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Abstract

We propose an integrated approach for automatic point cloud thinning and curb mapping in Uncrewed Aerial Vehicle - Structure
from Motion (UAV-SfM) point clouds to enhance hydrological modeling in flood-prone urban areas. UAV flights were conducted
to generate an initial orthoimage, which was used to train a convolutional neural network (CNN) segmentation model. The trained
model was then applied to the UAV images to produce two binary mask sets: one for vegetation and one for streets and sidewalks.
These masks were incorporated during photogrammetric 3D reconstruction to estimate camera geometry and generate a dense point
cloud. Our results show that vegetation masks did not improve camera geometry estimation. However, by applying UAV masks,
we achieved a 15% reduction in total processing time and decreased the number of points by a factor of 2.7. This targeted approach
enabled curb detection by focusing on expected curb locations. Curb candidate points were proposed using geometric characteristics
of the point cloud, including normal values, linearity, and verticality. Our rule-based method effectively mapped even subtle curb
features, providing a rapid, cost-effective solution for large-area curb mapping. Further, we explored the potential of random forest
for curb mapping, with promising results. Our approach can support urban flood modeling efforts and strengthen urban resilience
for flood-prone communities.

1. Introduction

Hydraulic models are essential tools for identifying flood-prone
areas, thus enabling stakeholders to make well-informed de-
cisions. These models rely on high-resolution Digital Eleva-
tion Models (DEMs) to accurately simulate water flow dynam-
ics and assess flood risk. However, DEMs often lack the res-
olution to accurately represent relevant objects, such as curbs,
which are important hydraulic structures responsible for dir-
ecting the runoff down to inlets or other drainage infrastruc-
ture. The omission of curbs in hydraulic modeling can result
in an underestimation of runoff volumes (Halama et al., 2023).
To address this issue, one potential approach is to use high-
resolution point clouds for accurate curb mapping.

Uncrewed aerial vehicles (UAVs) equipped with RGB sensors
represent a cost-effective platform for the generation of high-
resolution point clouds through the utilization of Structure
from Motion (SfM) and Multi-View Stereo (MVS) (Eltner
et al., 2022). Nevertheless, the generation of high-density
point clouds with high levels of detail and precision for large
areas can prove to be a very time-consuming and hardware-
exhausting task. Segmentation masks produced for the raw
UAV images can be applied during point cloud processing to
tackle this issue. Previous studies have demonstrated the ef-
fectiveness of applying image masks to UAV imagery to fil-
ter out specific objects during the SfM process (Park et al.,
2022, Pashaei et al., 2023). Furthermore, image segmentation
masks can be used to smartly calculate point clouds with dif-

ferent resolutions during the dense calculation by considering
image masks for different point densities. This approach has
the potential to reduce processing time compared to uniformly
handling the entire area at high point density.

Efforts have been made to curb segmentation from point clouds.
Researchers have combined point normal analysis with point
height difference to map curbs from mobile laser scanning
(MLS) data (Zou et al., 2024). Others performed curb seg-
mentation in MLS data based on scanning trajectory, point nor-
mals, and point height differences (Na Wang and Zhang, 2022).
Moreover, neural networks have been used to segment curb
points from LiDAR point clouds (Zhao et al., 2024). While
much of the existing research focuses on curb mapping, it pre-
dominantly utilizes LiDAR data rather than UAV-SfM point
clouds, which offer a less expensive and more accessible al-
ternative. Moreover, there is a lack of research dedicated to
the mapping of curbs over large areas, with a specific focus on
the hydraulic characteristics of curbs, such as their shape and
height. Furthermore, there is a need for strategies to reduce
point cloud generation time, especially regarding large areas.

