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Abstract

Semantic segmentation of indoor 3D point clouds is a critical technology for understanding three dimensional indoor environments,
with significant applications in indoor navigation, positioning, and intelligent robotics. While real-time semantic segmentation is
already a reality for images, existing classification pipelines for LiDAR point clouds assume a pre-existing map which relies on
data collected from accurate but heavy sensors. However, this approach is impractical for high-level task planning and autonomous
exploration, which benefits from a rapid 3D structure understanding of the environment. Furthermore, while RGB cameras remain a
popular choice in good visibility conditions, such sensors are inefficient in environments where visibility is hindered. Consequently,
LiDAR point clouds emerge as a rather reliable source of environmental information in such circumstances. In this paper, we adapt
an existing semantic segmentation model, Superpoint Transformer, to LiDAR-based situation where RGB inputs are not available
and near real-time processing is attempted. To this end, we simulated our robot’s trajectory and leveraged Hidden Point Removal
using the open-source dataset S3DIS to train the model. We investigated various strategies such as modifying the interval prediction
and thoroughly study its influence on the prediction intervals. Our model demonstrates an improvement from 40 to 67.6 mean
Intersection over Union (mIoU) compared to the baseline on simple (floor, ceiling, walls) and complex (doors, windows) classes.

1. Introduction

With the rapid development of 3D sensing technologies, 3D
point clouds semantic segmentation have been widely applied
in many fields. It plays a crucial role in 3D building recon-
struction (Cui et al., 2019), high level task planning (Stache et
al., 2023) and robot navigation (Alenzi et al., 2022). Tradition-
ally, point clouds are generated using expensive, heavy, high-
precision sensors (Di Stefano et al., 2021), with practitioners
focusing on constructing accurate reconstructions without any
time constraint. However, when exploring an indoor environ-
ment, a mobile vehicle constructs an internal map of the envir-
onment. As they have limited energy reserves, they need to un-
derstand the environment with lightweight sensors in real-time
to make decisions.

This study investigates the performance of deep learning mod-
els for near real-time semantic segmentation of structural classes
in indoor scenes for a mobile mapping platform. Specifically,
we investigate how to train models using only LiDAR data, with
points clouds collected by a mobile mapping platform. Our
problem considers that the mobile mapping platform maps the
environment in real time. Figure 1 shows an example of our
model’s real time prediction.

Most existing 3D semantic segmentation methods focus on sparse
outdoor LiDAR scans for autonomous navigation (Li et al., 2019).
However, there is limited research on indoor semantic segment-
ation with mobile mapping platforms due to a lack of available
open-source data. For example, S3DIS (Armeni et al., 2017), a
popular indoor dataset, does not provide any sensor trajectory,
and the sensor used were primarily RGB sensors.

Our contributions are as follows:

• We adapt the chosen model described in Section 4.1, Su-
perpoint Transformer, to near real-time semantic segment-
ation of points clouds and speed up the inference pipeline
as detailed in Section 4.3. Specifically, we increase the
number of neighbors in the preprocessing pipeline to 500
and change the partitioning algorithm to a simple but effi-
cient voxel grid.

• We propose a training procedure in Section 4.2 to train
semantic segmentation models on available open-source
dataset, here S3DIS, for semantic segmentation in near
real-time indoor environments. this training procedure en-
ables the use of datasets that do not provide a sensor tra-
jectory.

• We conduct a comprehensive analysis of the impact of near
real-time constraints on a deep learning network perform-
ance in this domain. In particular, we analyze the effects
of modifying the interval prediction, see Section 5.2.3. We
show that incorporating the sensor’s field of view during
inference into our training scheme, which we introduce
through two different methods, is an important factor to
improve results.

• We collect a real-world dataset in an office building envir-
onment to validate our findings.

2. Related Works

Semantic segmentation of indoor LiDAR mobile mapping point
clouds has been mostly addressed using fused RGB features
in the 3D robotics community, whereas its LiDAR-only coun-
terpart received comparatively little attention (Alqobali et al.,
2023).
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Figure 1. A subset of semantic segmentation that our method
produces in near real-time in dataset Office10s.

