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Abstract

Phenotyping, the measurement of plants physical traits, plays a pivotal role in advancing sustainable agricultural practices. There-
fore, developing efficient, low-cost, means to generate such measures is vital. Though image based 2D-driven methods are com-
monly applied for that purpose due to their processing simplicity, it is clear that only 3D information can offer the necessary plant
details. Notwithstanding, the generation of such data is challenged by the requirement to acquire a large set of images or the use
of active sensors, which exhibit sensitivity to illumination and require lengthy acquisition campaigns. Consequently, 3D plant
phenotyping is presently limited to controlled laboratory conditions and is hardly applied in actual growth setups. To address this
shortcoming, this paper argues that by focusing on relevant plant traits, modeling can be simplified and the need for detailed plant
reconstruction can be relieved. Accordingly, only a minimal set of images, specifically a stereo pair, can suffice for the reconstruc-
tion, thereby providing a low-cost sensing solution. To facilitate the reconstruction, we adapt an anchor-free detection deep neural
network and integrate low- and high-level features to accurately detect our plant traits of interest. As the paper demonstrates our
adapted network facilitates a robust 3D reconstruction of the entities of interest. Performance analysis demonstrates how our de-
tection is reliable and accurate compared to standard anchor-free frameworks, translating to accurate reconstruction, as we validate
against 3D plant scans.

1. Introduction

By the year 2050, Earth’s population is projected to reach 9.8
billion, resulting in a 70% increase in global food demand (Tom-
linson, 2013; Ford et al., 2019). This surge necessitates a cor-
responding increase in crop production and food supply (Davis
et al., 2016). To support crop yield enhancement and its resist-
ance to the changing environmental conditions, measurement
of plants’ traits and morphology (aka phenotyping, Zhang et
al., 2023a) become crucial. Notwithstanding, deriving physical
plant traits is challenging due to their dynamic, complex, and
deformable geometry, which features structural discontinuities
and comprises a mix of surface-dominant elements and elong-
ated linear structures with numerous branching and offshoots.
In addition, due to the plants elastic form, the effect of wind, as
in greenhouses or field conditions, continuously distorts their
shape, and in turn affects their reconstruction (Paturkar et al.,
2021; Forero et al., 2022; Medic et al., 2023).

To model the complex plant form, it is customary to restrict
the acquisition to laboratory environments and to utilize act-
ive sensing technologies or image-based reconstruction models
(Miao et al., 2021; Wattad et al., 2024). While the first op-
tion can yield accurate and detailed structural representation,
the acquisition may be slow and exhibit sensitivity to reflective
surfaces, outdoor illumination, and environmental interference
(Qi et al., 2019; Schunck et al., 2021; Liu et al., 2023). The
use of the second option requires the acquisition of large im-
age sets to reconstruct the plants 3D forms. Therefore, they
exhibit sensitivity to environmental variability and field condi-
tions, affecting completeness in modeling and demanding con-
trolled environments (Paulus, 2019; Elnashef et al., 2019; Wu et
al., 2020; Hu et al., 2024). As 3D phenotyping in actual growth
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conditions is challenged by present solutions, alternative recon-
struction models that relieve the need for long acquisition time
are warranted. In that respect, this paper proposes a new ap-
proach that requires only a stereo pair to reconstruct important
plant traits. As such it significantly simplifies the acquisition,
and as we demonstrate, the modeling. Our focus is on mod-
eling plant nodes, internode distance, and length, all are im-
portant indicators of plant growth and stress factors (Sibomana
et al., 2013; Lati et al., 2019). By reversing the conventional
paradigm of reconstruction followed by interpretation, we sim-
plify the modeling, and by adapting a neural detection architec-
ture, we can focus the reconstruction on the relevant growth-
related traits. Our results demonstrate improved performance
compared to standard frameworks all while using lesser means.
Our contributions are: i) an improved neural architecture that
accurately detects key plant traits, thereby enabling efficient 3D
modeling; ii) a computationally efficient approach that minim-
izes the complexity involved in feature extraction; iii) improved
performance compared to existing anchor-free detection frame-
works; iv) significant reduction in image acquisition and pro-
cessing time, ensuring a viable 3D modeling.