The principal objective of this study is to develop an auto-
mated workflow for smart thinning and curb extraction from
UAV-SfM point clouds, through the integration of image and
point cloud processing techniques. The specific objectives of
this study are threefold: 1) to evaluate the impact of using seg-
mentation masks on vegetated areas on the geometric accuracy
of the SfM process; 2) to automatically thin point clouds by
applying masks to retain high point density only in the most
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relevant areas during the MVS dense matching; and 3) to pro-
pose an algorithm that automatically maps curbs for hydrolo-
gical modeling based on point cloud data. A deep learning im-
age segmentation model is employed to generate masks for the
UAV images. Vegetation masks are applied during the cam-
era geometry estimation to minimize incorrect tie points during
image matching. Meanwhile, street area masks are used to cre-
ate point clouds with varying densities. From the high-density
point clouds, curb points are filtered using rule-based and ran-
dom forest approaches.

2. Material and methods

We first conducted UAV flights to collect images, creating an
initial orthoimage to train and evaluate a deep-learning image
segmentation model. Using the trained model, we generated
class-specific masks on the UAV images to improve the SfM
and MVS accuracy and efficiency during image matching and
dense point cloud generation. Finally, we applied two strategies
(rule-based and random forest) to map curb points using a high-
resolution street and sidewalk point cloud. Figure 1 presents the
general workflow.

2.1 Data acquisition

UAV flights were conducted in a small urban area in southern
Germany using a Matrice 300RTK equipped with a P1 full-
frame camera featuring a 35 mm focal length and a 4.4 µm
pixel pitch. The flights occurred under suboptimal lighting
conditions in the late afternoon, resulting in long shadows and
necessitating the use of a high ISO setting (800–1600). The
flight height was 120 m, resulting in a ground sampling dis-
tance (GSD) of 1.47 cm. The side and forward overlap was set
to 70%. In total, 341 images were collected. Nine ground con-
trol points (GCP) were distributed and twelve permanent struc-
tures, such as manholes, were used as checkpoints (CP). The
root mean square error (RMSE) on the CP was 2 cm.

2.2 Deep learning for image segmentation

An initial orthoimage of the study region was generated, sub-
sequently, the orthoimage was manually labeled and employed
to train a deep learning segmentation model. The CFNet net-
work (Zhang et al., 2019) was used with the EfficientNetB4
(Tan and Le, 2019) as the backbone. CFNet is CNN that em-
ploys a Co-occurrent feature model to investigate the nuances
of context in image segmentation tasks. In regard of CNNs,
the term backbone refers to a network used to extract relevant
features to encode the input into a feature representation. Effi-
cientNets constitute a group of models that learn their structures
through the use of compound scaling methods, thereby poten-
tially increasing efficiency as the network can be optimized in
size and processing time.

The orthoimage was labeled into 23 classes merged into five
land uses. The semantic classes were crafted by hydrologists
to incorporate features and characteristics critical for accurate
flood modeling. The street land use comprised street field,
street paved, street semi-paved, street unpaved, sidewalk, inlet,
and manhole. The river and trenches land use included pipes,
bridges, and water. The residential land use consisted of roof
flat, roof tiled, roof green, roof tin, building site, garden green,
garden stone, sealed surface, and photovoltaic systems. The
rural land use considered farmland, greenland, and woodland.

The labeled orthoimage was split into small tiles of 256 x 256
pixels for model training. The model was implemented in
TensorFlow and trained for a maximum of 50 epochs (Figure 2).
The loss function was set to Sparse Categorical Cross-Entropy,
and Adam was selected as the optimizer, using class weight.
Class weights were used to reduce class imbalance on the data-
set, giving a higher weight for underrepresented classes, and a
lower weight for overrepresented classes. Model performance
was evaluated in terms of pixel accuracy (equation 1) and Inter-
section over Union or IoU (equation 2).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

IoU =
TP

TP + FP + FN
(2)

We used the trained segmentation model to generate masks on
the UAV images. Two sets of binary masks were created: ve-
getation masks and street/sidewalk masks. Image segmenta-
tion masks were used during point cloud generation in different
steps. A series of morphological operations (e.g., erosion and
dilation) was used for post-processing to ensure more defined
objects.