2.1 Models For 3D Semantic Segmentation

Our focus will be primarily on deep learning (DL) models. DL
approaches offer indeed the advantages of reduced handcraf-
ted tuning and increased expressiveness and performance com-
pared to their classical counterparts (Zhang et al., 2018). DL
models for semantic segmentation can be classified into three
categories: projection-based, point-based, and superpoint-based.

Projection-based methods involve the transformation of 3D point
clouds into a 2D format to facilitate the application of estab-
lished image-based networks (Babacan et al., 2017). This meth-
odology has proven successful, notably in outdoor scenarios
(Kong et al., 2023a). This projection requires blind spot sensors.
However, in indoor environments, the data obtained lacks these
blind spots, reducing the effectiveness of the models.

Point-based networks directly process raw point clouds to in-
fer semantic labels. This paradigm facilitates learning directly
from the raw point data and leverages advantages such as effi-
cient sampling techniques and diverse training strategies (Qian
et al., 2022). However, these models cannot handle large point
clouds and have a limited effective radius (Thomas et al., 2019).

Superpoint-based approaches (Landrieu and Simonovsky, 2018a)
is a representation of large 3D point clouds as a collection of in-
terconnected simple shapes called superpoints, in spirit similar
to superpixel methods in image segmentation. This partition-
ing can be achieved by an additional neural network (Hui et al.,
2021) or classical computation based on loss outcomes (Robert
et al., 2023). While superpoint-based methods entail longer pre-
processing times, they allow for feeding the entire point cloud
as input to the model at any given time and they can provide an
explicit intermediate representation.

2.2 Semantic Segmentation of LiDAR Mobile Mapping Point
Clouds

The predominant focus of mobile LiDAR mapping literature
has been directed towards outdoor environments.

With the rise of autonomous driving technologies, numerous
studies have explored semantic segmentation using mobile map-
ping LiDAR and image-based point clouds. These studies have

demonstrated successful results in applications such as extract-
ing building (Lu et al., 2014) or predicting structural classes of
roads (Alonso et al., 2020). As those point clouds typically ex-
hibit sparsity, outdoor models are specifically designed to tackle
this issue (Kong et al., 2023b).

On the other hand, semantic segmentation from indoor mobile
mapping systems has received limited focus. Most of the exist-
ing literature leverages cameras or RGB-D sensors to use con-
volutional neural networks (CNNs) or Foundational Models for
point cloud classification (Teso-Fz-Betoño et al., 2020). When
only 3D Lidar data is available, (Foroughi et al., 2021) projects
the data to binary occupancy maps to apply CNNs. Because
of the prevalence of cameras in robot navigation (Alqobali et
al., 2023), research on LiDAR-only semantic segmentation for
indoor mobile mapping remains sparse (Alqobali et al., 2023).

One study utilizes exclusively LiDAR data to discern indoor
structural elements for robot navigation (Alenzi et al., 2022).
This approach, however, relies on Machine Learning algorithms
and has not been trained on publicly available datasets, requir-
ing the manual collection of a custom training dataset. (Cao and
Scaioni, 2022) proposed a training procedure to leverage indoor
open-source datasets to digitalize external buildings. However,
the use case is outdoor and is not designed for mobile mapping
point clouds.

3. Problem Definition

We consider a mobile platform operating in an environment
equipped with LiDAR sensors that record point clouds. This
point clouds is assumed to be mapped with a real-time mapping
algorithms. Motivated by (Vultaggio et al., 2023), the mapping
algorithm is a LiDAR Simultaneous Localization And Mapping
(SLAM) and it is performed in real-time by CT-ICP (Dellen-
bach et al., 2022).The mobile mapping platform design, a UAV
in our case, is outlined in detail in (Bolz et al., 2024)

Our goal is to design a semantic segmentation model that col-
lects mapped point clouds every n seconds and predicts per-
point labels.

The model must process and predict mapped point clouds labels
within a time t < n to ensure no mapped areas are missed. It
should only operate with LiDAR data and no RGB features are
provided.

As our focus is on point clouds generated by real-time map-
ping algorithms, the incoming mapped point clouds may suf-
fer from accumulated drifts from odometry errors and small
items may not be accurately recovered using only 3D geometric
data. Therefore, we limit our labels and predictions to structural
classes within indoor environments, specifically targeting walls,
ceilings, floors, doors and windows.

