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Abstract 

 

Ultrasound imaging is a promising approach in medicine due to it being a non-intrusive technique, with the ability to obtain 

important data from a large number of patients. Despite its potential, images generated using this technique are still severely 

corrupted with high levels of noise, especially speckle, which hinders their further processing. The present study introduces an 

alternative, innovative method for medical image segmentation, combining a bilateral filter, a specially developed genetic 

programming algorithm, the CLAHE algorithm, and the Watershed segmentation technique, which is typically used for 

geotopographic images. The results from this methodology indicate that the proposed approach delivers results comparable to those 

of conventional neural networks, while requiring a smaller image dataset. The integration of the genetic algorithm offers a novel 

solution by enhancing local contrast, reducing image noise, and improving the Watershed segmentation process. 

 

 

 

1. Introduction 

Ultrasound imaging is a valuable technique in medicine due to 

its non-invasive nature and its capacity to collect data from a 

large number of patients. However, despite its advantages, 

ultrasound images are often severely affected by noise, 

particularly speckle, which compromises further processing. 

Recently, machine learning has gained significant attention in 

the areas of medical image denoising and segmentation, as it 

allows for better generalization to new datasets compared to 

traditional methods. While neural networks are the most 

commonly used algorithms in this field, their adoption is limited 

by the requirement for large datasets during the training phase. 

This has prompted research into alternative methods, such as 

algorithms and Cellular Automata, which do not have this 

particular limitation. 

For example, a genetic algorithm was used in (Sahe and Singh, 

2024) to reduce speckle noise in Optical Coherence 

Tomography (OCT) images, with the primary objective of 

optimizing wavelet transform coefficients. These coefficients 

are essential in defining wavelets, a type of signal 

decomposition where the Fourier Transform is a specific case. 

Evolutionary algorithms have been highlighted in various 

studies as promising tools in medical image processing, as 

noted in a critical review of bio-inspired techniques 

(Ezhilarasan et al., 2024). 

Another interesting approach to image denoising is Cellular 

Automata, which also does not require large training datasets, 

although there is limited research on its application in this field. 

In (Bhardwaj et al., 2019), a cellular automata technique was 

introduced for despeckling medical images. This method works 

by calculating a threshold value based on a Moore 

neighborhood (a 3x3 grid around a central pixel). If the 

threshold exceeds a certain value, the individual pixel computes 

the median of its surrounding pixels; otherwise, it computes a 

different median. 

There are also studies that explore the combination of cellular 

automata with neural networks to improve performance when 

working with small datasets. In (Korevaar et al., 2024), the 

study demonstrated the effectiveness of U-Nets with limited 

training data, noting how the network's performance can be 

influenced by changes in data distribution. An intriguing aspect 

is that this integration can lead to a three-fold reduction in 

network size. The key to this integration is that the neural 

network can automatically generate rules, as opposed to cellular 

automata which typically rely on a fixed set of rules. Another 

example of this combined approach in medical image denoising 

is found in (Bhardwaj et al., 2022). 

Despite the potential of cellular automata, they can have 

drawbacks, such as longer inference times. In contrast, Genetic 

Algorithms (GA) and Genetic Programming (GP) offer an 

alternative that, while more computationally intensive in terms 

of training, can produce excellent results after optimization. 

These techniques require extensive experimentation to find the 

ideal evolutionary parameters (e.g., crossover, mutation, 

population size, number of generations, and in the case of 

genetic programming, also the functions used by the algorithm). 

Beyond (Fajardo-Delgado et al., 2024), there are additional 

studies that employ GP for denoising medical images. In 

(Vanneschi and Poli, 2022), GP was applied to ultrasound 

image denoising, with GP used to detect noisy pixels rather than 

directly filtering them. This "switching scheme" prevents the 

potential corruption of clean pixels, a common issue when 

applying filters directly to the entire image (Javed et al., 2018). 

In (Khan et al., 2018), GP was also used for removing Rician 

noise from MRI images. 

 

Many of these techniques can also be applied to medical image 

segmentation, often with the addition of other methods like 

Watershed segmentation, which is widely used in geomatics. In 

(Cortacero et al., 2023), Cartesian Genetic Programming (CGP) 

was employed for medical image segmentation, using a 

Cartesian grid to represent different functions with assigned 

coordinates. This method is particularly useful for working with 

limited datasets and offers a clear interpretability of the models. 

