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Abstract 
 
The advancement of urban digital twins depends on the accurate representation of 3D city models, particularly Level of Detail 3 (LoD3) 
models, which incorporate detailed façade features essential for urban planning applications. However, generating LoD3 models is 
challenging due to the complexities of semantic segmentation in 3D point cloud data and the high resource demands of traditional 
methods. This paper presents an automated methodology for upgrading existing Level of Detail 2.2 (LoD2.2) building models to LoD3 
using mobile mapping point cloud data and the Grounding DINO model. The approach begins with extracting façade surfaces from 
LoD2.2 models while maintaining geometric integrity. Point cloud data is then transformed into a 2D image format to facilitate the 
application of Grounding DINO, which accurately detects and segments façade elements such as windows and doors. The identified 
features are re-integrated into the 3D model, resulting in an enhanced LoD3 representation. This methodology demonstrates 
effectiveness and scalability, providing a practical solution for improving urban digital twins with detailed and reliable building models.  
 
 

1. Introduction 

 
Urban digital twins as advanced digital representations of cities 
enable comprehensive urban planning, management, and 
analysis. At the core of these digital twins are 3D city models, 
which includes buildings, roads, terrain, and other elements of 
the built environment. Buildings as dominant element of the 
urban landscape play an important role for several applications 
(Biljecki et al., 2015), such as solar potential estimation 
(Matsuoka et al., 2024), Energy demand estimation (Kaden & 
Kolbe, n.d.), 3D cadastre (Dursun et al., 2022). The geometric 
accuracy and semantics complexity of building representations 
are managed into Levels of Details (LoDs), which range from 
simple geometric shape to highly detailed structures (Biljecki et 
al., 2016). Higher level of details, such as LoD 3, include façade 
elements such as windows, doors, and architectural elements. 
 
Two main approaches are commonly used to create LoD3: either 
create LoD3 models from scratch or update the facade details of 
models at a lower level of detail. Scan2LoD3, developed by 
Wysocki et al., (2023), employs ray casting and Bayesian 
networks to generate LoD3 models. The method processes three 
inputs: point cloud, an existing building model, and façade 
texture. It creates three probability maps: a point cloud 
probability map via a modified Point Transformer network, a 
conflicts probability map from laser scanner visibility analysis 
with the building model, and a texture probability map using 
Mask-RCNN. These maps are combined using a Bayesian 
network to produce a target probability map, which guides the 
3D reconstruction into a detailed, CityGML-compliant LoD3 
building model. Alternatively, enhancing existing LoD2 models 
with façade details offers a practical approach to upgrading city 
models to LoD3. This method leverages the existing structural 
information and augments it with additional data from mobile 
mapping data, ensuring a more efficient and scalable process. By 
focusing on the enhancement of specific elements, such as 
windows and doors, this approach can produce detailed and 
accurate models without the need for a complete overhaul. 
 

The main challenges with existing methods include the need for 
semantic segmentation of 3D point cloud data, which is complex 
and time-consuming. Additionally, there is a significant 
shortcoming in the availability of labelled datasets, with only one 
existing dataset that limits the training and validation of models 
(Wysocki et al., 2023). Furthermore, current methods do not 
leverage the advances in image foundation models, such as 
Grounding DINO (Liu et al., 2023), Segment Anything (Kirillov 
et al., 2023), and Grounded Segment Anything (Grounded-SAM) 
(Ren et al., 2024). These state-of-the-art models offer powerful 
tools for image-based object detection and segmentation, which 
can significantly enhance the accuracy and efficiency of 
detecting façade details. 
  
This paper explores the latter approach, demonstrating how 
mobile mapping point cloud data can be used to refine LoD2 
models, resulting in comprehensive LoD3 city models suitable 
for various urban applications. Our methodology involves 
processing the point cloud data into images and applying 
Grounding DINO to extract façade details and integrating these 
details into the existing LoD2.2 models. The contributions of this 
paper include a novel method for model refinement, a detailed 
evaluation of the approach. We start with a CityJSON LoD2.2 
building model. The first step is to separate the façade surfaces 
from each building. Next, we identify the points from mobile 
mapping data that cover these façade surfaces. In the third step, 
we project the point cloud data of the façade into an image format 
and use Grounding DINO to detect and delineate windows and 
doors. The fourth step involves projecting these detected 
openings back onto the building model. Finally, we conducted a 
performance evaluation of the opening detection and an 
assessment of the reconstruction process.  
 