2. Related work

Image-based reconstruction of plants’ 3D shape is commonly
approached using structure from motion multi-view stereo (SfM-
MVS), where dozens of images are commonly acquired to model
the structure of a single plant (Rose et al., 2015; Paulus, 2019;
Shi et al., 2019; Li et al., 2020; Gong et al., 2021; Luo et al.,
2022; Wattad et al., 2024). Elnashef et al. (2019) studied the
minimum necessary number for accurate plant reconstruction,
and concluded that about 60 images were required for com-
plete architectural representation, but 20 sufficed for a toler-
able, partial one. Focusing on leaf angle distribution, Qi et al.
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(2019) needed three sets of stereo pairs to reconst their shape.
Le Louëdec and Cielniak (2021) utilized stereo and time-of-
flight cameras, mounted on a robotic platform, to localize and
estimate the size and shape of soft fruits. Gong et al. (2021)
traced rice growth using a rotating platform comprising of a
USB camera and an active light source for structured light based
modeling. Clearly, outdoor illumination and acquisition time
made this solution impractical in actual field conditions. Li et
al. (2022) developed a spinning platform equipped with two to
four cameras, depending on plant dimensions, to extract phen-
otyping parameters. Between 80 to 160 images were acquired
within a two minutes span to generate sufficiently dense 3D
point clouds. Saeed et al. (2023) introduced the PeanutNeRF, a
neural radiance field (NeRF) aimed at achieving 3D reconstruc-
tion of peanut plants. An extensive 360o video footage was re-
quired to reconstruct the plant. Hu et al. (2024) demonstrated
how hundreds of 4k-quality images acquired all around a plant
yielded successful NERF-based shape reconstruction, but being
slow in training and failing with an insufficient set of samples,
this timely approach is impractical to model the geometry of the
complex plants structure.

Alternative approaches considered active sensing systems to al-
leviate the need to process image data. Wu et al. (2019) em-
ployed a laser triangulation scanner to extract the plant skel-
eton and utilized 3D learning and clustering algorithms to es-
timate its morphological parameters. Schunck et al. (2021) de-
veloped a robotic arm equipped with a laser triangulation scan-
ner, yielding 2.6M 3D points per plant, to quantify traits and
track development. Despite the detail and accuracy it provided,
specialized laboratory conditions were needed for its applica-
tion. Using less expensive equipment, Liu et al. (2023) pro-
posed a dual Kinect v2 camera set for rapid 3D reconstruc-
tion. As the cameras were symmetrically positioned on oppos-
ite sides of the plant, filtering and merging the two sets to yield a
single point cloud became a challenge. Zhang et al. (2024) util-
ized terrestrial laser scanners to extract leaf-related phenotyp-
ical parameters. Accordingly, the proposed platform required
a controlled lab environment and high processing resources for
information extraction.

Due to the limitations of individual technologies, multi-sensor
platforms have also evolved. Atefi et al. (2019) developed a ro-
botic setup involving a broad range of sensors including active
time-of-flight (TOF), RGB, spectral, and near-infrared (NIR)
cameras, for modeling and extracting phenotypical parameters.
Pérez-Ruiz et al. (2020) developed a field-based high-throughput
phenotyping system that measures wheat canopy height and
was built on a self-propelled robotic platform that navigates ag-
ricultural fields. The platform integrated LiDAR, for detailed
3D structural data capture, spectral sensors, for reference pur-
poses, and an odometry sensors for accurate tracking and pos-
itioning. Interpretation of the data streams from this complex
setup still required human interaction.

The review shows that current 3D reconstruction methods are
resource-intensive, yet require long data acquisition campaigns
and exhibit sensitivity to outdoor environmental conditions. He-
nce they are limited to laboratory environments and are imprac-
tical for use in field conditions. To address these challenges,
the paper proposes a new reconstruction setup that in contrast to
prevalent approaches requires only an instantaneously acquired
stereo-pair to model essential plant-related traits in 3D. It fo-
cuses on the plant’s length and internode distances, key phen-
otypical parameters to assess growth (Sibomana et al., 2013;
Lati et al., 2019). As such our focus is on their extraction, but

instead of relying on a reconstructed whole plant 3D model for
that purpose, we target them directly in the image data. When
successfully detected, even stereo pair would suffice for their re-
construction, thereby offering a low-cost readily available sens-
ing device suitable for field applications. To materialize this
concept, the paramount challenge lies in accurately detecting
plant nodes, which we formulate via anchor-free object detec-
tion neural framework. Our analysis (Sec. 4) shows as node are
small objects, detection could be inaccurate and inconsistent
using common anchor-based and -free approaches (Girshick,
2015; Ren et al., 2016; Law and Deng, 2018; Carion et al.,
2020; Jocher et al., 2022; Reis et al., 2023). Hence, our focus is
on improving detection frameworks to support this challenge.