2.3 3D reconstrucion

We created three point clouds of the area of interest. The first
point cloud was generated using a standard processing pipeline
without binary masks. In this process, image alignment during
SfM was done using all pixels, and the entire area was pro-
cessed with a high-density point cloud. The second point cloud
was created using vegetation masks to exclude these regions
during the image matching, and processing the entire area at
a high point resolution. The hypothesis is that the image ori-
entation is improved if alignment is based solely on features
detected and matched in non-vegetation image regions. The
third point cloud was generated by applying both vegetation
and street/sidewalk masks. Vegetation masks were used as in
the second point cloud, while street and sidewalk masks were
applied during the MVS dense matching step. This approach
enabled the creation of a high-density point cloud specifically
in areas of interest for curb detection, while the medium res-
olution was maintained for DEM calculations in the remaining
reconstructed area.

All processing was conducted using a workstation with 128 GB
of RAM, i9-13900k CPU, and a NVIDIA 3070 RTX graphic
card.

2.4 Curb extraction using rule based approach

We extracted curb points from the high-density street point
cloud using a set of filters. Initially, we applied the cloth simula-
tion filter (Zhang et al., 2016) to isolate non-ground points (i.e.,
outliers) in the street point cloud. Next, we filtered points based
on the confidence values extracted from Agisoft Metashape.
Higher confidence values indicate that a point has been con-
firmed by multiple images, making its measurement more re-
liable. Afterward, we identified curb points based on point
normal values. Point normals represent the orientation of the
surface at each point. Abrupt changes in normal values can in-
dicate corners and edges.
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Figure 1. Study Workflow. An initial orthoimage is generated, which is then labeled and used to train a deep learning segmentation
model. The trained model is used to generate vegetation and street and sidewalk masks for the original UAV images. During the image

alignment stage, vegetation masks are utilized to prevent matching points from being identified in these areas. Subsequently, street
masks are employed to generate dense point clouds with varying point densities, keeping high point density for the street and sidewalk

area, and medium or the rest of the area. Finally, curb points are segmented on the street and sidewalk point cloud using rule-based
and random forest approaches.

Figure 2. Training and validation metrics. a) loss; b) accuracy;
and c) mean IoU. These metrics were used to evaluate the

behavior of the network during training and validate training
procedures.

We calculated geometric features using a search radius of 0.2
meters, emphasizing linearity, volume density, principle com-
ponent analysis (PCA), verticality, omnivariance, and first-
order momentum. These features are used to reduce remaining
faulty curb points by encoding important geometric character-
istics of the curbs. Furthermore, curb points were clustered us-
ing the HDBSCAN method to reduce remaining outliers in the
data. Finally, we computed the curvature for each point, retain-

ing only those with curvature values above the 40th percentile,
followed by a down-sampling procedure and a non-maximum
suppression.

2.5 Curb mapping using random forest

Random forest (RF) is a bagging algorithm that combines a set
of decision trees trained in parallel of a subset of a given data-
set. RF takes predictions from different trees and, based on the
majority votes of predictions, takes the final predictions.

We applied a RF classifier to automatically map the curbs using
the knowledge from section 2.4. We manually remove wrongly
assigned curb points from our rule-based approach (section
2.4), and add more 103 points, to create the train and test data-
set, with a total of 326 points. Further, we added 1500 negative
samples to the dataset. Dataset was split considering 60% for
training and validation, and 40% for testing.

We calculate the same set of features from section 2.4 using a
multi-scale approach, with a search radius of 0.1, and 0.2. We
applied a five-fold cross-validation to define best model para-
meters (number of trees in the forest and maximum depth of
the tree). We used 50 trees and a maximum depth of 50. Fur-
ther, the classification threshold was decided based on precision
(equation 1), recall (equation 3), and F1 score (equation 4).

Recall =
TP

TP + FN
(3)

F1score =
2TP

2TP + FP + FN
(4)
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To produce the final curb classification, we applied the trained
model over the entire study area. For that, we filter the point
cloud using the confidence and the z-point normal values, to
narrow down the search area. We visually inspected the final
classification to decide the best classification threshold (0.4) to
be used when applying the model over the entire area. Af-
terward, we filter the predicted curb points by computing the
curvature for each point, followed by a down-sampling and a
non-maximum suppression.