As the mobile mapping platform navigates through the environ-
ment, the collected raw point clouds represent the visible sur-
face from a viewpoint. From a training perspective, our object-
ive is to develop a data augmentation method that simulates the
visibility of a viewpoint from S3DIS which accurately samples
the entire environment area. Mathematically, Given a point p,
that corresponds to the center of view, and a point cloud P
sampled from surfaces, approximating visibility from a view-
point is defined as identifying all points P ′ ⊆ P that would be
visible from p if the underlying surfaces were reconstructed. In

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024 
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-45-2024 | © Author(s) 2024. CC BY 4.0 License.

 
46



the context of point clouds, this question is ill-posed because
points cannot occlude one another. Several solutions exist to
address this problem, and this concept forms the core motiva-
tion for our various training methods described in Section 4.2.

4. Method

This Section presents an overview of our approach. We intro-
duce the deep learning model selected to address this challenge
in Section 4.1. Then, we design a training scheme to train the
model in Section 4.2. Finally, we detail the modifications to
mitigate the absence of RGB features in raw point clouds in
Section 4.3. Eventually, we develop our choice and our trade-
off to achieve near real time prediction in Section 4.4.

4.1 Superpoint Transformer

To select a semantic segmentation model, we consider several
factors. As the end user should define themselves the prediction
interval, the model must accommodate small and large point
clouds. Additionally, we propose a training procedure that re-
quires an explicit intermediate representation of the data to ap-
proximate visibility in large point clouds (see Section 4.2). Con-
sequently, the model has to include this intermediate represent-
ation. Therefore we employ Superpoint Transformer (Robert et
al., 2023), a model that meets all these requirements. It is de-
signed to handle large and small point clouds by computing an
intermediate representation. The author claims that the model
has faster training and inference times compared to other avail-
able models. When RGB features are provided, it demonstrates
good performance on S3DIS with 76.0 mIoU for 6-fold valida-
tion (Robert et al., 2023).

This Section outlines the components of Superpoints Trans-
former, readers are referred to the original article for more de-
tails. The models can be separated into four keys components:

• Feature Construction: The model uses k-nearest neigh-
bors (kNN) to obtain neighborhoods for each point and
subsequently compute handcrafted features. In addition
to RGB features (which are absent in our use case), PCA-
based features like linearity, planarity, scattering (Demantké
et al., 2012), and verticality (Guinard and Landrieu, 2017)
are used. A feature called elevation, which is defined as
the distance between a point and the ground below is de-
termined with RANSAC. In Section 4.3, we explain how
we modify this original list of features.

• Partitioning the Point Clouds: To process large areas,
the partition-based models first compute a superpoint rep-
resentation of the point clouds. The core assumption is
that superpoints, being a geometrically coherent cluster of
points, will also constitute a good input to predict a se-
mantically coherent set. To compute these superpoints, the
features are viewed as a signal defined on points. This sig-
nal is then approximated as a piece-wise constant function
by solving an energy minimization problem. The result-
ing constant areas form partitions Pi of the initial point
cloud, which constitute the new point cloud. The process
is iterated to obtain different levels of partition. The res-
ulting hierarchical partitions form several point clouds that
will be the nodes of the graph given as input to the model.
These different levels of partitioning provide information
at various levels of detail. The partitioning algorithm used
originally is Parallel Cut-Pursuit (Raguet and Landrieu,

2019). In Section 4.4.2, we replace this algorithm by a
voxel grid.

• Graph Construction: Once the partitions are constructed,
edges are created between superpoints to build a superpoint-
graph. The goal is to create edges only between close su-
perpoints. Specifically, edges are created between super-
points in Pi if their closest points are within a gap distance
ϵi. This constructed graph is the actual input of the net-
work.

• Semantic Segmentation with Transformers Finally, a U-
net-like model with self-attention layers predicts the se-
mantic labels of the hierarchical partition based on the
computed graph. In this paper, we do not modify the model’s
architecture and refer readers to the original paper for an
exact definition.