3. Methods

Our framework is anchor-free network-based, with the deep
high-resolution convolutional neural network (HRNet, Sun et
al., 2019) as its base architecture. The HRNet, designed for hu-
man pose detection through joints extraction, tends to perform
more accurately and efficiently with small objects, compared to
standard anchor-free counterparts (Law and Deng, 2018; Reis
et al., 2023). As its naive application for plant node extraction
exhibits high levels of misses and low recall (Sec. 4), we aim to
modify and extend it to capture these intricate details.

In its core, our feature extraction module follows the base HR-
Net design of multiple parallel paths (aka branches) that pro-
cess different resolutions, with up-sampling and fusion layers
to integrate information from different resolutions (Fig. 1). The
network graph consists of four sequential sub-networks (aka
stages), each feeding the next. Its output is in the form of a
heatmap (a 2D Gaussian) representing the localized key point
entities in the data (Fig. 1). Although the base network focuses
on fine image details, it still does not produce an informative
enough feature map that can support the sought plant nodes
extraction. To solve this shortcoming, we choose to enhance
the representation of global context in the network with the
aim of learning salient features that reflect the nodes unique-
ness compared to their surroundings. To do so, we incorporate
dual attention units (Fu et al., 2019) at each resolution branch
and at the second to the last stage output. The role of these
units is to trace, reflect, and enhance distinct and descriptive
features globally and locally. Our dual attention comprises two
subunits, i) a channel attention subunit that encourages distinct
and descriptive features along channels, and ii) a spatial atten-
tion subunit, whose aim is to spatially locate salient regions.
The input to both is a (same) feature map, F ∈ RC×H×W ,
where C is the number of channels, and H and W are the re-
spective height and width of the spatial dimensions. F is re-
shaped into FC

res ∈ RC×(H×W ), as input to the channel atten-
tion subunit. This allows us to specifically attend to distinct
and descriptive features across channels, emphasizing differ-
ences in feature types. The product of FC

res by its transpose,
passed through a softmax function, generates our channel at-
tention map, Mc, which after standard attention normalization,
generates our channel attention-derived feature map:

Fchannel = MT
c F (1)

For the spatial attention subunit F is passed through three con-
volutional layers to generate three new feature maps, Q,K,V ∈
RC×H×W . Q and K are reshaped into Qres,Kres ∈ R(H×W )×C

to allow the attention subunit to focus on salient spatial regions
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Figure 1. Our proposed architecture graph (adapted from Sun et al., 2019).

and locate important areas within the spatial dimensions. Gen-
erating the normalized spatial attention map, MT

p , the output is
a weighted feature map for spatial positions,

Fposition = V MT
p (2)

where V acts as our values, and Fposition retains the original
RC×H×W shape after applying the attention map. Finally, the
enhanced feature map, F ′, combines both subunits output by:

F ′ = Fchannel + Fposition (3)

Notably, to concentrate all separately generated attended fea-
tures, another dual attention unit is introduced at the last stage
of the feature extraction (Fig. 1). Also, to integrate low- and
high-level features into the saliency-related feature representa-
tion, and to enhance the network robustness to vanishing gradi-
ents, we introduce a skip connection from the output of the
second stage to the input of the last, and concatenate the fea-
tures therein.