3. Results and discussion

First, we present the results of the image segmentation model.
Then, we compare the accuracy and processing time of point
cloud generation with and without image masks. Finally, we
display the curb mapping using only the street point cloud.

3.1 Segmentation model performance

Training and validation loss, accuracy, and IoU can be seen in
Figure 2. The CFNet model achieved an overall accuracy of
0.911, and the mean IoU was 0.738 on the test set. The seg-
mentation model performed well for most of the classes. Only
certain classes, such as water, inlet, and garden stone, displayed
notably lower IoU scores (Table 1).

Class Land use IoU
Background - 0.883
Building site Residential 0.755
Farmland Rural 0.854
Garden stone Residential 0.574
Greenland Rural 0.797
Inlet Street 0.536
Manhole Street 0.676
PV system Residential 0.921
Roof flat Residential 0.712
Roof tiled Residential 0.885
Roof tin Residential 0.572
Sealed surface Street 0.724
Sidewalk Street 0.625
Street field Street 0.686
Street paved Street 0.923
Street semipaved Street 0.757
Street unpaved Street 0.869
Water River and trenches 0.450
Woodland Rural 0.829

Table 1. Segmentation results (IoU) for relevant classes on the
test set.

Figure 3 shows examples of the segmentation results. The res-
ults demonstrate that our model was able to segment large struc-
tures (e.g., buildings) as well as smaller objects, such as man-
holes and inlets. The use of class weights is especially bene-
ficial for small objects or underrepresented classes, as these
classes and objects receive more ”importance” during model
training.

Our results indicate limitations in the segmentation of similar
object classes with different land use. For instance, we ob-
served that the model was unable to discriminate between high
vegetation in green gardens and woodlands. Furthermore, ob-
ject occlusion poses a challenge for the model.

We used the trained model to create segmentation masks for the
original UAV images. Some artifacts are visible in the segmen-
ted UAV masks (Figure 4). These artifacts appear during the

Figure 3. Example of predicted segmentation masks on the test
patches. On the top role and middle rows, we observed that the
model was able to segment large and small objects accurately.
On the last row, is an example of a patch where the model did

not produce an accurate prediction.

merging of patch masks. The UAV images have a higher resol-
ution compared to the patches used for model training. There-
fore, UAV images need to be split and merged again during
UAV mask generation. One solution would be to consider over-
lapping patches.

For point cloud generation, we created two sets of binary
masks: one for vegetation and another for streets and sidewalks
(Figure 4).

Figure 4. Examplary Segmentation of an original UAV image
using our segmentation model. The formation of some square

objects can be observed due to the image’s high resolution.
Further, it can be noticed only part of the high vegetation was

segmented. In a) original RGB UAV image; b) segmented UAV
image; c) vegetation maks; and d) street and sidewalk mask.

3.2 SfM and MVS processing time and accuracy

The calculation of three different point clouds was done and
compared in terms of accuracy and processing time. Although
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X error (cm) Y error (cm) Z error (cm) Total error (cm)
ME SDE ME SDE ME SDE ME SDE

Without mask -0.005 0.007 0.01 0.008 0.012 0.015 0.024 0.007

With masks -0.005 0.006 0.008 0.008 0.025 0.021 0.033 0.013

Table 2. The accuracy (Mean Error, ME) and precision (Standard Deviation of Error, SDE) on 12 Check Points, with and without the
use of masks.

Point
cloud

Matching
time [min]

Alignment
time [min]

Depth maps
time [min]

Dense
matching time [min]

Total processing
time [min] Number of Points [million]

1 75 2 55 31 161 ≃408
2 75 2 41 32 150 ≃ 397
3 75 2 37 (10*) 5 (7*) 119 (17*) ≃ 58 (92*)

Table 3. Point cloud processing time with and without the use of masks. Point cloud 1: Without mask; 2: with vegetation masks
during image alignment, 3: with vegetation masks during image alignment, and streets and sidewalks during the matching (non-street

areas processed in medium setting). For point cloud 3, we display results for the street and sidewalk area, and for non-street areas,
denoted by *.

