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Abstract: 
Nowadays, fisheye image has become commonly used in the 3D reality capturing field. Although AI integration for image recognition 
has become mature with normal images, providing available annotated dataset and pre-trained models, its application for fisheye 
images is rarely seen. While the object detection models have generalization ability, dealing with barrel distortion requires specific 
data for fine-tuning. This paper seeks to acquire prior knowledge from normal image and transfer it to the application that deal with 
fisheye images. This research is devoted to test the annotation shape that could possibly improve the accuracy when representing the 
shape of objects. It also seeks a way to prove that the annotation can be converted to fisheye images, resulted into a pre-process, which 
will facilitate the data preparation process. The tests involve annotations with standard box and quadrilateral polygon, the later turned 
out to be preserving most of the wanted image content after the conversion. The test result shows that the model trained on converted 
annotations using quadrilateral polygons, compared to detection model trained on non-converted ones, improves the mean average 
precision by 8%. 
 
 

1. Introduction 

Fisheye cameras are widely utilized in many specialized 
applications, capitalizing on essential hardware advantages. i.e., 
fisheye lenses can be produced cheaper, smaller and brings wider 
field of view compared to non-fisheye alternatives. The wide 
field of view enables fisheye cameras to capture photos of 
enhanced spatial coverage, which makes them widely adopted for 
surveillance, monitoring, navigation. Many are tests and 
applications of photogrammetry using fisheye lenses. The 
utilization of fisheye lenses is especially beneficial in 
applications necessitating extensive spatial coverage, including 
terrain mapping, documenting of edifices or constructions, and 
topographical studies. These lenses enhance the efficiency of the 
acquisition process by capturing a substantial percentage of the 
scene in a single picture, hence minimizing the number of 
photographs needed to cover a region. These lenses are especially 
advantageous in aerial photogrammetry or UAV (Unmanned 
Aerial Vehicles) operations, as their wide field of view enables 
the recording of several locations in a single flight, hence 
optimizing cost and time. Moreover, in applications like 
metropolitan mapping or complicated infrastructure monitoring, 
the capacity to acquire a panoramic image without several 
exposures is essential. Fisheye lenses are also used in panoramic 
cameras, widely used to color the “lidar data” both static and 
mobile and nowadays deeply tested to quick 3D modelling of 
interiors, narrow places and urban environments (Barazzetti et 
al., 2018; Javadi et al., 2024; Previtali et al., 2024; Zhang et al., 
2024). 
On the other side, most monitoring applications or vision 
automatic applications that deal with big volume of data are 
empowered by AI. However, though AI processing on “normal" 
rectilinear images have shown promising results (famous 
examples are YOLO (Redmon et al., 2016), DETR (Carion et al., 
2020) and SAM (Kirillov et al., 2023) etc), such processing on 
highly distorted images is rarely discussed, as it is the case of 
object detection algorithms. Learning-based object detection 
models trained on rectilinear images have generalization ability 

on distorted ones but limited. For this reason, specific training 
sets made of distorted images must be prepared to fine-tune the 
model and improve its performance. Considering that, nowadays, 
manual annotation can be a significantly time-demanding step in 
the whole application process.  
Transforming the manual annotation of an ad hoc created 
classical training set onto distorted photos would considerably 
expedite the creation of a new training set tailored for fisheye 
images or even skip completely the process in case of the use of 
already existing training sets on rectilinear images. 
This work aims to present an effective method for object 
detection in fisheye photos, utilizing trained information from a 
rectilinear dataset. The methods for converting annotations from 
rectilinear to distorted images are examined to provide cost-
efficient data preparation and object representation. We collected 
image data using fisheye camera and cell phone, and deliberately 
designed tests including testing the conversion of two annotation 
shapes (standard box and quadrilateral polygon) and validating 
the behaviour of object detection models trained on them.  
 

