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Abstract

Mobile and handheld laser scanners document scenes in an economical manner, but the data they acquire are often noisy, of low
resolution, unevenly distributed, and feature voids within the scanned scene. These characteristics challenge such applications as
feature extraction and 3D modeling when processing the raw pointset. To date, point cloud denoising and consolidation (address of
distribution and void regions) have been treated independently despite their complementary nature and their mutual dependence on
the underlying surface representation. We argue that if treated jointly, richer shape context features can be learned and an improved
enhancement framework can be derived. Accordingly, we formulate the shape context description as a joint contribution by both
denoising and consolidation, within an end-to-end framework. To this end, we introduce densely packed graph convolution layers
to extract contextual information, allowing to query points offset to the underlying surface and to compensate for the structural
loss. We demonstrate how the commonly used L2-driven loss functions generate non-smooth output and volume shrinkage, and
alleviate this by ones that mitigate the noisy outcome, repair voids, and improve point density distributions. Performance analysis
on benchmark datasets demonstrates how we outperform state-of-the-art solutions, produce high-fidelity outcomes, and improve
reconstruction-based tasks in real-world setups.

1. Introduction

Low-cost mobile and handheld portable laser scanners (MLS &
PLS) provide means for rapid 3D modeling of large-scale sites,
offering an economical solution for numerous modeling-related
challenges (Conti et al., 2024; Tupinambá-Simões et al., 2024).
Notwithstanding, the resulting point clouds offer a sparse and
noisy representation of the underlying 3D surface and feature
an excessive amount of outliers, compared to their stationary
terrestrial laser scanner (TLS) counterparts (Wang and Feng,
2016; Ren et al., 2022; Li et al., 2024). In addition, due to data
acquisition characteristics, the pointsets are usually unevenly
sampled and feature void regions within the scanned scene
(Zhang and Filin, 2022; Xia et al., 2023). This reduced data
quality seriously hinders the development of downstream tasks,
affecting applications such as primitive estimation, semantic in-
terpretation, rendering, and architectural modeling (Cui et al.,
2019; Xu et al., 2022; Antova, 2024).

The literature shows that point cloud denoising and consolid-
ation (addressing uneven distribution and existence of void re-
gion), are traditionally approached as two independent tasks,
where the former involves computing a per point offset to the
actual surface, and the latter predicting coordinates of miss-
ing points in sparse sampled regions and voids. Considering
denoising, common solutions introduced the underlying sur-
face as a constraint in forms of the, L1-median operator, graph
Laplacian framework, and surface proximity-based weighting
(Huang et al., 2013; Sun et al., 2015; Digne and De Franchis,
2017; Mattei and Castrodad, 2017; Dinesh et al., 2020). More
recently deep learning (DL) based approaches predicted the dis-
placement through an Euclidean multi-scale feature concatena-
tion, or by learned global features via pooling (Pistilli et al.,
2020; Rakotosaona et al., 2020; Luo and Hu, 2021; Edirimuni et
al., 2023b). Analysis shows that the learned surface description
neither handles high noise levels nor the presence of outliers,
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though attempts have been made to adapt to unknown noise
levels (e.g., Pistilli et al., 2020). The reliance on Euclidean
measures also led to failure near void regions, or when the point
density varied (e.g., Liu et al., 2023). To address uneven density
and voids, DL-based solutions proposed concatenation and rep-
lication of multi-scale per point features followed by point co-
ordinate prediction, or by predicting coarse anchor points in the
missing region followed by detail refinement to best-fit ground
truth (Yu et al., 2018; Yuan et al., 2018; Li et al., 2021; Cui
et al., 2023). While proving successful in some applications,
they required noise-free data input and corresponding class la-
bel priors (Yu et al., 2021). They were also challenged by local
structural variations of missing regions, often creating spurious
content and noisy output.