The structure of this paper is as follows: Section 2 reviews related 
work, Section 3 describes the methodology, Section 4 presents 
the results and discusses the findings, Section 5 concludes the 
paper and outlines future work.   
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2. Related Work 

 
Given the high demand of 3D city models under the Urban 
Digital Twin umbrella, many semi-automated and fully 
automated approaches are developed to generate LoD 2 city 
models (Peters et al., 2022). While these LoD2 city models can 
fulfill the requirements of a variety of urban applications, the 
growing need to produce LoD3 models with the lightest possible 
implementation is necessary (Biljecki et al., 2015). Generating 
LoD 3 models is still tedious and a non-straightforward process 
considering the complexity of detecting the facade elements (e.g., 
windows, doors, to name a few) and their shape diverity. 
Furthermore, few scholars attempt to bridge the gap in the 
literature by improving the manual modeling processes by 
semantically refining the existing LoD 2 models with the facade 
details.  Thanks to the availability of MLS data, it provides 
accurate, high-density, and street-level point clouds and images. 
They represent a solid data source for the semantic facade 
enrichment of city models. Earlier studies focused mainly on 
facade detection without going further to explain the 3D 
reconstruction. For instance, the authors in Hoegner & Gleixner 
(2022) present a method for automatically extracting 3D models 
of facades and windows from MLS point clouds using voxel 
segmentation and visibility analysis. Furthermore, a study 
introduces a semi-automated method to extract building windows 
from MLS point clouds using voxel-based segmentation, 
statistical noise filtering, and conditional Euclidean clustering to 
identify building facades (Zhou et al., 2018). Another related 
work focused on developing various approaches to generate from 
scratch LoD3 models from multiple data sources, namely 
airborne/mobile LiDAR data and oblique, aerial, and UAV 
images, to reconstruct a CityGML standard-compliant LoD3 
model (Gruen et al., 2020). In addition, Tan et al. (2024) propose 
a method that fuses geometric features with deep learning 
networks to improve facade-level classification of point clouds. 
The method addresses the challenge of capturing local geometric 
information, making it a valuable approach for high-Level of 
Detail (LoD3) 3D building reconstructions. In this paper, the 
focus is on the enrichment of an existing LoD 2 semantic building 
model, also known as refinement strategy (Wysocki et al., 2022, 
2024).  (Wysocki, Grilli, et al., 2022; Wysocki et al., 2023, 2024), 
provide a Scan2LoD3 approach based on the ray-casting 
multimodal fusion method for 3D reconstruction of the LoD3 
building model. The Scan2LoD3 method uses (MLS) point 
clouds and semantic 3D building models prior to probabilistically 
detecting model conflicts, integrating these with multimodal data 
through a Bayesian network. This approach allows an automatic 
LoD3 reconstruction of models with facade elements like 
windows and doors compliant with the CityGML standard.  The 
multimodal probabilistic fusion shows its potential to guide the 
semantic LoD3 facade element reconstruction. Furthermore, a 
study conducted by Froech et al. (2024) proposes a method for 
reconstructing 3D facade details using MLS point clouds 
combined with a predefined 3D model library, leveraging an 
enhanced Bag of Words (BoW) approach using semi-global 
features, allowing to address the assumption of rectangularity and 
the use of bounding boxes. On the other hand, advances in 
machine learning rely heavily on 2D image-based approaches to 
detect the facade elements in images.  (Hensel et al., 2019) 
propose a workflow for enhancing LoD2 CityGML models 
through object detection using 2D images and deep learning, with 
a focus on improving facade modeling. The authors deployed a 
modified Faster R-CNN to effectively segment and predict depth 
for more detailed facade features like windows and balconies. 
However, the lack of annotated datasets for depth estimation 
remains a challenge, requiring assumptions or further research to 