2. Related Work 

2.1 Deep learning for image processing 

Image processing has been a key topic and was developed for a 
long time, it typically involves three tasks: classification, object 
detection and segmentation. The classification model makes 
predictions based on predefined categories, the object detection 
model maps objects and generates corresponding category 
predictions. Segmentation models make binary masks for each 
predefined category. 
It started from the most famous LeNet model (LeCun et al., 1989) 
that is enabled to recognise handwritten digits. Afterwards, 
typical man-crafted networks with limited depth of layer were 
developed, like VGG (Simonyan and Zisserman, 2015), 
inception network (Szegedy et al., 2014) etc. Residual networks 
such as ResNet were introduced by He et al., 2015 which 
introduced the concept of residual connection, solved the 
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problem of gradient vanishing, allowing layer depth increase in 
the latter model. 
Deep learning models, like Faster RCNN (Ren et al., 2016) and 
YOLO etc, were favoured to be used for detection. They stand 
for two typical approaches for 2D object mapping. The RCNN, 
as a two-stage approach, starts with region proposals and then 
determines if objects are contained in each proposal. The latter 
one, as a one-stage approach, directly asks the model to output 
box location and classes. A comparison of the primitive models 
suggests that the one-stage is less sensitive towards small objects 
and less accurate, while tested to be fast in referencing.  
A famous segmentation model is as a continuation of Fast RCNN, 
the Mask RCNN (He et al., 2018). The pixel-wise prediction later 
gained much interest from the field. The SAM model came with 
expectation of being a foundational model that can be used as a 
off-the-shelf component for other big models. 
 
2.2 Datasets in deep learning 

The capability of the deep learning model is not merely decided 
by the algorithmic feature, but also greatly affected by the 
training set. The dataset curation has been discussed for a long 
time (Deng et al., 2009; Everingham et al., 2010; Lin et al., 2015), 
including topics like the scale of the dataset (referring to number 
of categories and instances), the semantic hierarchy of the 
classes, accuracy (reliability of the annotation), and diversity 
(appearance, positions, viewpoints and so on) etc. 
Available fisheye datasets are comparably rare. VOC-360 and 
Wider-360 (Fu et al., 2019) provide fisheye dataset for multiple 
computer vision tasks including object detection and 
segmentation. Both datasets are obtained from the existing public 
datasets VOC 2012 and Wider Face. For the object detection 
tasks, they used the corner points and edge midpoints to map the 
normal box annotation on the fisheye coordinate system. FRIDA 
(Cokbas et al., 2022) provides overhead fisheye datasets for 
people counting tasks, annotated with rotated boxes. WoodScape 
(Yogamani et al., 2019) provides a multi-camera fisheye dataset 
for road driving scene. The 4-camera system (also equipped with 
LiDAR and GNSS sensors) provides an abundant resource for 
tasks including segmentation, depth estimation, comprising 
100,000+ image samples and 40 categories. A continuous 
development can be seen in SynWoodScape (Sekkat et al., 2022). 
Fisheye8K (Gochoo et al., 2023) represents as a benchmark for 
road object detection tasks, providing 157K normal bounding 
boxes across 5 categories.  
 
2.3 Fisheye image processing 

The great distortion of fisheye images makes their use 
challenging. One typical solution is to process the undistorted 
images with the consequence that the resulting images are 
resampled, which brings extra difficulty in object detection, or 
leads to information reduction at the image border. Using 
segmentation model (Siam et al., 2017) can be a solution. 
However, as used in a different task, segmentation model is 
computationally much less efficient, compared to object 
detection model. 
SphereNet (Coors et al., 2018) is a neural network designed to 
handle spherical data, such as panoramic images or 360-degree 
camera outputs. Unlike traditional CNNs that struggle with 
distortion when projecting spherical data onto a flat surface, 
SphereNet processes data directly on the spherical geometry, 
preserving spatial features effectively. It achieves this by: 