In practice, real-world data, as MLS & PLS provide, are noisy
and consist of high outlier rates, all while featuring voids and
uneven point distribution. Our analysis demonstrates how stan-
dalone denoising models lead to volume shrinkage around in-
complete regions, only to exacerbate voids and structural in-
completeness (Sec. 4). Conversely, using data consolidation
models often leaves residual noise, while a sequential applic-
ation of the two tends to introduce further artifacts (Sec. 4).
Addressing this, we propose in this paper to treat these two
facets simultaneously as a single task. Performance analysis
shows how our framework sets state-of-the-art results in denois-
ing and consolidation when tested on benchmark data and ap-
plied to real-world scans. The contributions of our framework
are: i) a joint denoising and consolidation neural framework
that also filters outliers. As the paper demonstrates both tasks
can be learned jointly through a single shape context represent-
ation; ii) improved loss modeling, which emphasizes smooth
and complete outcomes rather than only predicting a per-point
operation; iii) computational effective formulation that reduces
the feature extraction and loss evaluation computational com-
plexities; and iv) improved outcome compared to an individual
application.
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2. Related Work

Pistilli et al. (2020) were of the first to study DL-based 3D
point cloud denoising solutions. The authors utilized a dynamic
graph convolution network (DGCNN, Wang et al., 2019) fol-
lowed by the prediction of the noise-free coordinates. Minim-
ization of an L2 loss with respect to the ground truth, has led
to a blur of geometric details. Rakotosaona et al. (2020) de-
noised each point independently and detected outliers using the
PointNet architecture (Qi et al., 2017). Offsets to noisy points
were predicted iteratively, using a similar loss as in Pistilli et
al. (2020). Realizing that the predicted offsets are imprecise,
Luo and Hu (2021) modeled the noise distribution and identi-
fied the clean surface as the region of highest density. During
training, the network learned a direction per point towards high-
density regions, but during testing the displacement was iterat-
ive. Hence, inexact vector predictions led to slow convergence
and long inference time. For faster convergence, Edirimuni et
al. (2023b) replicated their denoising module four times where
weights were learned per module. Their network was DGCNN
based, with each intermediate result being supervised by ground
truth contaminated by reduced levels of noise until becom-
ing noise-free. Here again, corrections were performed inde-
pendently through minimization of the L2 norm. Edirimuni
et al. (2023a) used the PointNet architecture to jointly denoise
points and estimate normals. Their approach was patch-based,
where identical features were learned for all central points of
all patches under different noise levels. This was followed by a
multilayer perceptron (MLP) predicting the normal and filtered
coordinates per central point. The prediction was, again, L2-
based, and training was slow as each point was processed in-
dependently. To preserve sharp features, Liu et al. (2023) ad-
ded precomputed normals by the principle component analysis
(PCA) to the input data. Here again, a patch-based network
was utilized, where the normals helped identify relevant neigh-
bors for the center point during feature extraction. This was
followed by normal correction and point displacement for the
center point. This patch-based approach is memory-intensive
and sensitive to the quality of the estimated normals. Unreli-
able computed normals, as with data featuring excessive levels
of noise, led this framework to fail in securing clean results.

A common, though implicit, assumption of these denoising
frameworks is of an even point density. Hence, they tend to
suffer from volume shrinkage and distortion when facing miss-
ing regions in the data (Edirimuni et al., 2023b). To enhance
the point density distribution and fill in voids in sparse scans,
upsampling and completion methods have been proposed for
point cloud consolidation. Yu et al. (2018) concatenated per-
point features at multiple Euclidean scales and replicated them
r times to predict a dense pointset. A combination of an L2

loss with respect to the ground truth, and a point cloud uni-
formity loss, ensured dense and even output, but the correlation
between the replicated features has led to an over-smooth out-
come and loss of details. Li et al. (2021) used DGCNN based
prediction strategy where a coarse-upsampled pointset ensured
surface coverage, which was then refined by predicting offsets
to better fit the ground truth. This framework required noise-
free input with a small number of voids, making it less useful
with actual data. To address structural loss for shapes from the
same class, Yuan et al. (2018) generated a coarse pointset as an
initial shape approximation, and refined it by deforming a local
2D grid around each coarse point to produce a detailed out-
put. Supervised by the Chamfer distance to the ground truth,
both the coarse and refined predictions discarded the original