Figure 5. Result of the different processing steps for curb detection. a) Street and sidewalk point cloud; filter applied to the features b)
confidence; c) z-normal; d) y-normal; e) linearity; f) surface density; g) omnivariance; h) PCA 2; i) verticality; and j) first order

momentum.

the consideration of no masks (i.e., scenario 1) achieved slightly
better accuracy in the Z direction during the photogrammetric
3D reconstruction (Table 2), masking of streets and sidewalks
significantly reduced processing time during the dense match-
ing, i.e., particularly during the depth map and dense point
cloud generation stages.

We observed an unexpected increase in Z error with the use of
the vegetation mask (Table 2). The classes used for image la-
beling and model training were designed by hydrologists, fo-
cusing on objects relevant to hydrological processes and for
future application in flood modeling. Objects were labeled in
more than one class, reflecting different land uses. For instance,
high vegetation can be found in both woodland and greenland
classes, where the woodland focuses on high vegetation and
greenland consists of a mix of grass and high vegetation. Thus,
we were unable to fully mask high-vegetation areas during the
image matching process. Furthermore, the vegetation land use

represented a small fraction of the overall data, which could ex-
plain the lack of improvement in CP accuracy. However, con-
sidering the GSD of 1.4 cm, all generated point clouds demon-
strated satisfactory accuracy and precision performance for the
flood models.

Applying vegetation masks did not significantly affect the
matching and alignment time during the SfM processing, as ve-
getation covered only a small portion of the study area, resulting
in minimal exclusion during these steps (Table 3). However, the
depth map estimation time was reduced by 14 minutes when us-
ing vegetation masks alone and by 8 minutes when both vegeta-
tion and street/sidewalk masks were applied. By applying high
resolution only to street and sidewalk areas and medium resolu-
tion to non-street areas, we observed a reduction of 25 minutes
in total processing time (Table 3). In this setup, the number of
points in the point cloud decreased by a factor of 2.7.
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3.3 Curb extraction using rule-based approach

Our rule-based approach selected potential curb points from the
street and sidewalk point cloud. We reduced the number of
outliers with each filter. We empirically defined threshold val-
ues for each filter, adjusting them to refine the candidate curb
points.

The initial point cloud consisted of approximately 58 million
points. In the first step, we retained points with confidence val-
ues higher than 7.5 (Figure 5), reducing the number of points
to around 5 million. Subsequently, we used a Z-point normal
filter, keeping points with values between 0.82 and 0.96. The
Z-normal filter can be effectively used to recognize vertically
oriented objects. Flat surfaces have low Z-normal values, while
vertical surfaces, such as curbs, have larger values (Figure 5).
Afterward, a Y-point normal filter was applied. After both nor-
mal value analyses, about half a million potential curb points
remained.

A set of geometric features was calculated to further filter the
remaining points, which significantly improved the selection of
curb points. Linearity measures the alignment of points to a
straight line or edge. Curbs typically form long lines along
the boundary between streets and sidewalks (Figure 5), where
linearity can help discern curb points from more amorphous
objects (e.g., cars). We retained points with linearity values
greater than 0.74, of which 0.2 million points were preserved.

The surface density feature was applied to remove points in
areas with a lower point density. We observed that curb areas
exhibited a higher point density (i.e., surface density values
higher than 174) compared to other regions (e.g., streets). Om-
nivariance was used to filter out flat surfaces that were incor-
rectly assigned as curb points (Figure 5). After these two steps,
50 thousand curb points remained.

The second largest eigenvalue from the PCA of points within a
specified search radius reflects the planar spread in a neighbor-
hood and was thus also considered. Curb points showed inter-
mediate values (from 0.063 to 0.148) since they are not entirely
flat, considering a search radius of 0.2 meters. Next, vertical-
ity was used to delete the remaining points from flat surfaces.
Due to their geometric characteristics, curbs have intermediate
to high values of verticality. The first-order momentum meas-
ures the distribution of points relative to a centroid, indicating
alignment along a dominant direction. Curbs generally exhibit
a relatively strong alignment in a consistent direction. In this
sense, first-order momentum helps to refine curb points, res-
ulting in 18 thousand curb points. Nevertheless, after all the
rule-based decisions, it can be seen that still some outliers re-
main.