1. Spherical sampling: Adapting convolutional filter 
sampling positions to the spherical surface. 

2. Distortion invariance: Maintaining spatial accuracy 
without planar projection distortions. 

3. Spherical convolution: Applying filters that align 
with spherical coordinates. 

The limitation of the SphereNet method is related to the fact that 
not all the fisheye images (equidistant and stereographic) follow 
exactly the spherical projection models, thus require further 
development.  
FisheyeDet (Li et al., 2020) is an end-to-end object detection 
network also designed for fisheye images. It use an adaptive 
representation method, “distortion shape matching”, that 
accounts for fisheye distortion characteristics and may involve 
transformations or models that normalize distortion, making 
object features more recognizable and the so called “no-prior 
representation method” that allows the model to automatically 
adapt to the characteristics of the images during training without 
the need for predefined projection models, enabling more flexible 
detection across different types of fisheye images. . The two 
methods combined allow the network adaptively extract 
distortion features without prior knowledge of the lenses and 
corresponding calibration, in addition, match the quadrilateral 
bounding boxes to the distorted contour of objects. This study 
addresses the lack of public fisheye datasets; thus, they created a 
dataset from Pascal VOC dataset. 
FisheyeYOLO (Rashed et al., 2022) further explored the 
annotation shapes, including standard box, distorted box, ellipse, 
polygon and curved box. The proposed model and method greatly 
improved relative accuracy. 
 

3. Methodology 

The experiments were conducted in the university department's 
office (building 15, Leonardo Campus, Politecnico di Milano, 
Milan, Italy) facility with the main goal to evaluate the efficacy 
of object detection models from fisheye photos in identifying 
common office amenities.  
 
3.1 Data acquisition 

The images dataset was acquired using ATOM-ANT3D (Perfetti 
et al., 2024; Elalailyi et al., 2024).It is a fisheye multi-camera 
visual mobile mapping system that houses five Megapixels (2448 
× 2048) global shutter cameras equipped with ultra-wide fisheye 
lenses with a 190° field of view (FOV) and 2.7 mm focal length. 
This always guarantees a quasi-360° field of view. The 
acquisition was performed by the operator acquiring 6008 grey 
scale images per camera. To ensure proper format consistency 
with used open-source libraries (e.g. mapping functions in 
OpenCv), the cameras were calibrated using a wide 2D plane 
calibration with a of size 84.1 x 118.9 cm checkerboard that 
accommodates for the wide FOV. The OpenCV calibration 
model is a relaxed Kannala-Brandt model specifically used for 
fisheye images where the camera intrinsics parameters are 
represented by the principal points (cx, cy) and the focal lengths 
(fx, fy) and radial distortion coefficients (k1, k2, k3, k4). 
A minor phone images dataset is collected with iPhone 13 mini. 
Uses camera setting ƒ/2.4 aperture and 120° field of view, focal 
length at 13mm. The camera application automatically applies 
lens correction to the images (L. Perfetti et al., 2024). The phone 
dataset comprises 470 images with colour. These phone photos 
are distorted and reshaped to match the size of the Ant3D camera 
fisheye images. 
 
3.2 The goal and method 

The raw fisheye images are undistorted into rectilinear distortion-
free images (see Figure 3) using the calibrated distortion 
parameters of each camera. We therefore obtained two datasets. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024 
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-491-2024 | © Author(s) 2024. CC BY 4.0 License.

 
492



 

  

The first is composed of the original images with fisheye 
projection, and the second of the undistorted images that have a 
calculated rectilinear projection. 
The original Fisheye images are manually annotated using both 
normal boxes and multi-polygon segmentation. The object 
detection models, trained and evaluated on them, serves for the 
comparation with the object detection process on the converted 
image. 
The undistorted images are manually annotated using two 
different object representation forms: normal boxes and 4-sided 
polygons. The annotation done on them images will be re-
converted to fisheye version to make a comparation with the 
ground truth annotation. The objective is to verify whether the 
listed annotation method accurately maps the objects, ensuring 
they are fully contained while minimizing the inclusion of 
excessive irrelevant information. The annotation shapes in fact 
are described by the vertex points. They change position if 
applies transformation for the distortion. Hence the converted 
annotation could be less efficient in representing the object than 
before. The experiment examines the effectiveness of geometric 
shape for converted fisheye annotation. 
Moreover, if the performance of the tested model, trained on the 
dataset with the least efficient annotation, will result to be 
comparable to that of the standard model trained on dataset F1 
(annotated using the traditional method), it would validate the 
viability of the suggested technique. 
In the end, we obtained 8 versions of annotation (as listed in 
Table 1). In the F set the annotations are directly made on fisheye 
images both using rectangular standard box (F1) and 4-sided 
polygon shape (F2). They are trained and used as control group; 
R is the set of undistorted images; fisheye images that were 
undistorted and used as rectilinear ones. The image belonging to 
the subsets of R are annotated both with standard box (R1) and 
the quadrilateral polygon (R2) and then re-converted to their 
fisheye versions (from R1 with box annotation to R3 with box 
and R4 with polygon, and from R2 with polygon to R5 with 
polygon). The dataset N contains collected photos from mobile 
phone, annotated with quadrilateral polygon, these phone images 
as well as their annotations were converted to simulated fisheye 
camera dataset. (see Figure 1). 
 