Detection The heat maps, the product of the network, are gen-
erated by processing our output feature map through a detec-
tion head, essentially, a convolutional layer. This output was
treated by the HRNet using a fixed number of channels (as hu-
man joints are fixed), each being directly tied to a specific joint.
In such a manner, each channel consists of a single heatmap,
located at the distinct joint placement. This has led the network
to learn distinct human body joints, a property that is not shared
by plant nodes. Additionally, and in contrast to human pose de-
tection, here, the number of plant nodes may vary among spe-
cies and between growth stages. To address these unique prop-
erties, we modify the output channels in the following manner,
we consider the plant root as an individual entity and localize
it using a designated channel, that is so because of its distinct-
iveness. Then, the plant nodes are all detected through a single
channel that accommodates multiple heatmaps, related to the

number of plant nodes. To detect the actual root position, the
localization is carried out via non-maximum suppression. To
detect the nodes, and as their number varies, we apply the mean-
shift clustering algorithm (Comaniciu and Meer, 2002). Results
show that our network handles the varying number of nodes ef-
fectively.

Loss function as the generated heatmaps are in the form of
2D Gaussians, the difference between the predicted output and
the ground truth can be measured by the mean squared error
loss, MSE = 1

N

∑N
i=1(yi − ŷi)

2, as in the base model. Ground
truth heatmaps were generated as 2D Gaussians centered at the
true node location with a standard deviation of 1 pixel. Thus,
we enhance localization accuracy by encoding distance from
the center, assigning higher values to points closer to the key
location and progressively lower values farther away, thereby
helping the model learn spatial importance and focus on precise
point estimation.

3.1 3D localization and internode computation

The localization of our point of interest, allows us to utilize the
epipolar constraint to both find correspondence and add another
robustness layer to trace false alarm. Using the precomputed es-
sential matrix, E3×3, here with the baseline known to its actual
dimension through calibration, correspondence should satisfy
the point-to-line distance form:

xT Ex′/∥
(

xT E
)
1,2

∥ ≤ ε (4)

and vice versa, where x and x′ are the putative corresponding
points in the two images, ε is the distance threshold to consider
the two points as a match, and the subscripts in the denominator
relate to the first two elements in the product xT E. Defining the
camera centers as oi, i = [0, 1], and the image rays vi = Rixi,
where R is the rotation matrix, the optimal triangulated object-
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Figure 2. Performance analysis of our network against the
YOLOv8 demonstrated as various growth stages, demonstrating

our higher accuracy and reliability.

Figure 3. Performance analysis of our network against the
HRNet, demonstrating higher accuracy and reduction in missed

detections.

space point, X, should minimize the objective function:

argmin
X

∑
i

(
I− viv

T
i

)
(X− oi) (5)

Notably, the plant height, the most distant point from the root,
is extracted by tracing the green shades in the image. Obtain-
ing the orientation of the plant by using the root point and the
closest node to it, allows to trace it in reference to the plant
growth direction. Detection of the furthest point, followed by
epipolar correspondence and similar reconstruction allows us to
compute it.

4. Results

We demonstrate our network performance on maize plants, an
essential crop species known for its structural complexity and
the absence of clear bifurcation points, a feature that sets it apart
from species like tomato and cotton (Zhang et al., 2023b). This
structural intricacy presents unique challenges for image ana-
lysis and makes maize a suitable subject for testing advanced
phenotyping models. Our dataset comprises images of 47 maize
plants acquired at different growth stages and exhibiting a wide
range of morphological variations. The images were collected
using a low-cost stereo ZED camera (Stereolabs, 2024), mak-
ing the data acquisition process accessible and feasible for prac-

Figure 4. Stereo pair node detection, where in pink are the nodes
and in blue epipolar lines.

tical applications while still providing sufficient detail to assess
our model’s effectiveness under diverse growth conditions and
plant forms. Moreover, to improve the generalizability and ro-
bustness of our model, the data underwent an extensive aug-
mentation process, including rotation, clipping, and scaling.

We compared our model with the state-of-the-art YOLOv8 de-
tection model (Reis et al., 2023), and the HRnet (Sun et al.,
2019). Its performance is evaluated using the following met-
rics: precision, recall, and average pixel localization accuracy
(APLE), which quantifies the mean distance between the pre-
dicted, Pi, and ground truth, Gi pixel locations, so that E =
1
N

∑N
i=1 ∥Pi − Gi∥, where N is the total number of evalu-

ated nodes. For quantitative evaluation of the phenotyping-
related measures, we compare the difference between the pre-
dicted object-space internode length, P3D, and the correspond-
ing ground truth values, G3D, by E3D = 1

N

∑N
i=1 ∥P3D,i −

G3D,i∥.