observations and retained noise. Liu et al. (2020) utilized 16
surface decoders to complete separate parts of the shape, com-
bined their prediction through minimum density sampling, and
concatenated it with the original pointset. A minimization of
the Earth mover’s distance (EMD) with respect to ground truth
data facilitated noise reduction, but the model’s reliance on a
fixed number of decoders limited its capacity to handle broader
scenes. Yu et al. (2021) introduced a transformer to improve the
completion feature extraction, where a sparse set of points from
the original pointset and its features, learned through graph
convolution, acted as the transformer input. Following Yuan
et al. (2018), the network predicted a coarse pointset and re-
fined it by learning local grid deformation. Though effective on
synthetic datasets, the dependence on paired complete ground
truth for training impeded their application to real-world scans.
Cui et al. (2023) addressed this dependence by introducing a
self-supervised training framework that as input masked ran-
dom regions of partial scans and predicted the complete scan.
To ensure smoothness, it derived normals from the completion
prediction and minimized the cosine distance between neigh-
bors. The training was memory-intensive due to the PCA re-
lated computations of the local covariance matrices.

To sum up, the review shows that denoising approaches tend
to ignore the effect of data incompleteness and uneven distri-
bution. Ignoring their presence leads to volume shrinkage and
structural incompleteness (Luo and Hu, 2021; Edirimuni et al.,
2023b). Conversely, using current consolidation methods re-
quires prior information about object parts and class labels to
complete missing observations, which are always challenging
to obtain (Yuan et al., 2018; Yu et al., 2021). Though using
noise-free data as input, these consolidation applications create
spurious structures and non-smooth output, limiting their ap-
plication to P- and MLS scans which are noisy and sparse (Li et
al., 2021; Cui et al., 2023). It can be assumed that both enhance-
ment methods can apply sequentially, but we show that such a
framework is not optimal. Therefore, we propose to learn an un-
derlying surface representation that jointly treats outlier, noise,
and data consolidation in an end-to-end framework.

3. Methodology

Our modeling considers the following point cloud formation
representation:

P ′ = {pi + di}pi∈P ∪O, (1)

where P ′ is the observed noisy point cloud, P is the set of per-
fect surface samples, such that pi ∈ P lies on the scanned sur-
face, di ∈ D is the offset from the surface due to ranging noise,
andO is the set of outlying points. To account for shape incom-
pleteness due to the acquisition process, we assume P ′ features
a structural loss. Our proposed framework aims to yield a clean
surface, P , through denoising and data consolidation that yields
added points to complete the shape.

3.1 Point Representation Encoder

To share information between the noise and outlier treatment
and the data consolidation, we build upon our earlier dynamic
graph convolution-based framework (Zhang and Filin, 2022),
which models long-range contextual relationships and extracts
shape description per point. The shape context description is
obtained through a stack of densely connected graph convolu-
tion layers, forming a shared encoder (Fig. 1). Our dense block
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Figure 1. Overview of the proposed joint denoising and consolidation network for mobile laser scan.

Figure 2. Point representation encoder.

Figure 3. Outlier detection and denoising module.

convolves a point feature, fi, with its neighbors, fj ∈ Ni,

eijm = ReLU
(
θm · (fj − fi) + φm · fi

)
, (2)

whereNi is a set of neighbors of the i-th point, and θm and φm
are MLPs. The final activation xim at the m-th layer is:

xim = max
j∈Ni

MLP
(
MLP(eijm) ‖ eijm

)
, (3)

To avoid vanishing gradient and over-fit of local connections
due to stacking within blocks, each MLP’s output is passed
to all subsequent MLPs via skip-connections (Fig. 2). Also,
between blocks, point features produced by each block are fed
as an input, again, through skip-connections, to all blocks that
follow. The skip-connections ensure gradient flow and because
of the compression performed at each block end, they signific-
antly reduce the model size (Fig. 2). For global context and
over-fitting avoidance, a self-attention unit, which refines the
densely connected blocks’ output is added. The learned output
per point feature (shape context) is denoted Fi.