 
Figure 1. Scheme of elaborated datasets. 

 

Annotation 
dataset Ser. Repres. 

shape 
Convert to 

fisheye vers Test set 

Fisheye 
F1 Std. box - F1 

F2 Qdl. poly - F2 

Rectilinear 

R1 Std. box - R1 

R2 Qdl. poly - R2, F2 

R3 Std. box Std. box R3, F1 

R4 Std. box Qdl. poly R4, F2 

R5 Qdl. poly Qdl. poly R5, F2  

Phone Photo N Qdl. poly Qdl. poly N, F2 

*with Std as standard, Qdl as Quadrilateral 

Table 1. Datasets and annotation type 
 

  

  
Figure 2. Images examples used in the tests: up, photo shoot 

with Ant3D and its undistorted version; down, 
image shoot with phone camera and its distorted 
version. 

 
The experiment includes following steps:  

1. Firstly, the image samples processing, include fisheye 
image data undistortion, phone image distortion using 
a Kannala-Brandt radial distortion model with 
k1=2 ,k2=1, k3=1 to simulate the effect of the used 
fisheye photos (see Figure 2). 

2. Then, images are annotated with standard box and 4-
sided polygon. Annotations in R1, R2 and N datasets 
will be converted to fisheye version, examining the 
coherency, proving the feasibility of annotation 
conversion. 

3. The detection models will be trained on all datasets, 
with datasets F1 and F2 used for ground truth 
comparison. The models will be trained and tested on 
the R datasets to evaluate performances, training time 
to convergence, and inference speeds. This step aims 
to assess the effectiveness of annotating rectilinear 
images and converting them to fisheye datasets, 
compared to training directly on the original fisheye 
images. 
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4. Last, the model will be trained upon dataset N with 
phone images, testing its behaviour on F2 dataset, as a 
final evaluation of the annotation conversion approach. 

 
3.3 Dataset and category 

The annotation categories were derived from the BIM model of 
the building resulting in 4 classes and corresponding 7 subclasses 
(see Table 2). 
 

Class Sub-Classes Quantity 

Fire Alarm Devices 
Smoke Detector 86 

Alarm Button  25 

Antifire Protection Fire Extinguisher 39 

Illumination Celling Light 424 

Electric Equipment 
FM Power Point (Plug) 572 

Command Point (Switch) 274 

Security Equipment Security Camera 44 

Table 2. Classes, sub-classes and instance quantities 
 
3.4 Representation shape 

 
Figure 3. Different annotation shapes are mapped on the same 

undistorted image to understand which shape 
preserves most information after the conversion to 
fisheye 