4.2 Training Procedure

When training with S3DIS, most authors feed complete point
clouds (Qian et al., 2022) or spherical sections (Thomas et al.,
2019) to the model. However, this is unrealistic due to the
model having access to occluded areas. Therefore, we struc-
tured our training process in two stages, a pretraining phase and
different possible fine-tuning phases. This prevents the model
from relying on data that wouldn’t be visible in real scenario
and simulates mobile mapping patterns. An overall summary
of our training pipeline can be found in Figure 3

4.2.1 S3DIS we first pretrain on S3DIS without adding any
new data augmentation. Training with the dataset alone proves
insufficient in practice. For example, it fails to properly detect
doors and windows (see Table 5 for detailed results)

4.2.2 Hidden point removal (HPR) As S3DIS provides en-
tire office areas, it lacks the patterns that would typically come
from a mobile mapping platform. To address this, we can pre-
train or fine-tune the model with additional data augmentation
using a HPR algorithm (Katz et al., 2007). To compute each
input mapped point cloud at training time, a random point in
the point clouds is chosen as the center for the algorithm. This
randomness simulates different viewpoints and helps the model
generalize better by exposing it to various perspectives and oc-
clusion scenarios. As the algorithm computes convex hulls, it
has high computational complexity. Therefore, we applied it
to the superpoints themselves. This data augmentation is ad-
vantageous because it uses the raw data and doesn’t require any
additional information or simulation.

4.2.3 Simulating trajectory: S3DISsim S3DIS provides
complete meshes generated from data collected from a static
camera system. Given that meshes are available in public data-
sets and a digital twin of our robot and sensor (Vultaggio et al.,
2023) is provided, we simulate the robot’s trajectory in Gazebo
(Koenig and Howard, 2004) within the mesh and trained on the
collected sensor data. The collected sensor data is after split
in n-seconds intervals to form S3DIS10s. This approach more
accurately mimics our sensor’s patterns, see Section 5.1.2 for a
complete description of our data collection.

4.3 Adapting the Model to RGB Absence and Noisier Point
Clouds

Most prior studies, including SuperPoint Transformer, use RGB
as additional input features in the point cloud. RGB features are
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Figure 2. Schematic representation of our method.The input to the model is a graph constructed from the sparse point cloud.

directly acquired by the sensors and are not affected by numer-
ical instability or subjectives handcrafted decisions. Therefore,
they constitute a very valuable source of information for the
partition construction. To compensate for its absence, we eval-
uate additional features and select those that enhance our abil-
ity to differentiate doors and windows from walls and ceilings.
Specifically, we decide to add anisotropy (Hackel et al., 2016)
which is defined as (λ1 − λ3)/λ1 where λ1 ≥ λ2 ≥ λ3 are the
eigenvalue of the covariance tensors computed from the spatial
distribution of points within each superpoint.

Furthermore, the elevation feature is computed using RANSAC,
which often fails with a small number of points. Since our pre-
processing pipeline on S3DIS10s often results in a small number
of points, we decide to remove the elevation feature. Based on
a hyperparameter search, we remove the surface feature defined
in (Landrieu and Simonovsky, 2018b) and we stabilize the
computation of the features by increasing the number of neigh-
bors considered from 50 to 500.

4.4 Pushing to Near Real-time Inference

In this section, we outline the methods and choices implemen-
ted to achieve near real-time inference with Superpoint Trans-
formers.

4.4.1 Interval Prediction Selection Assuming a SLAM al-
gorithm is already in place and provides a stream of mapped
point cloud data, we can perform inference within various time
windows, albeit with increased noise for shorter intervals.

As the prediction interval decreases, we might expect a de-
creased mIOU in the semantic segmentation analysis. We opted
to predict every n = 10 seconds, as this interval produced res-
ults comparable to those obtained by processing the entire map,
see Figure 9. We provide an extensive analysis of the size of
time window in the result Section 5.2.3

Operation [s] Our pipeline Initial baseline
I.O reading time 0.05 ±0.1 0.05 ±0.1
Feature Construction 1.5± 0.7 0.2± 0.007
Parallel Cut Pusuit algorithm . 1.0± 0.2
Grid Voxel algorithm 0.01± 0.001 .
Graph Construction 0.5 ±0.1 0.6±0.1
model inference 0.05 ±0.01 0.06±0.01

Total 5.8± 1.4 4.9± 1.1

Table 1. Comparison of preprocessing performance for each
major step using our optimized pipeline on a 10-second point
cloud interval. Results are in seconds, with "." indicating the

absence of the operation in the respective pipeline.

