top 50 closest embeddings from the database
(GFR), we then select among these the top 5 closest ones to
our GNSS pose estimate, Spatial Nearest Neighbors re-ranking
(SNNr) and finally pick the best one based on the number of
matches, LFr. In summary, we explore and compare the follow-
ing four initialization strategies:

(i) GFR

(ii) GFR followed by LFr

(iii) SNN followed by LFr

(iv) GFR followed by SNNr and finally LFr

Descriptor Matcher Class Reference

SIFT LightGlue Sparse (Lowe, 2004)
XFeat LightGlue Sparse (Potje et al., 2024)
SuperPoint LightGlue Sparse (DeTone et al., 2018)
DeDoDe DSM Sparse (Edstedt et al., 2024a)
eLoFTR N.A. Dense (Wang et al., 2024)
RoMa N.A. Dense (Edstedt et al., 2024b)

Table 1. Image matching techniques

3.2.2 Pose Refinement Central to pose refinement is accur-
ate and robust image matching between Iq and Ir as reliable
2D-2D matches are fundamental to obtain a precise pose estim-
ates. Image matching is a highly active area of research, with
numerous approaches being proposed (Bonilla et al., 2024).
In recent years, learning-based methods have largely replaced
hand-crafted techniques (Fourth Workshop on Image Matching:
Local Features & Beyond, 2022). While modern learning-based
methods are typically trained on real image pairs, the challenge
of matching synthetic and real image pairs remains under ex-
plored. To gain a comprehensive understanding of how dif-
ferent approaches are influenced by real and synthetic image
pairs, we evaluate both sparse and dense learning-based local
descriptors. For a detailed list of the methods see Tab. 1.

We include SIFT-based matching (Lowe, 2004) as a repres-
entative of hand-crafted methods in our tests. However, in-
stead of relying on hand-crafted methods for matching we use
LightGlue (Lindenberger et al., n.d.). LightGlue is descriptor-
agnostic in its architecture but requires descriptor-specific train-
ing for each local descriptor. Once trained it takes as input
the key-points image coordinates and descriptors for an im-
age pairs and outputs a matching matrix between the two key-
points and descriptor sets. We used the same model for Super-
Point (DeTone et al., 2018) and a smaller version of the same
architecture for XFeat (Potje et al., 2024), as recommended by
the authors.

All matches will then follow the same relative pose estimation
strategy, which we implement using EPnP (Lepetit et al., 2009)
together with MAGSAC++ (Baráth et al., 2019) for the outlier
removal step.

4. Experiments

The experimental results are presented in Table 2. We report
the percentage of images localized within three pose thresholds
— (0.5m, 2◦), (2m, 5◦), and (5m, 10◦). Poses that are beyond
these thresholds are categorized as outliers. We also report the
median (ME) and root mean squared error (RMSE). The ME is
computed from all images. The RMSE from images within our
pose thresholds. Lastly, we report the execution times for the
pose initialization (tin) and refinement step (tref). Note that all
the experiments have been conducted on a machine equipped
with a Intel Xeon W-2245 and a Nvidia RTX 3090 Ti. All im-
ages have been downscaled to 1000 pixels along the largest di-
mension due to GPU memory constraints. The image coordin-
ates of the 2D-2D matches are then upscaled to the original res-
olution to sample the 3D coordinate from the depth maps of the
rendered images.

Looking at the result of the GFR initialization method, we can
notice that this approach results in the fastest initialization times
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Initialization Refinement 0.5m,2°/2m,5°/5m,10°1 ↑ Outliers2 ↓ ME3 ↓ RMSE4 ↓ tin
5 ↓ tref

6 ↓
% / % / % % m / ◦ m / ◦ s s

GFR

SIFT+LG 4.82 / 28.67 / 41.93 15.15 1.95 / 1.82 2.05 / 2.26

0.11

0.34
XFeat+LG* 10.50 / 46.10 / 60.35 17.61 1.55 / 1.43 1.74 / 1.81 0.08
SP+LG 13.30 / 52.48 / 64.70 11.28 1.17 / 1.13 1.65 / 1.64 0.10
DeDoDe 16.19 / 55.27 / 66.25 32.85 1.43 / 1.33 1.56 / 1.46 0.46
eLoFTR 18.04 / 58.63 / 64.40 35.56 1.28 / 1.13 1.32 / 1.27 0.15
RoMa 23.07 / 66.38 / 69.65 30.31 1.05 / 0.93 1.12 / 1.00 0.65