3.2 Denoising and Outlier Filtering

Using an MLP whose input is Fi, we classify each point as
either an outlier or inlier, Oi = MLP

(
Fi
)
, where Oi is an

indicator. Fi is concurrently used to estimate offsets for the

outlier-free set, P̃ ′ = P ′ \ O, by predicting displacements, di,
to the true surface (Fig. 3):

di = Score
(
Fi
)
, (4)

where Score(·) is an MLP as in Luo and Hu (2021). Using di,
we compute a noise-free pointset, P̃ . To ensure consistent per-
formance, we add during training to the clean sampled points
varying levels of random Gaussian, Laplace, and non-uniform
noise. Notably, the tendency of volume shrinkage around voids
is addressed by the consolidation module which we now de-
scribe.

3.3 Data Consolidation

To consolidate the data by addressing unevenly sampled regions
and voids, our decoder learns a mapping from the local 2D unit
grid, [0, 1]2, centered around each data point, to the 3D sur-
face. This mapping is performed by an MLP, which mimics
the morphing of the 2D square into a local 3D surface. This, is
done by creating r replica of Fi, and concatenating independ-
ently, the position of the 2D unit grid points, gjxy, j = [1, r]:

P ijc = MLP
(
Fi||gjxy

)
, ∀j = [1, r] (5)

where P ijc is a predicted point, and P ic ∈ Pc is the set of com-
pletion predictions around each point. This upsampling is sup-
plemented by a designated loss (Sec. 3.4) responsible for the
point repositioning to consolidate the data. Note that the loc-
ality of our grid morphing facilitates using only a single MLP,
rather than the conventional two folding operations (Liu et al.,
2020; Cui et al., 2023).

Existing consolidation models train their network by pairing
scans from a fixed set of views of the ground truth data. This
setting cannot represent the actual structural loss from the
sampling process (Yu et al., 2021). Here, we adapt to informa-
tion loss under different views, by randomly dropping observa-
tions from the noisy shape to obtain the input P ′ to our network.
We use the farthest point sampling (FPS) to sample M points
as region centers C = {ci}Mi=1 from the complete shape. Then,
we gather the k-nearest Euclidean neighbors for each point in C
to obtain a region disk Gi = {p|p ∈ N ci

k }, where N ci
k denotes

the set of neighbors for ci. We partition the set of disks into two
groups, Grec, Gcom, with ratio r1 : r2, where Grec is the ob-
servable region for the network, andGcom is the group of points

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024 
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-499-2024 | © Author(s) 2024. CC BY 4.0 License.

 
501



Figure 4. Our data consolidation module.

Figure 5. Our loss compared with the P2C.

to complete. We force the network to generate a consolidated
shape Pc that preserves regions in Gcom.

3.4 Loss Design

Our predicted, noise-free consolidated shape, is the union of
the denoised point set, P̃ , and the consolidation prediction, Pc,
P̂ = P̃ ∪ Pc. To enable P̂ to approximate the underlying sur-
face, it is customary to employ the Chamfer distance (CD) as a
metric, but the CD tends to generate a noisy output (Liu et al.,
2020; Cui et al., 2023). Therefore, we introduce the EMD to
measure the network prediction:

LEMD(P̂ , P ) = minφ:P̂→P
1

|P̂ |

∑
p̂i∈P̂

||p̂i − φ(p̂i)||, (6)

where, P , is the ground truth, and φ is a bijective mapping func-
tion from the network prediction, P̂ , to P . As the computation
of bijective mapping is iterative, we also introduce here an effi-
cient approximation algorithm to obtain φ by solving the linear
assignment problem (Liu et al., 2020). The EMD forces the out-
put to have the same density distribution as the ground truth and
is thus more discriminative to the local details and the density
distribution. To measure the performance of the outlier detec-
tion, we use a cross-entropy loss that evaluates the labels in O:

LO = CrossEntropy(O, y), (7)

where y is the ground truth labels set. To secure the smoothness
of P̂ , we opt to minimize the Dirichlet energy, which measures
the stretch induced by the performed mapping, hence securing a
smooth map as the functional minimizer. The Dirichlet energy
minimization expression in the current discrete form becomes,

LD(P̂ ) =
∑

(p̂i,p̂j∈ξ(P̂ ))

||p̂i − p̂j ||2 (8)

where ξ(P̂ ) is the set of edges on P̂ from the k-nearest-
neighbors graph. It differs from the normal consistency eval-
uation (Cui et al., 2023), which is slow due to the cubic com-
plexity of normal evaluation and also exhibits instability (c.f.
Fig. 5). Compared to normals derived from second-order meas-
ures, our minimization is based on first-order ones, less sensit-
ive to prediction noise. Our final loss is a linear combination of
the individual losses L = LO + LEMD + LD .

4. Results

4.1 Dataset and Implementation

We test our model performance by the: PU-Net (PU, 40 shapes,
Yu et al., 2018) and PointCleanNet (PC, 10 shapes, Rako-
tosaona et al., 2020) benchmark datasets. We use the PU 20
shapes train subset and apply the Poisson disk to sample points
from the meshes with resolutions ranging from 10K to 50K
points (Yu et al., 2018). Before being fed into the model the
point clouds are partitioned into 1K points patches (as in e.g.,
Luo and Hu, 2021; Liu et al., 2023). To introduce structural
loss, we partition the input shape into non-overlapping disks
and randomly drop 20% of them. Following the convention,
during training the data is contaminated with Gaussian random
noise with standard deviations (std.) between 0.5 − 2% of the
shape’s bounding sphere radius. During testing, the Gaussian
noise std. ranged from 1 − 3% of the shape’s bounding sphere
radius.

Our real-world datasets consist of the widely used MLS Paris-
Rue-Madame database (Serna et al., 2014) that features com-
plex structures, outliers, and platform motion-induced noise.
As no ground truth reference data is unavailable, only qualit-
ative results are presented, in similarity to, e.g., Luo and Hu
(2021); Liu et al. (2023) and Edirimuni et al. (2023b). In ad-
dition a dataset featuring complex architectural and richly dec-
orative elements, and acquired by the GeoSLAM ZEB-REVO
handheld scanner, was used for testing. It is noisy with an ex-
cessive amount of outliers, of low-density, and uneven point
distribution.

Baselines and Metrics Our model is compared with state-
of-the-art quality enhancement approaches including the graph
Laplacian-based denoising (GLR, Dinesh et al., 2020), the
learning-based model, Score-denoise (Score, Luo and Hu,
2021), the completion model, P2C (Cui et al., 2023), and the
sequential application of the two models (Score + P2C). To
measure the model’s performance, we use the CD and point-
to-mesh distance (P2M), two common quantitative metrics. As
the point clouds size vary, we normalize the denoised results,
before assessment, into the unit sphere.

4.2 Model Analysis

Evaluation of our network performance against the baselines
demonstrates robustness even at the unseen noise levels of
3% (Fig. 6 & Table 1). Visual inspection of the complex
curved structure of significant voids, e.g., the icosahedron
and camel models, shows how the underlying structure be-
comes discontinuous, almost indistinguishable under heavy
noise. For missing data and under this level of noise, the
GLR collapsed and failed to provide denoising output. Quant-
itatively, our CD/P2M values are: 3.870/1.646 on the PU
dataset, representing 38.7%/42.8% improvement over Score
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Figure 6. Data quality enhancement of the PU & PC sets. Note our improved density distribution also revealing underlying surface.

Dataset Metric Bilateral Jet-denoising MRPCA GLR Score-denoise P2C Score & P2C Ours

PU CD (×104) 6.998 6.262 5.009 - 6.313 34.883 12.954 3.870
P2M (×104) 3.557 2.921 1.963 - 2.879 30.091 9.411 1.646

PC CD (×104) 8.296 7.650 6.502 - 5.908 37.398 15.808 3.811
P2M (×104) 2.393 2.227 1.676 - 2.311 23.892 7.962 1.614

Table 1. Comparison to state-of-the-art methods (c.f. text for references), CD and P2M values are factored by 104.