4.4.2 Computation Trade-off In our use case, we aim to
make predictions on mapped point clouds in near real-time. Al-
though the authors of Superpoint Transformers (Robert et al.,
2023) claim that the inference time is close to 2 seconds, pre-
processing can take on average up to 20 seconds for 10-second
intervals on inference with our setup.

The Cut-Pursuit partition algorithm can occupy up to 40% of
the total preprocessing time. Given that the quality of the cur-
rent partitioning does not appear to be a limiting factor for model
accuracy, we replace Parallel Cut Pursuit with a voxel grid par-
tition during training on 10-second intervals. This partition
algorithm is faster than Parallel Cut Pursuit, with an average
speed of 0.1 seconds compared to 1 second for 10-second inter-
vals (see Table 1).
This change from PCP to grid voxel can only be made when
training on S3DIS10s, as grid voxel partitioning cannot fit into
GPU memory for really large point clouds like S3DIS and re-
quires a voxel size that must be manually defined for each data-
set.
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Figure 3. Our Simulation workflow to acquire S3DISsim from S3DIS begins by creating waypoints within the mesh to simulate our
mobile mapping platform. Next, we map the incoming point clouds using a SLAM method and align the output point clouds with the

initial mesh to obtain the labeled point cloud.

Dataset name Short description Train set Val/Test set
S3DIS Original S3DIS dataset Area 1-4,6 Area 5
S3DISsim Simulated mesh of S3DIS Area 1-4,6 Area 5
S3DIS10s Points clouds collected every n = 10 seconds from S3DISsim Area 1-4,6 Area 5
Office10s Real office mapped with our sensors. points clouds are collected every 10 seconds All data

Table 2. Summary of all datasets used and their corresponding use in training, validation and test set

5. Experiments and Results

5.1 Datasets

A summary of all our development datasets can be found in
table 2.

5.1.1 S3DIS S3DIS (Armeni et al., 2017) is an RGB-D data-
set that consists of 6 indoor areas. It is one of the most widely
used indoor dataset in the literature, meshes and point clouds
are provided. We discarded the RGB features.

5.1.2 S3DISsim and S3DIS10s We simulate our robot’s tra-
jectory in S3DIS with Gazebo. As S3DIS’s mesh contains holes,
using automatic exploration algorithms to simulate data collec-
tion is challenging. Instead, the drone’s path is executed using
manually-defined waypoints. SLAM is performed based on the
UAV’s trajectories, and - to correct for any accumulated drift -
the point cloud is annotated by aligning the mesh with the res-
ulting point cloud. The entire simulated mapped point clouds
will be called S3DISsim. This point cloud is then further split
into n-second intervals, which serve as the model’s inputs. We
will denote this new data as S3DIS10s. An overall workflow of
the simulation can be found in Figure 3.

5.1.3 Office10s Using our mobile mapping platform (Bolz
et al., 2024), we map a working office which consists of a build-
ing with two floors, one hall, and 16 rooms. This data set re-
flects a true use case. We manually label the resulting point
cloud. Small items such as table and chair exhibit significant
noise due to the sensor’s noise and SLAM inaccuracies.

We notice strong reflections from windows that mimic the room
where the platform is located, see Figure 4. Labeling these re-
flected values is prone to human interpretation, so we decide to
categorize them as clutter. Since reflectivity is challenging to
simulate in a virtual environment and is absent from our photo-
grammetric datasets, we report the mIOU both with and without
it. The mIOU, when accounting for reflectivity, is significantly
lower because reflected points may have distinctive shapes, like
walls or windows, that the models will incorrectly predict in-
stead of the chosen "clutter" class.

5.2 Results Analysis

We present our comprehensive results in Table 3. The most no-
ticeable behavior is a large gap between our results on real data

Figure 4. Windows are colored in green. reflection are labeled as
clutter (white).