GFR-LFr

SIFT+LG 5.94 / 34.31 / 51.83 18.17 2.04 / 1.84 2.11 / 2.18 1.28 0.37
XFeat+LG* 12.40 / 52.22 / 67.76 26.30 1.66 / 1.47 1.75 / 1.73 0.40 0.08
SP+LG 16.19 / 57.43 / 70.86 19.59 1.22 / 1.25 1.60 / 1.54 0.44 0.09
DeDoDe 18.73 / 63.19 / 72.58 27.38 1.21 / 1.15 1.44 / 1.33 1.43 0.47
eLoFTR 18.34 / 63.62 / 69.48 30.48 1.18 / 1.05 1.28 / 1.21 0.78 0.16
RoMa 24.02 / 67.76 / 72.15 27.81 1.03 / 0.95 1.15/1.05 2.95 0.60

SNN-LFr

SIFT+LG 4.82 / 24.80 / 41.11 31.21 3.66 / 3.37 2.27 / 2.66 5.70 0.36
XFeat+LG* 10.33 / 49.07 / 67.59 31.21 2.00 / 2.01 1.92 / 2.30 1.63 0.08
SP+LG 15.58 / 58.98 / 76.93 20.79 1.34 / 1.57 1.83 / 2.06 1.77 0.09
DeDoDe 23.46 / 68.36 / 81.70 18.25 1.03 / 1.18 1.55 / 1.63 6.42 0.42
eLoFTR 20.75 / 67.03 / 76.67 23.29 1.12 / 1.08 1.43 / 1.57 3.27 0.14
RoMa 21.39 / 50.71 / 52.78 47.18 1.69 / 1.73 0.96 / 1.18 15.94 0.61

GFR-SNNr-LFr

SIFT+LG 5.81 / 31.51 / 49.42 22.26 2.44 / 2.25 2.20 / 2.47 1.21 0.36
XFeat+LG* 11.67 / 52.95 / 70.30 25.14 1.63 / 1.61 1.82 / 1.97 0.39 0.08
SP+LG 17.26 / 62.76 / 76.50 16.32 1.14 / 1.28 1.60 / 1.64 0.43 0.09
DeDoDe 22.69 / 67.67 / 79.68 20.28 1.07 / 1.14 1.52 / 1.44 1.23 0.41
eLoFTR 21.05 / 66.34 / 75.08 24.88 1.11 / 1.06 1.38 / 1.38 0.70 0.14
RoMa 29.14 / 73.44 / 79.08 20.08 0.84 / 0.93 1.15 / 1.16 3.08 0.61

Table 2. Quantitative comparison of various pose initialization and refinement methods. The table presents: 1 the percentage of query
images successfully localized within three pose thresholds — 0.5m, 2°, 2m, 5°, and 5m, 10°; 2 percentage of images incorrectly
localized beyond the last threshold; 3 the Median Error (ME) across all images, and 4 Root Mean Square Error (RMSE) among

accurately localized images, calculated for both positional and rotational errors; and 5 the execution times for the initialization (tin)
and 6 refinement (tref) stages. underline: best per initialization method bold: overall best

as it only consists of a forward pass through a small neural net-
work and a retrieval in a vector database. In total, this process
takes about 0.1 seconds. We note that the retrieval time scales
with the size of the database. In our case, the database con-
sists of 7300 image embeddings and takes 15MB, which can
fit into computer memory. How to deal with databases consist-
ing of billion of elements is beyond the scope of this work and
we refer the reader to the seminal analysis from (Johnson et al.,
2019).

The second initialization strategy we tested, GFR-LFr, shows
improvements in the overall accuracy across all local descriptors.
However, it is considerably slower because LFr is a rather time
consuming operation, since it requires computing matches between
the Iq and all retrieved reference images in order to select the
best image. This process is particularly slow for DeDoDe and
RoMa. Both achieve the best accuracy in this initialization
setup, but this precision comes at the cost of slower matching
times.

The same can be seen at an even more pronounced scale for the
SNN-LFr setup. Here, the same trend across local descriptors
can be observed but, since the number of reference images to
be re-ranked is only limited by the radius of the spatial search,
the re-ranking step is even more time consuming. Interestingly,
this initialization setup shows strong improvements in accuracy
for some but not all the image matching techniques, surpris-
ingly RoMa ends up suffering from a sharp decrease in ME
performance due to a high number of outliers. This indicates
that while RoMa demonstrates a strong capability to identify

correspondences between positive image pairs, it also identi-
fies correspondences between negative image pairs, i.e., images
with no visual overlap.