(6.313/2.879), and 70.5%/82.9% over their sequential applica-
tion (12.954/9.411). We conjecture that both approaches either
treat noise components as high-frequency features and thereby
leading to errors, or cannot compensate for the structural loss
on noisy input. As Fig. (6) shows, the Score, and P2C, failed
to repair voids and recover the underlying geometry, resulting
in significant residual noise. Even the sequential application,
Score + P2C, led to a completely noisy outcome. Notably, ap-
plying the reverse order, P2C + Score, has led to complete fail-

ure, due to the noisy data that the P2C could not handle. In
contrast, ours is designed to robustly capture geometric struc-
tures across varying noise levels and voids, effectively produ-
cing state-of-the-art results that closely match the ground truth.
Similar improvements were recorded on the PC dataset when
testing our network (Table 1).
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Figure 7. PLS datasets and study subsets colored by normals.

Figure 8. Consolidation results on subset #I.

Figure 9. Consolidation results, subset #II. Coloring by normals.

4.3 MLS and PLS Denoising

We demonstrate our network performance on two subsets of
the low quality PLS data (Fig. 7). Note the uniform point distri-
bution with the high fidelity surface representation it generates
on subset #I. Compared to the P2C – state-of-the-art consol-
idation model, the improvement is evident. This improvement
stems from the joint shape context representation of the under-
lying surface, embodying both denoising and completion facets.
Testing on the symmetric groin vault, a combination of the com-
plex curved surface and their intersections (Fig. 7, subset #II),
the GLR and Score either over-smoothed the data or created
voids after denoising. Ours, in contrast, denoised the pointset
while revealing the underlying surface features (Fig. 9). Solely
minimizing the L2 loss, as in the GLR and Score, has led to
blurred details and artifacts. Our joint enhancement form not
only denoised the data but also consolidated it in sparse areas,

Figure 10. Line-based reconstruction using raw scan,
score-denoise, and our results.

effectively recovering surface features and generating a uniform
point cloud distribution.

Contribution to downstream application Using the MLS
benchmark, we tested the contribution of our network for the
line-based reconstruction model by Lu et al. (2019). Applying
the model directly to raw MLS data led to erroneous recon-
struction that mirrored the scanning pattern rather than the un-
derlying geometric features (Fig. 10). Applying Score partially
restored some geometric entities. However, the overall recon-
structed structure echoed the significant noise levels in the data.
Our results demonstrate how we follow closely the definition
of building outlines, and enhance the quality of the reconstruc-
tion (Fig. 10). This is so due to more even density distribution
and recovering finer details through an effective consolidation
process.

5. Conclusions

Neural point cloud denoising and consolidation approaches
present promising solutions for enhancing data obtained by
low-cost scanners. In this paper, we presented a novel learning-
based framework that jointly addresses noise, uneven density
distribution, and structural voids to improve overall data qual-
ity for downstream applications. Through this joint formula-
tion, our network effectively captures robust surface descriptors
across varying noise levels, density fluctuations, and voids.
Through dynamic graph convolution, the network learns intric-
ate shape contexts, enabling noise-free structure recovery by
applying corrective offsets to noisy observations. For consolid-
ation, the network compensates for potential structural loss by
a local 2D-3D grid deformation around each center point, ef-
fectively filling voids. Our enhanced loss formulation promotes
smoothness by minimizing the Dirichlet energy and improves
density distribution by the EMD loss. Experiments on reference
benchmark datasets have confirmed the efficacy of our model
in both denoising and consolidation, also showing substantial
quality improvements of mobile and handheld laser scans. We
have demonstrated enhanced performance in the line-based re-
construction application, where our model attenuates the point
distributions, typical of mobile scans, yielding significant im-
provements in the retrieval of geometric line layouts.
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