Furthermore, due to the original density of the point cloud, even
after applying the filters, we observed clusters of points within
small distances, necessitating a further reduction in the number
of candidate points. We conducted a curvature analysis, fol-
lowed by down-sampling. Finally, we applied non-maximum
suppression to reduce overall noise in the final curb points.

The final curb points can be seen in Figure 7. Our ap-
proach successfully extracted curb points, even for very smooth
curbs, with a five-centimeter difference between the lowest and
highest points. However, we observed outliers in regions out-
side, primarily, the street area. In these areas, we observed a
strong change in curvature close to the street due to vertical

structures (e.g., walls, cars, or vegetation). These points can be
removed either by reducing the street and sidewalk mask or by
classifying the point cloud. Additionally, high vegetation near
the street can pose a challenge to our approach, as we cannot
identify curb points beneath the canopy.

3.4 Curb mapping using random forest

Results for the random forest on the test set are presented in
Figure 6. Using a classification threshold of 0.2, we achieved a
precision of 0.65, recall of 0.87, and F1-score of 0.75. Our find-
ings suggest that the model can reasonably distinguish between
curb and non-curb points. However, due to the small size of the
dataset, our model might be over-fitted to our study area or not
able to fully generalize our problem.

We applied the trained model over the entire study area. We
conducted a visual inspection to find the best classification
threshold to be used, being set at 0.4. Visually, random forest
prediction is similar to the candidate curb points after the last
geometric filter. Since we used a considerably high threshold
classification value, we had a lower number of predicted curb
points compared to the last geometric filter. We observed pre-
dicted curb points also on the highest part of the curb.

Final curb predictions can be seen in Figure 7. Random forest
predictions showed a higher number of wrongly mapped curb
points, especially for areas with vegetation close to the streets.
Moreover, it can be noticed a higher lack of continued along the
curbs when compared to the rule-based approach. Nevertheless,
the use of the random forest decreases the need for human ac-
tion during filter tuning.

Figure 6. Precision, recall and F1 score curves for the test set.
All metrics were calculated using different classification

thresholds, ranging from 0.1 to 0.5.

4. Conclusion

We propose an algorithm that integrates image and point cloud
processing to automatically map curbs and efficiently thin UAV-
SfM point clouds to support hydrological modeling in flood-
prone areas. Our findings highlight the advantages of using
automatic segmentation to create masks, which significantly
accelerates point cloud processing by focusing on areas where
curbs are expected, thereby thinning the data and reducing com-
putational load. While we anticipated that masking out vegeta-
tion would improve geometric precision, this was not observed
in our dataset; however, all point clouds still met the accuracy
and precision requirements.
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Figure 7. Predicted curb points using the rule-based and random forest approaches. The rule-based approach produced more accurate
predictions compared to the random forest approach, further, with higher point density as can be seen in the orange and green boxes.

The random forest approach showed a higher number of wrongly assigned curb points (red box).

Our results show that our rule-based approach, which utilizes
geometric characteristics of the point cloud, successfully iden-
tified potential curb points. The remaining outliers can be fur-
ther refined by classifying the point cloud or applying skelet-
onization to the curb points. Notably, our approach was ef-
fective in mapping even subtle curbs. Further, random forest
showed promising results for our task; however, it presented
more wrong predicted curb points than the rule-based approach.

Overall, our approach demonstrates promising potential for ef-
ficiently mapping hydraulic structures needed for flood mod-
eling applications. Our work marks an important step toward
automating the extraction of key hydraulic features and redu-
cing processing time over large areas, aiding stakeholders in
adapting urban landscapes to manage intense rainfall events and
enhance urban resilience.
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