 
FisheyeYOLO and WoodScape dataset have provided analysis of 
different annotation shapes: including normal boxes (represented 
by 4 parameters: x, y, w, h), oriented Box (x, y, w, h, ɵ), Ellipse 
(x, y, w, h, ɵ), curved boxes (x, y, r1, r2, ɵ1, ɵ2), polygons (x1, y1, 
x2, y2, x3, y3, x4, y4 or r1, α1, ɵ1, r2, α2, ɵ2, … ) as annotated on our 
example in Figure 3. Here the mean Intersection over Union 
(mIoU) is used to evaluate how accurately different annotation 
shapes capture object contours, considering instance 
segmentation masks as ground truth. In these studies, focused on 
the vehicles category, the standard box (4 parameters) achieves a 
peak performance of approximately 51.35% mIoU. Alternative 
shapes, such as curved boxes, oriented boxes, and ellipses, 
improve mIoU by only about 4.1%. A 4-sided polygon reaches 
70.2%, while a 24-sided polygon achieves roughly 85%. Training 
the model on these shapes shows incremental improvements over 
the baseline YOLOv3 model, with curved boxes, oriented boxes, 

ellipses, and 24-sided polygons yielding performance gains of 
1.8%, 2.0%, 3.8%, and 13.5%, respectively. 
In our tests, the categories are shifted to university department's 
office facilities. The interior scenes and office categories have 
significant differences with the street scenario, where tests 
demand recognition at closer distance and of smaller objects. The 
variety of objects causes an essential change to the representation 
capacity of annotation shape. As an initial test for the conversion 
of annotation, normal box and 4-sided polygon are selected for 
image annotation, as they typically represent the difficulties in 
the data processing. 
  
3.5 Dataset elaboration: annotation and conversion 

The test utilizes the OpenCV to deal with the conversion of 
images and annotations. It involves the Kannala-Brandt model.  
to generate the transformation maps based on the known intrinsic 
coefficients of the camera). The transformation maps (mapx and 
mapy ） are two 2-dimensional matrixes that indicate a 
geometrical transformation of 2D images, pixel by pixel (see 
Figure 4), enabling swift and accurate conversion of images and 
annotations by defining how pixel coordinates in one image are 
mapped to new locations.  
These maps are used both to un-distort fisheye images and to do 
the reverse process to re-apply the distortion to the image, as 
demonstrated in Figure 4. It is to notice that the undistortion 
process cause a loss of information along the image border and 
the reverse process which transforms the undistorted image back 
to its original view, at the contrary (row 1, line 3 in the Figure 5), 
highlights a loss in resolution in the image centre. This is 
important to be taken in consideration positioning and converting 
the annotation polygons. 
 

 
Figure 4. Transformation maps plotted on the fisheye images. 

The mapped green points are subsampled pixel 
index, the undistorted image will be generated by 
aligning them in a regular orthogonal grid. 

 
In fact, the conversion of annotation also uses the transformation 
maps. The representation of oriented boxes and 4-sided polygons 
follows the same conversion logic, which involves identifying 
and repositioning all four vertices. Because of the information 
reduction in the image centre, occasionally happens that the 
coordinates of the vertexes are not indexed in the maps, therefore 
required to be relocated to the closest neighbour in the maps.  
Moreover, the conversion of the bounding box leads to a 
reduction of efficiency of the representation shapes when these 
annotations are located at the periphery. In the case from fisheye 
to rectilinear ones, vertexes located outside the vision boarder can 
be problematic. This is because the conversion cropped only the 
central part of the image, when vertexes of annotations are 
located outside the image frame, it becomes difficult to preserve 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024 
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-491-2024 | © Author(s) 2024. CC BY 4.0 License.

 
494



 

  

the original annotation. In the case of rectilinear to fisheye ones, 
on the other hand, rectangular shapes can be compressed and 
lowered the validity of annotation. Since this paper is aimed at 
leveraging the annotations from rectilinear images, only the 
deformation of annotation shape is relevant. 
A noteworthy image preprocess involved in this paper is related 
to the annotations converted from rectilinear images to be used 
in fisheye object detection: the rectilinear images have no 
distortion and result as cropped respect to the original fisheye 
images. Consequently, their borders have different shapes and 
content. 
 

 
Figure 5. Images comparation of normal box annotation and 

conversion. The green boxes mark out original 
annotation. By finding the corresponding location of 
the up-left and down-right points from the original 
annotation boxes, the red ones (converted) are 
mapped.  