Our last experiment (GFR-SNNr-LFr) offers the best comprom-
ise between robustness, accuracy, and execution time. It lever-
ages the speed of the fast GFR to retrieve a large amount of
visually similar images and uses the coarse GNSS pose estim-
ate to filter only the plausible views. This reduces the initial-
ization times when compared to SNNr while maintaining high
accuracy, and reducing the number of outliers. In particular
RoMa increases the percentage of images localized within 5m,
10◦ from 52.78% to 79.08% when initializing with GFR-SNNr-
LFr.

Focusing on the performances of the image matching techniques
in more detail we can observe how the SIFT descriptor, while
still competitive for real images (Jin et al., 2021), proves inef-
fective when applied to real-synthetic image pairs. XFeat is the
fastest model we tested, even while running on the CPU, it of-
fers much better performance compared to SIFT but falls short
to the larger models we tested. SuperPoint is still competitive
to more modern architectures and offers a compromise between
inference speed and accuracy for platforms that have access to
GPU acceleration. The best sparse descriptor we tested is De-
DoDe which leverages the DINOv2 (Oquab et al., 2023) found-
ation model to improve the local features. eLoFTR offers higher
accuracy when compared with sparse descriptors and it does so
considerably faster than the other dense matching technique we
tested, RoMa.
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Figure 4. Comparison of feature matches between the query
image Iq and an image rendered from the best pose (top) as

determined by SNN-LFr, showing successful matching, and an
image rendered from the reference pose (bottom), only spurious
matches were found. Both examples use XFeat and Lighter Glue

for image matching.

In all our tests we never observed more than 30% of images
being localized within 0.5m, 2◦. Across rendering-based re-
localization techniques iterated rendering is often seen as being
instrumental in unlocking greater precision. To validate this
hypothesis we design a test where we initialize our rendering
from the ground truth pose and match Iq to its rendered coun-
terpart. Here, we notice an improvement in accuracy for most
image matching techniques, in particular RoMa achieves 38.2%
of localized frames below 0.5m, 2◦. SuperPoint achieves the
lowest ME 0.72m, 0.9◦, due to the low rate of images localized
with an error above 5m, 10◦. However, we have a high rate of
images either wrongly localized or not localized at all. This is
because the assumption underlying iterative re-rendering, that
the rendered images will be easier to match the closer they are
to the ground truth image, does not always hold true. Figure 2
(B) and (C) shows how vegetation can degrade the mesh leading
to poor localization outcomes. In fact, DeDoDe has better per-
formance initializing with GFR-SNNr-LFr than when rendering
from the ground truth pose. Similarly, RoMa has lower median
error, this is because these can identify poses which have better
visual overlap with Iq, see Figure 4.

Refinement 0.5m,2°/2m,5°/5m,10° Outliers ME
% / % / % % m / ◦

SIFT+LG 8.78 / 44.04 / 53.55 11.75 1.59 / 1.86
XFeat+LG* 19.03 / 65.30 / 76.11 10.68 0.95 / 1.07
SP+LG 26.52 / 75.08 / 82.52 4.56 0.72 / 0.90
DeDoDe 22.34 / 69.26 / 81.27 16.57 1.03 / 0.97
eLoFTR 28.58 / 73.91 / 82.95 16.79 0.90 / 0.91
RoMa 38.18 / 80.89 / 84.46 15.50 0.94 / 1.08

Table 3. Localization outcomes obtained when initializing from
the reference pose. In bold the best method

5. Conclusions

Visual localization plays a crucial role in applications requir-
ing precise, real-time positioning, from pedestrian navigation
to autonomous exploration. This paper demonstrates the poten-
tial of consumer-grade imaging and positioning sensors, such as
smartphones, used in combination with standard data products
like aerial imagery and meshes, to enhance localization accur-
acy and scalability. Through examining the utility of mesh data
as a georeferenced information source, we assess the impact of
aerial meshes on localization accuracy, focusing on the initial-
ization and pose refinement stages. Our findings indicate that
even imperfect smartphone GNSS data can effectively improve
image retrieval, and we introduce a novel methodology for gen-
erating test data to rigorously evaluate visual localization per-
formance.

In future work, we plan to validate our approach with more
challenging query images collected under nighttime or adverse
weather conditions. We also aim to investigate the degree to
which higher-quality meshes can further improve localization
accuracy and robustness. Finally, while this study evaluated im-
ages independently, we see an opportunity to explore sequential
localization techniques to leverage temporal coherence across
frames, potentially enhancing real-time performance in applic-
ations such as autonomous navigation.
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