For example, the algorithm can automatically determine the 

optimal sequence of operators (such as Gaussian Blur, image 

difference, and Median Blur) to improve segmentation 

accuracy. As in other GP studies, careful selection of functions 

and parameters is crucial. The study also explores the possibility 

of integrating data from multiple sources, such as demographic 
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information, using the Mixed-Type Cartesian Genetic 

Programming (CGP) approach. 

Another application of GP to medical image segmentation is 

discussed in (Poli, 1996), where it was used for segmenting 

blood vessels in MRI images of the brain, with simple functions 

like arithmetic operations and average filters. GP outperformed 

neural networks in this case. Additionally, in (Dhot, 2099), GP 

was applied to medical image segmentation, focusing on the 

evolution of small-sized programs, which is a key issue in GP. 

It is worth noting that these algorithms not only serve as 

alternatives to neural networks but can also aid in the 

development of more efficient neural network architectures. In 

(Ramesh et al., 2024), GP was used to design Convolutional 

Neural Networks (CNNs) that require less training time and 

fewer computational resources for segmentation tasks. 

In our approach, we integrate Genetic Programming with 

Contrast Limited Adaptive Histogram Equalization (CLAHE) 

for improved image segmentation, a technique already explored 

in previous studies (Rai et al., 2012), (Intyanto et al., 2024). 

Other studies, such as (Barrile et al., 2023a), (Barrile et al., 

2023b), also train Spiking Neural Networks (SNNs) to identify 

noise patterns that interfere with Watershed segmentation, 

which is applied after denoising. Additionally, [18] proposes a 

switching filter for impulse noise, designed to filter noisy pixels 

selectively. 

 

In this context, we present a pipeline where images are first 

filtered to focus on the pixels with the most noise. This is 

followed by CLAHE histogram equalization and Watershed 

segmentation. Genetic programming is then employed to 

determine the most effective sequence of filters for accurate 

segmentation of a given medical image. The main distinction of 

our approach is that it requires only a single image for training, 

and the filtering process is applied only to selected pixels, 

improving efficiency and reducing the risk of corrupting clean 

image data. 

 

2. Mathodology 

The proposed approach follows different phases shown in 

Figure 1. 

 

 
Figure 1. Proposed methodology. 

 

The procedure used can be summarized as follows: 

 

Training Image Creation: 

Application of a bilateral filter to an image from the dataset →  

Application of the "Unsharp-masking" filter to the bilaterally 

filtered image → Evaluation of the bilateral filter's performance 

through histogram equalization followed by Watershed 

segmentation → Generation of speckle noise on the image 

obtained from the bilateral filter and the "unsharp-masking" 

process. 

 

Training: 

Genetic programming is trained on the reference image, which 

includes the bilateral filter, unsharp masking, and speckle noise 

generation. The evolutionary process identifies the best 

individual whose denoising method maximizes the PSNR/ratio 

calculated between the speckle-noise-corrupted image and the 

original (bilaterally filtered and unsharp-masked) image. 

 

Testing: 

The filter derived from the genetic programming evolution is 

applied to other images from the CAMUS dataset → The 

CLAHE algorithm is applied to the filtered image → Finally, 

Watershed segmentation is performed. 

 

2.1 Phase 1: Dataset Creation 

The first step in the methodology involves generating the 

dataset. The training set is created by applying a sequence of 

algorithms to an image, which will later be used for comparison 

with an unfiltered original image during the training phase. 

Since the dataset images are in .nii format, they are imported 

using the nibabel library. Following the approach used in 

(Barrile et al., 2023a), a stretching operation is applied to the 

central part of the image. This step is motivated by the 

observation in the referenced article that stretching the central 

region emphasizes it more effectively. 

The image is then converted into an 8-bit unsigned integer 

format, compatible with OpenCV. A bilateral filter is applied 

next, as it has shown to deliver better segmentation results 

through Watershed compared to the “Non-local Means 

Denoising” filter. Despite its effectiveness, the bilateral filter is 

relatively slow, which can be a disadvantage in scenarios 

requiring rapid image processing. 

After filtering the image, histogram equalization and Watershed 

segmentation are applied to assess the filter's performance. The 

filtered image is then processed using the "unsharp masking" 

filter to enhance fine details by subtracting a Laplacian-filtered 

version of the image. Subsequently, speckle noise is added to 

this image using the "scikit-learn" library. 

 

2.2 Phase 2: Genetic Programming Implementation 

The next step involves implementing the genetic programming 

algorithm. In this work, a genetic algorithm is designed to 

remove speckle noise from degraded images. Individuals in the 

genetic programming population represent complex 

mathematical functions applied locally to image pixels. Each 

individual consists of a syntactic tree with mathematical and 

logical functions that operate on local image properties, such as 

variance, standard deviation, and median values from central 

windows of size 3x3 or 5x5, in combination with the original 

and pre-filtered image versions. 