  
Using the original fisheye images and the converted annotations 
to train the model, the statistics will be confused where extended 
part of the object emerges outside the annotation areas. Given 
that using transformation maps to double convert the images 
(undistort to rectilinear and distort them back to fisheye) will 
leads to unnecessary pixel information loss. In this test is utilized 
two additional transformation maps to mask the original fisheye 
images to match the boundary that a back-distorted undistorted 
image will have (see Figure 6).  
 

 
Figure 6. Example of mask for the converted annotation. 

Noticeable is that without the mask the non-
annotated ceiling light will cause confusion. 

 
3.6 Model used 

Considering inference time, accuracy, and model complexity, 
this study employs YOLOv5 for standard box detection and its 
customized variant, Yolo-ArbV2, for polygon detection. YOLO 
architectures are recognized for their superior speed and 
convergence time compared to the "two-step" RCNN approach, 
albeit with a trade-off in precision. 
The model architecture consists of two primary components: the 
backbone and the detection head. The backbone, functioning as a 
feature extractor, can vary depending on the application but 
typically employs CSP-Darknet53, an optimized version of 
Darknet. This backbone includes four C3 blocks (CSP bottleneck 
blocks with three convolutional layers), eventually output 
through an SPPF (Spatial Pyramid Pooling – Fast) layer. The 
outputs from the first two C3 blocks are concatenated and fed into 
the detection head. 
The detection head in YOLOv5 processes outputs from the last 
three C3 blocks. It uses a concatenation mechanism to produce 
bounding boxes (x, y, w, h), confidence scores, and class 
probabilities. This design enhances feature utilization across 
multiple scales, improving detection performance. 
Yolo-ArbV2 (RhineAI-lab, 2021) is a customized version added 
extra output for the vertexes (x1, y1, x2, y2, x3, y3, x4, y4) in 
addition to boxes, confidence and probabilities of each class. This 
model calculates Euclidean distances of all vertexes for the loss 
without using the IoU for polygons. 
To evaluate the model behaviour, 10% samples are randomly 
selected from the overall dataset for the evaluation, using 
precision, recall, mIoU. 
These results will suggest how well the model is fitted to the 
training set and, for similar scenarios, how the performances are 
in terms of accuracy. The representativity of the training and 
evaluating sets is namely their similarity with reality and it has 
also to be considered in the examination phase.  
 

4. Experiment 

4.1 Standard box annotation in fisheye object detection 

The initial test is conducted with the easiest but most popular 
annotation representation shape, the standard box. After the 
annotation, the YOLOm5 model were trained upon subsets F1, 
R1 and R3. Then the model which was trained on undistorted 
images is tested on the evaluation part of F1 dataset (see Table 
3).  
The detection models reached convergence at around 20 epoch 
and achieved optimal results on the 10% sample evaluation set 
(with total amount of samples of 1500 images). It’s expectable 
that the model for fisheye images with standard bounding box 
(F1) has relatively lower value of evaluation. It can be reasoned 
that objects at periphery are largely deformed, and the standard 
box has limited efficiency for mapping the object. Thus, the 
redundant neighboring information confuses the model. 
Although the model trained on undistorted images (R1) produced 
satisfactory results on its evaluation set, its performance declined 
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when applied to the fisheye image evaluation set (R1-F1, see 
Figure 7, left). 
The R1 dataset consists of image samples which were undistorted 
from F1, which facilitates the prediction of objects that are not 
significantly deformed. Therefore, the objects located close to the 
optical center of the image naturally have higher possibility to be 
recognized. However, in the F1 dataset, objects located far from 
the center are highly deformed, the image of objects is curved 
and compressed, which might not be easily learned by the 
detection model. In addition, at the periphery of the fisheye 
images, the illumination is lowered due to vignetting and optical 
falloff. Thus, the peripherical objects are less possible to be 
recognized by the model learned from undistorted images where 
most of the objects are better illuminated. 
In the case of the model that is trained on R3 (see Figure 7 ,right) 
although the training is based on image samples with barrel 
distortion, the annotation representations are largely deformed. 
The training result appears to be satisfying. During the training 
process, the model is fed with much less redundant image 
information. However, the deformed annotations boxes also 
exclude essential information, hence the performance upon full 
fisheye images is witnessed dropping, especially related to the 
mean precision with criteria of IoU. 
 