Implementation details The network training was conduc-
ted on a single NVIDIA RTX A4000 GPU, utilizing PyTorch
version 1.10.2 with CUDA 11.1. We trained the model for
500 iterations using the Adam optimizer, with a learning rate
set to 0.001. To ensure a fair comparison of testing times, all
learning-based methods were evaluated on the same NVIDIA
RTX A4000 GPU. Additionally, all models were initialized us-
ing pre-trained weights from a general dataset and subsequently
fine-tuned on our specific dataset to optimize performance.
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Figure 5. Computed internode lengths (green). Ground truth values are 99 mm (distance to the first node) and 63. 5mm.

Model Prec.(%) Recall(%) Avg. Err. (Pix.)
Yolov8 85 71 21

Base NT 73 65 45
Ours 91 89 6

Table 1. Comparative analysis of precision, recall, and average
error metrics for our network, YOLOv8, and HRNet.

4.1 Model analysis

Ablation study We examine the influence of our enhance-
ments on the feature extractor. In Fig. (3), the left and middle
samples represent the same plant from different viewpoints, ob-
served 80 days after emergence. The samples contain three vis-
ible nodes. Unlike the base version, which exhibits notable in-
accuracy in node localization, missed ones, and falsely detec-
ted non-existing others, ours accurately identifies all nodes cor-
rectly. This highlights the effectiveness of our feature extrac-
tion framework in achieving precise node detection. Table (1)
also demonstrates how our model outperforms application of
the commonly used YOLOv8 and the HRNet in terms of recall,
precision, and detection error. A comparative analysis of our
improved model and the HRNet equipped with our prediction
head reveals the contribution of the attention units we intro-
duced and shows how our enhanced architecture outperforms
the baseline model in terms of detection accuracy and yielding
a significantly lower rate of false alarms (Fig. 3).

Focusing on our framework performance against the Yolov8,
Fig. (2), shows how the number of detected nodes changes with
the images, e.g., two nodes in one and three in the other. Our in
contrast consistently identifies the same, correct, number. This
improved performance is attributed to our heatmap-based local-
ization and feature extraction framework, which together enable
precise node localization. Table (1) lists quantitative measures
demonstrating the improved performance of our model com-
pared to YOLOv8 in terms of recall, precision, and detection er-
ror. Our model also demonstrates higher accuracy in detecting
and extracting the exact nodes at different growth stages while
exhibiting a significantly lower rate of false alarms (Table 1).
Its recall rate is 89% compared to 71% and 65% when using the
Yolov8 and HRNet, respectively, with a pixel error of 6 pixels
compared to 21 and 65 for the respective networks.

Quantitative evaluation Fig. (4), demonstrates the correct-
ness of our detection and localization, manifested also through

the accuracy by which they coincide with the epipolar line.
These results apply to both nodes and the detected root, facil-
itating their actual 3D reconstruction. To test the accuracy of
the metric object-space data, and as 3D models of the plant are
available, we compared the internode distance by annotating
key points in the 3D point cloud and computing the internode
length as the geodesic distance as ground truth. As Fig. (5)
demonstrates, our proposed method facilitates consistent met-
rics with errors not higher than 2 mm (equivalent to 2-3% error),
illustrating the quality of our modeling results.

5. Conclusions

This paper presented a new learning-based framework for 3D
plant reconstruction using a low-cost stereo camera and only
a single image pair. By detecting the plant nodes in both im-
ages and utilizing epipolar geometry it offers simplicity and ro-
bustness. Realizing that the detection of these small, nearly
indistinct entities in the overall image frame poses a challenge,
a deep-learning framework has been developed to trace them.
The paper demonstrated how the introduction of attention units
and modification of the output layers facilitated both accuracy
and robustness in detecting and localizing the varying num-
ber of nodes achieving high fidelity by learning salient features
in an improved manner. Experiments confirm the efficacy of
our model in both detection, reconstruction, and 3D plant traits
measurement. Future research would focus on enhancing the
model for a broader range of plant traits, and optimization that
can lead to lesser computational load so that lower-end compu-
tational devices can be utilized to generate these measurements.
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