improve neural network performance.  Moreover, Pang & 
Biljecki (2022) present a deep learning approach to 
reconstructing 3D building models from single street view 
images, using image-to-mesh reconstruction for outdoor scenes 
across three scenarios: standalone reconstruction, footprint-aided 
reconstruction, and refinement of existing models. Results 
indicate that the latter two scenarios can accurately reconstruct 
building geometry, while standalone reconstruction estimates 
building mass. This method facilitates 3D modeling in areas 
lacking data, enabling new geospatial analyses. Fan et al. (2021) 
propose a VGI3D platform, a novel web-based tool designed for 
fast and cost-effective 3D building modeling using convolutional 
neural networks applied to volunteered geographic information 
(VGI) and images. It simplifies the process by automatically 
extracting facade elements like windows and doors. (Murtiyoso 
et al., 2021) present a novel method for semantic segmentation of 
building facades using a deep learning (DL) approach combined 
with transfer learning. The method first segments 2D orthophoto 
images of buildings and then back-projects the segmented data 
into 3D point clouds. The study highlights the importance of 
image quality and suggests further improvements like enhancing 
orthophotos and experimenting with different DL models for 
better accuracy in facade classification. A recent work by 
Salehitangrizi et al. (2024) proposes a new method that leverages 
multi-view images, Faster R-CNN, and Segment Anything 
(SAM) deep learning models to detect and accurately project 2D 
façade elements into 3D space.  This paper addresses challenges 
in creating detailed 3D building façade models (LoD 3), 
particularly the issues of occlusions and spatial uncertainties in 
3D locations of façade elements. While the current state of the art 
relies on combined approaches (3D point clouds and 2D images) 
for facade element detection and extraction, as well as upgrading 
the LoD2 to LoD 3 models, we are currently leveraging advances 
in image-based approaches, namely Grounded Segment 
Anything (Grounded-SAM) (Ren et al., 2024).   
 
 

3. Methodology 

 
Our methodology for upgrading LoD2.2 building models to 
LoD3 using mobile mapping point cloud data consists of several 
systematic steps to integrate façade details into existing models. 
as summarized in Figure 1 and explained in subsections below.  
 
The preprocessing step merges wall surfaces within the LoD2.2 
models based on topological and coplanarity criteria, simplifying 
the geometry for subsequent processing (1.1). Next, façade points 
are extracted from the mobile laser scanning data, focusing on 
points that correspond to the building's wall surfaces (1.2). These 
points are then transformed into a 2D image format by aligning 
the coordinate system with the façade's normal vector (1.3) to 
facilitate the use of the Grounded Segment Anything model for 
detecting façade openings such as windows and doors (1.4). The 
detected features are re-projected onto the original 3D model to 
integrate these detailed elements into the LoD3 model (1.5). 
Finally, postprocessing refines the model, resulting in an 
upgraded representation suitable for urban applications. 
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Figure 1. Overview of the full workflow. 
 
 
1.1 Preprocessing  

As shown in Figure 2, the preprocessing of LoD2.2 models 
involves merging wall surfaces that represent the same facade 
based on two criteria: topology and coplanarity. First, a 
topological check is performed to identify adjacent surfaces that 
share at least one edge. Secondly, the coplanarity of these 
adjacent surfaces is evaluated by comparing their normal vectors. 
Surfaces with parallel normal vectors are considered coplanar. If 
both the topological and coplanarity criteria are satisfied, the wall 
surfaces are merged to form a single, larger wall surface. This 
ensures accurate segmentation of the 3D point cloud into sections 
corresponding to each facade, thereby avoiding missing or 
incomplete detections of openings. 
 

 
 

Figure 2. Preprocessing: (a) Input model (b) Merged surfaces. 
 

1.2 Facades points extraction 

To process each facade individually, we proceed to a 
segmentation step to separate different facades. For each 3D 
building model, we iterate through the wall surfaces in the 
building’s geometry to extract corresponding points from the 
MLS data. Initially, we filter points within the building's spatial 
extent. Then, inliers that align with each façade's surface plane 
are identified. These points are identified based on a 
perpendicular distance threshold relative to the plane. 
 
 
1.3 Transformation 

As our approach involves using Grounding DINO for inference, 
3D points of each facade are projected into a 2D image format by 
aligning the global coordinates system of the points with the 
façade's plane as shown in Figure 3. 
 

 
 

Figure 3. Transformation of original points to a new local 
coordinates system defined on the facade. 