Train-val set Convert. Prec. Rec. 
mAP_IoU 

0.5 0.5:0.95 

F1-F1 - 0.894 0.932 0.925 0.436 

R1-R1 - 0.934 0.953 0.955 0.543 

R1-F1 - 0.601 0.274 0.282 0.124 

R3-R3 Box to box 0.859 0.946 0.967 0.665 

R3-F1 Box to box 0.486 0.185 0.149 0.049 

Table 3. Evaluation matrix of standard box test 
 

  
Figure 7. Examples of R1-F1 and R3-F1 detection results 

 
4.2 4-sided polygon annotation in fisheye object detection 

The following tests are conducted with an efficient annotation 
representation shape, the quadrilateral polygon. After the 
annotation, the Yolo-ArbV2 model was trained upon subset F2, 
all other subsets of R and dataset N. Then the model which was 
trained on undistorted images is tested on the evaluation part of 
F2 dataset (see Table 4).  
The detection models reached convergence at around 40 epoch 
and achieved optimal results on the 10% sample evaluation set 
(with total amount of samples at 1600 images). The model for 
fisheye images with quadrilateral polygon (F2) has slightly 
higher value of evaluation than that for rectilinear images. The 
objects at periphery are deformed but the straight lines of polygon 
allow mapping the object following the radial direction in certain 
degree. Thus, it limited the neighboring information that confuses 
the model in rectilinear cases.  

As expected, the performances of models trained on undistorted 
images on fisheye image evaluation set F2 decrease. Among all 
the methods, the model trained on R5 dataset presented the most 
satisfying results, outperformed the model that is trained on R2, 
the polygon annotated on undistorted images. Whilst dataset N 
contributed to the results almost comparable with that of R2.  
From the results dataset R2 contributes to (see Figure 9 column 
2) most objects can be recognized well. In most cases, the 
polygon includes the object well, but the shape matches the 
object boundary in a limited degree. To locate correctly the 
vertexes of the polygon to the best fitting place turns out to be a 
challenge. The recognition still goes wrong at the peripheries 
because of the lack of corresponding training samples. 
The model trained on dataset R4 was evaluated on dataset R2 
(see Figure 9 column 3). In the prediction results, most objects 
can be recognized well. The polygon detections map out the 
objects, but not efficiently. Their shapes appear to be pressed in 
the direction of optical center, pushing outwards 2 other vertexes 
away from the object. This detection behavior can be reasoned 
from the fisheye conversion of box annotation. 
 

Train-val set Convert. Prec. Rec. 
mAP_ 

0.5 0.5:0.95 
F2-F2 - 0.930 0.889 0.948 0.558 
R2-R2 - 0.836 0.928 0.928 0.629 
R2-F2 - 0.673 0.472 0.545 0.242 
R4-R4 Box to poly 0.890 0.936 0.952 0.561 
R4-F2 Box to poly 0.369 0.146 0.196 0.068 
R5-R5 Poly to poly 0.884 0.894 0.912 0.558 
R5-F2 Poly to poly 0.693 0.569 0.629 0.319 
N-N Poly to poly 0.811 0.819 0.858 0.548 
N-F2 Poly to poly 0.444 0.335 0.312 0.127 

Table 4. Evaluation matrix of standard box test 
The model trained on dataset R5 obtains satisfying results on 
dataset R2 (see Figure 9 column 4). Not only are the objects 
recognized well, but the polygons also match the object profiles 
properly even with the distortion effect. Although it shares 
common defects with the others, it still cannot overcome the 
recognition difficulties between the wires and the fire 
distinguisher. The recognition can go wrong at the round 
periphery, the coverage of the object is not optimal. 
The test on phone dataset N (see Figure 9 column 5) provides a 
promising conclusion to the proposed approach, especially 
considering that it only contains 1/6 sample amount of the others. 
The polygon-to-polygon conversion approach largely avoids the 
distortion effects from the optical center of the image. The 
detector recognizes well the objects, while limited on locating the 
corresponding vertexes properly. Providing a comparable 
number of samples, this approach should be feasible and efficient 
in practical cases. 
 