Training Procedure Office10s Office10s S3DIS10s S3DIS
no reflection

S3DIS (baseline) 31.6* 35.3* 40.0* 63.9
S3DIS 32.5 37.9 41.5 62.2
S3DISsim 32.8 39.8 58.5 70.0
HPR 35.0 42.4 59.8 68.2
S3DISsim+HPR 34.1 40.8 52.7 69.2
S3DIS10s 37.1 41.9 64.1 69.4
S3DISsim+S3DIS10s 38.0 42.2 65.7 69.7
S3DISsim+HPR+S3DIS10s 37.1 42.8 67.6 68.2

Table 3. Main results table. * indicates the removal of the
feature elevation during training and preprocessing because its

computation on sparse clouds is unsuccessful. + denotes
sequential training. The baseline contains no changes from

(Robert et al., 2023) besides those indicated for compatibility
reasons.

(Office10s) and simulated data (S3DIS10s). We analyze this gap
in Section 5.2.1. Then, we investigate the effectiveness of our
training modifications in Section 5.2.2. Finally, we analyze the
impact of modifying the prediction interval in Section 5.2.3.

5.2.1 The gap between real and simulated data Overall,
we observe a significant mIOU discrepancy between testing on
S3DIS (70.0 at best) and on Office10s (42.8 at best), see Table 3.
We identify several contributing factors to partially explain this
mIoU drop:

• wall sections are sometimes mislabeled as doors, espe-
cially in Office10s which contains long sections of wall
(Figure 5): our training datasets contain closed doors which
are indistinguishable from walls without RGB features;

• our predictions become less accurate as the distance from
the drone increases (Figure 6): our training datasets con-
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Color Label Color Label

Ceiling Floor
Door Window
Wall Clutter

Table 4. Colormaps

tain mainly small rooms and few long corridors, contrary
to Office10s;

• reflections in Office10s (Figure 4) are rarely correctly seg-
mented: they do not appear in our training datasets;

• doors and windows and harder to tell apart (Figure 7): the
drone flies relatively high, so only the upper parts of items
are visible in Office10s.

Figure 5. Example of a wall mislabeled as a door due to labeled
mesh inaccuracies in Office10s.

Figure 6. Predictions become less coherent as the point cloud is
farther from the drone’s position in Office10s.

Figure 7. Example of good prediction in Office10s.

It can be noted that the mIOU on S3DIS without RGB features
decrease from 65.0, as reported in (Robert et al., 2023) to 63.9
in our study. However, RGB features were omitted only during
the training phase and still utilized during the partitioning com-
putation in (Robert et al., 2023), which stabilizes the features
and the partitions.

Method mIoU ceiling floor wall window door clutter

S3DIS 32.5 64.9 32.6 57.4 0.8 9.1 19.0
S3DISsim+S3DIS10s 38 65.4 44.9 58.3 12.4 16.0 21.0
S3DISsim+HPR+S3DIS10s 37.1 65.2 42.5 55.4 14.1 13.4 21.2

Table 5. Per-class results on Office10s (with reflections)

5.2.2 Training modification
Noise mitigation measures: the mIOU marginally decreases
from 63.9 to 62.2 on S3DIS but marginally increases for all
other datasets, for example going from 31.6 to 32.5 on Office10s.
This seems to confirm that the changes from Section 4.3 are
targeted at noisy and low-resource scenarios. As S3DIS is a
very precise reconstruction, increasing the number of neigh-
bors in feature computation results in lower mIoU, which can
be ascribed to a more averaged out feature representation. How-
ever, we achieve better results with noisier SLAM point clouds
and in mobile scenarios because we effectively mitigate the
noise issues.

Training on simulated data: training on S3DISsim instead of
S3DIS yields marginal improvements on the Office dataset and
large improvements on the S3DIS datasets. In particular, the
mIoU on S3DIS10s goes from 41.5 to 58.5. Training on S3DISsim
seems more effective for mobile scenarios. This can be attrib-
uted to a smaller distribution gap between the training and test
data.