 
The new local coordinates system has its z-axis aligned with the 
normal vector of the wall surface. The transformation to this local 
system is performed as follows: 
 
First, we construct the local coordinate system axes: 
 

• The z-axis of the new coordinate system is aligned with 
the normal vector n. 
 

• The x-axis is computed as the cross product of the 
normal vector n and the global z-axis: 
 

X! =
n × Z
|n × Z| 

 
Where 𝑋′ is the x-axis of the new coordinate system 
and 𝑍 is the global coordinate system’s z-axis. 
 

• The y-axis is determined by the cross product of the x-
axis and the z-axis. 

 
The new coordinates system’s origin O! is at a point on the plane 
which could be any vertex of the wall surface. 
 

t 

R 
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The translation vector t is the difference between the new origin 
O′ and the origin of the global coordinate system O: 
 

t = O! −O 
 
The rotation matrix R maps the global coordinates system basis 
vectors to the new local basis vectors. It is calculated as the 
product of individual rotations around the global coordinates 
system: 
 

R = R"(α) ∙ R#(β) ∙ R$(γ) 
 
Where α, β and γ are rotation angles around the x-axis, y-axis 
and z-axis respectively. 
 
The full transformation matrix M is then given by: 
 

M	 = 6R t
0 19 

 
Finally, the transformation of a point from the global to the local 
coordinate system is performed as follows: 
 

p′	 = 	M	. p 
Where p = (x, y, z, 1) are the homogeneous coordinates of the 
point in the global coordinate system, and p! = (x!, y!, z!, 1) are 
the homogenous local coordinates. 
 
Once the points are transformed into the local coordinate system, 
they are then projected onto a 2D plane by mapping their x and y 
coordinates to pixel coordinates. The resolution σ of this 
mapping is defined to control granularity of the image. The pixel 
coordinates (u, v) are calculated as follows: 
 

u	 = 	
x!–min(x!)

σ  
 

v	 = 	
max(y′)– y!

σ  
 
As shown in Figure 4, the result is a 2D image array where each 
pixel corresponds to a point, or a set of points, in the wall 
surface’s plane, with its color determined by the original point 
cloud data. In case two points have the same pixel coordinates, 
the pixel is assigned the color value of the farthest point, i.e. the 
one with the highest z! coordinate.  
 

 
 

Figure 4. Example of generated image (right) from 3D point 
cloud of facade (left). 

 

 
1 https://github.com/IDEA-Research/GroundingDINO 

1.4 Openings detection 

In the opening detection step, the façade points, now projected 
into a 2D image format, are analysed using the Grounding DINO 
model to identify doors and windows. Grounding DINO1, an 
open-set object detector, is designed to detect arbitrary objects 
based on human language inputs, such as category names or 
referring expressions (see example in Figure 5). This model 
combines the Transformer-based detector DINO with grounded 
pre-training, enabling it to generalize to open-set concepts by 
efficiently fusing language and vision modalities. 
 
The architecture of Grounding DINO includes an image 
backbone for feature extraction, a text backbone for processing 
language inputs, and a feature enhancer for integrating these 
modalities. The model employs a language-guided query 
selection to refine the queries based on the cross-modality 
features, followed by a cross-modality decoder that retrieves 
relevant features from both image and text inputs. This approach 
allows Grounding DINO to detect and label façade openings, 
such as windows and doors, by aligning textual descriptions with 
visual data. 
 
 

 
 

Figure 5. Example of prompt to detect and label windows and 
doors. 

 
1.5 Geometry integration and post-processing 

In the fifth step, the detected features are re-projected onto the 
original 3D model. The global coordinates of the detected façade 
elements are then recalculated using the inverse transformation 
matrix M%&. The geometry of each facade is modified by creating 
openings in the wall surface polygon, then the corresponding 
geometries of the detected elements are added to the model. The 
orientation of each added geometry is aligned with the façade’s 
plane normal vector. 
 
Steps 2 to 5 are then repeated for each building in the dataset. 
Finally, a postprocessing step refines the model, we employed 
two filtering criteria: elevation and area. Elevation helps 
distinguish between windows and doors, as doors generally are 
at lower elevation close to the ground floor level, while the area 
criterion filters openings based on their size, filtering some false 
detections.  
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4. Experiments and Results 

 
We assessed the performance of Grounding DINO in detecting 
façade openings. The model showcased a relatively good 
capability to accurately identify bounding boxes of different 
elements, based on simple text prompts. However, the detection 
quality depends on the chosen box and text thresholds. 
Depending on the completeness of the 3D point cloud of the 
façade, these values should be adjusted to control the correctness 
of the prediction. 
 