4.3 Discussion 

The challenges of object detection on fisheye images primarily 
stem from distortion effects, which intensify as image content 
moves away from the optical center toward the periphery. This 
distortion complicates object representation, particularly when 
using annotation shapes with geometric limits compared to 
segmentation. Another non-neglectable fact is the vignetting and 
optical falloff. The cropping procedure for the rectilinear images  
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Figure 8. Example of detection results using quadrilateral polygon 

 
and the lens correction canceled the affected image content, 
making it more challenging to leverage rectilinear images for the 
detection. Standard box annotations, while simple, introduce 
significant redundancies but fail to accurately represent objects 
in distorted regions. The conversion of standard boxes to neither 
box nor polygon improves the accuracy of detection model. 
Computationally efficient as it is, the training process of the 
model takes relatively short time. Specifically, the model requires 
14.8 ms for inference and 1.7 ms for Non-Maximum Suppression 
(NMS) per image when using CUDA on a Quadro P4000. 
Conversely, polygon-based annotations, which provide a more 
flexible shape representation, help mitigate distortion effects. 
This method is reliable on representing regular objects in 
rectilinear images. The conversion of the polygons is slightly 
affected by the distortion, maintaining satisfying representational 
efficiency. The computational cost for training the model comes 
at least 5 times compared to that of a standard box detector. It 
takes 51.8ms for inference, 1.5ms for NMS per image using the 
same device. 
Evaluating the optimal annotation shape is inherently complex 
due to the trade-offs between geometric precision and 
computational cost. Annotation shapes with more parameters, 
such as 4-sided polygons (8 parameters), offer better object 
containment and improved performance in distortion-corrected 
models. This was confirmed in the results, which showed that 
polygon-based annotations outperform standard boxes, 
particularly in regions near the optical center, while maintaining 
robustness in highly distorted peripheral areas. 
Ultimately, while standard box annotations remain popular due 
to their simplicity and low computational cost, 4-sided polygon 
annotations strike a balance between efficiency and accuracy. 
They provide superior shape representation without excessive 
computational overhead, making them a reliable choice for 
handling distortion in fisheye image object detection. 
 

5. Conclusion 

This paper discussed the annotation shape representation and its 
efficiency in accurately including objects, pursuing an approach 

to convert the knowledge from rectilinear domain to fisheye 
images domain. The challenge of fisheye object detection lies in 
controlling the annotation representativeness of peripheric image 
content in the training set preparation procedure, considering the 
exponentially increased distortion affect. The vignetting and 
optical falloff further complicate the detection. 
Standard bounding boxes, while computationally simple, are 
inefficient in representing distorted objects, especially near the 
image periphery. Quadrilateral polygons, on the other hand, 
provide a better fit due to their adaptability, though they involve 
increased computational complexity. 
For the standard box detection, the test shows that rectilinear 
training set can already produce satisfying results upon the 
fisheye test set. The conversion from standard boxes cannot 
contribute to better detection results. Regarding the polygon 
detection, however, the test results demonstrate that converting 
quadrilateral polygons improve the performance upon fisheye 
test set, by 8% of mean average precision. The phone photo tests 
provide promising results of fisheye object detection task, using 
the model trained with converted annotation on limited number 
of normal images. It proves the feasibility and efficiency of the 
proposed approach. However, the reliance on YOLOv5 and its 
modified version tailored for quadrilateral polygons limits the 
generalizability of these findings. 
Future work should explore alternative annotation shapes such as 
oriented bounding boxes and ellipses, which, despite their more 
complex conversion processes, could offer a practical trade-off 
between operational simplicity and computational efficiency. 
Additionally, testing the approach on more advanced object 
detection models specifically designed for polygon annotations 
would provide deeper insights into the scalability and robustness 
of the proposed annotation strategy. This could lead to improved 
detection performance across a wider range of fisheye image 
applications. 
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