Hidden Points Removal:When using HPR, and thus introdu-
cing the notion of visibility which lacks in S3DISsim, the mIOU
on Office10s increases from 32.8 to 35.0. This is only three
points lower than using S3DIS10s for training but is a much
simpler method to perform in general, making it a considerable
option despite Office10s’s higher fidelity. In general, we notice
instability when training with HPR. Pretraining with S3DISsim
does not seem to solve the issue, even resulting in an mIoU
decrease of at least one point on every dataset. Decreasing this
instability might be a valid research direction to further improve
the results in the future.

Pretraining with S3DISsim: Pre-training on S3DISsim yields
mediocre results which are inconsistent across our various data-
sets, and does not seem to facilitate convergence in general.

Training on S3DIS10s: The mIOU increased from 32.8 on
Office10s to up to 38.0 when training with S3DIS10s. This in-
dicates that the influence of training on clouds collected during
a short interval is significant. This constitutes our main result
and supports our claim that incorporating the notion of visibility
is essential when training a model for online use.

Best models: The two most effective models are those trained
sequentially, first on S3DISsim (although as pointed out earlier
this step’s contribution might be minimal), followed by S3DIS10s.
One of them includes HPR, the other not. A more detailed
analysis of the two optimal models is provided in Table 5. As
anticipated, the model demonstrates high accuracy for simpler
classes such as ceilings and walls. Both models differ in their
accuracy for walls and windows, which are already challenging
in S3DIS (Robert et al., 2023). The S3DISsim+S3DIS10s model
has a better mIOU for doors, 16.0 over 13.4, compared to the
S3DISsim+HPR+S3DIS10s model, which has an mIOU of 14.1
over 12.4.

Furthermore, the floor mIOU increases from 32.6 to 44.9 and
42.5 respectively. Our sensor, being placed on top of the UAV,
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Figure 8. processing time for different pipelines

does not capture the floor with a high point density, which makes
it more challenging than terrestrial setups. Our methods do
however succeed in significantly improving the results for this
class.

5.2.3 Selecting the prediction interval Detailed graphs of
the mIOU and processing time as a function of the prediction
interval can be seen in Figures 8 and 9 . The prediction in-
terval should satisfy two criteria: it should maintain an mIOU
comparable to that achieved with the entire dataset, and the pro-
cessing time has to be shorter than the prediction time (ie., if we
predict every 10 seconds, the inference should take less than 10
seconds). Above 6 seconds, our pipeline can process data faster
than the incoming point clouds, satisfying the second condi-
tion. As shown in Figure 9, mIOU stabilizes after prediction
intervals of 10 to 12 seconds (although it continues to increase).
Given these two factors, we recommend choosing an interval of
at least 10 seconds, and we provide the results on 10 seconds as
the most challenging case. Interestingly, the model still bene-
fits from inference on the full scene even when trained only on
fixed prediction intervals of 10 seconds.

The preprocessing benchmark is executed on an Intel(R) Xeon(R)
Silver 4116 CPU for a total of 48 threads running at 2.1 GHz,
and two GeForce RTX 3090 GPUs, each with 24 GiB of VRAM.
Despite numerous performance improvements, our changes make
the pipeline slightly slower compared to the initial pipeline pro-
posed by (Robert et al., 2023). This is mostly due by the in-
creased number of neighbors in the feature computation, which
is required for consistency under increased noise. However we
remain competitive with respect to the initial model while hav-
ing a better mIOU on our Office10s dataset.

6. Conclusion

This paper presents a comprehensive analysis of indoor semantic
segmentation in near real-time. Specifically, from a model per-
spective, we examine how to train such models using available
datasets and how to adapt them to this modality. From a use
case perspective, we optimize the model to operate more effi-
ciently and evaluate the impact of time constraints on model
performance.

We specifically study the case where the LiDAR has a 360°
FoV. Our data augmentations and, especially, Hidden Point Re-
moval, reflect this perspective. If the FoV of the sensor were

Figure 9. mIOU per interval time for three trained models. the
dot line are the reported mIOU on the whole office with

reflections.

different, the data augmentations or model modifications would
need to be adjusted accordingly.

In future work, we aim to integrate loop closure with the map-
ping algorithm to enhance the robot’s guidance. Identifying
doors and windows could help the model detect new, prom-
ising free spaces. Additionally, we intend to explore whether
expanding the training data could further improve the model’s
performance.
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