Our test dataset, which is an MLS colorized point cloud data from 
Belgium as shown in Figure 6. The dataset comprised 65 
windows. Grounding DINO successfully detected 40, resulting in 
a detection rate of 61.53%. This performance indicates that the 
model can recognize the façade features.  
 
 

 
 

Figure 6. Testing dataset: buildings' footprints (left), 
corresponding MLS data (right). 

 
 
Additionally, the detected features were correctly mapped and 
added to the 3D models as illustrated in Figure 7. The results are 
written to CityJSON format and inspected in Ninja Viewer. The 
correct orientation of windows is ensured as the surface geometry 
of each element is aligned with the wall surface normal vector. 
 
However, we also noted some limitations in the method. The 
model occasionally produced false positives, which were 
primarily attributed to occlusions from nearby objects, such as 
cars and trees. These occlusions hindered the model’s ability to 
accurately discern façade openings. This issue was particularly 
evident in dense areas, where a high concentration of surrounding 
objects increased the likelihood of occlusions in the 3D point 
cloud. Furthermore, we found that the density of the point cloud 
had a significant impact on detection accuracy and completeness. 
Lower point cloud densities resulted in lower-resolution façade 
images, which, in turn, led to less accurate and less complete 
object detection outcomes. In particular, the lower resolution 
limited the model’s ability to detect smaller façade features, 
resulting in some missed openings or imprecise boundary 
definitions.  
 
Besides the nearby objects, the angle and distance of the data 
capture also played a role in the detection quality and the 
presence of occlusions. Point clouds generated from oblique 
angles or greater distances tended to yield fewer points per 
façade, further complicating accurate detection. This was noted 
especially for higher buildings where the façade’s points density 
of the higher floors is less than   This sensitivity to capture 
conditions highlights the need for careful planning in data 
acquisition, as certain angles or positions might exacerbate 
occlusions or reduce point density in critical areas. 
 

 
 

Figure 7. LoD3 Building Models. 
 
 

5. Conclusions 

 
In this paper, we presented a novel methodology for upgrading 
LoD2.2 building models to LoD3 using mobile mapping 3D point 
clouds and advanced image-based object detection techniques, 
specifically the Grounding DINO model. Our approach 
systematically integrates façade details into existing models, 
enriching urban digital representations with greater spatial detail 
and accuracy. 
 
The automated detection of façade elements facilitated by 
Grounding DINO significantly reduces the time and effort 
required to annotate and train context-specific detectors. By 
using colorized 3D point clouds, the model enables direct 
detection of elements without the preliminary step of selecting 
the most representative image of the façade, as is typically 
required in image-based methods. This methodology is also 
designed to be scalable, making it suitable for large urban areas 
where traditional modeling techniques may be impractical due to 
time and resource constraints. 
 
However, there are some limitations associated with this 
approach. One significant limitation is its dependency on data 
quality; the effectiveness of the approach heavily relies on the 
completeness and density of the input point cloud, as low-density 
data can lead to inaccuracies and omissions in the detected façade 
elements. Our results demonstrated that occlusions from nearby 
objects such as cars, trees, and other urban elements, particularly 
in dense areas, can create false positives or obscure façade 
features, affecting the accuracy of detection. Additionally, the 
angle and distance of data capture play a crucial role in detection 
quality. For example, oblique or distant point clouds yield fewer 
points per façade, especially on higher floors, making detection 
more challenging. 
 
Furthermore, the lack of extensive annotated 3D point cloud 
datasets for training and validating 3D detection models remains 
a challenge. While Grounding DINO operates as a zero-shot 
detector in this methodology, it requires a transformation step to 
convert façade points to image format for processing, which can 
add computational overhead and impact performance in large-
scale implementations. 
 
Overall, despite these limitations, the presented approach holds 
significant promise for enhancing digital urban models through 
efficient, automated detection of architectural features, paving 
the way for more detailed and accurate urban representations. 
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