 

These individuals are transformed into executable functions that 

are applied to the noisy image pixel by pixel. The result is a 

binary mask: pixels deemed noisy are replaced with filtered 
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values (e.g., via smoothing), while non-noisy pixels remain 

unchanged. The quality of the resulting filtered image is 

evaluated by comparing it to the reference image using metrics 

like PSNR, SSIM, and MAE. The fitness function is defined as 

the ratio between PSNR and MAE, with possible penalties for 

execution time. 

During the development of the algorithm, a non-deterministic 

behavior was observed, meaning multiple executions with the 

same input produced slightly different results, making the 

metrics inconsistent and destabilizing the genetic selection 

process. Initially, this variability was attributed to floating-point 

errors in the calculations. However, after further investigation, 

the cause was traced to the multi-threaded nature of the 

underlying numerical libraries (e.g., BLAS or OpenBLAS, used 

by Numpy). The concurrent execution of threads alters the order 

of operations, which affects the final result. To resolve this, a 

constraint was imposed to use only one thread for the BLAS 

backend, ensuring deterministic execution and avoiding race 

conditions. 

The best individuals from the evolutionary process were saved 

via binary serialization using the Pickle library for later use, 

avoiding the need to retrain the algorithm. The entire 

evolutionary process was implemented using the DEAP library, 

where a strongly typed primitive set was used. The primitives 

are rigorously typed to act on specific input types, ensuring 

semantic consistency in the generated trees. Primitives include 

protected arithmetic operations, trigonometric and logarithmic 

functions, sigmoid functions, and a logical “decide” function 

that performs point-to-point comparisons between arrays. The 

evolutionary tree structure ensures the root node is the decision 

function, intermediate nodes are unary or binary functions, and 

terminals are either constant values or functions computing 

local image properties. 

To avoid tree bloating, the initial population was created using 

the GenGrow method, which allows for greater structural 

diversity compared to the GenFull method. Evolution was 

driven by an evaluation function that considers both the image 

quality and computational efficiency, favoring individuals that 

produce high-quality results in a shorter time. 

 

2.3 Phase 3: Filtering and Segmentation 

In the final phase, a combination of the bilateral filter, CLAHE 

algorithm, and Watershed segmentation is applied. The CLAHE 

algorithm, as previously mentioned, adapts histogram 

equalization to enhance contrast locally. The image is divided 

into small blocks, called “tiles,” for which the histogram is 

calculated. Values exceeding a certain threshold are 

redistributed to improve contrast, and the cumulative 

distribution function is used to normalize the resulting image. 

After this, the blocks are merged back together. 

Through the various experiments (both in the image creation 

phase and the validation of the evolutionary algorithm), it was 

found that applying histogram equalization significantly 

improved segmentation performance. The application of 

CLAHE, in particular, enhanced Watershed segmentation, 

suggesting the need for contrast enhancement algorithms to 

improve segmentation precision. 

 

Watershed segmentation, originating from geomatics, simulates 

the flooding of regions and applies distinct colors to different 

segments, making it ideal for real-time applications due to its 

high execution speed (Barrile and Genovese, 2024), (Barrile et 

al., 2024). However, one challenge with Watershed 

segmentation is the risk of over-segmentation, where too many 

small regions are created, leading to less meaningful results. 

 

3. Results 

As mentioned, the first phase of the proposed methodology 

involved generating the dataset by applying the bilateral filter. 

The parameters used for the bilateral filter, CLAHE filter, and 

the Genetic Programming (GP) algorithm are summarized in 

Table 1 below: 

 

Parameters Bilateral 

filter 

CLAHE 

filter 

GP 

algorithm 

    

Diameter 19 - - 

Sigma_Color 20 - - 

Sigma_Space 20 - - 

Clip Limit - 2 - 

Tile Grid Size - 8x8 - 

Evolution strategy - EaSimple - 

Crossover 

probability 

- 0.9 - 

Mutation 

probability 

- - 0.09 

Population size - - 100 

Max tree height - - 15 

Number of 

generations 

- - 30 

Tree generation 

function 

- - GenGrow 

    

 

Table 1. Pipeline parameters. 

 

The algorithm was designed to generate a binary mask, where 

each pixel is assigned a value of 1 if it is identified as noisy, and 

0 if it is considered clean. For pixels marked as 1 (noisy), a 5x5 

Gaussian filter is applied to smooth the noise. Pixels marked as 

0 (unaffected) remain unchanged, ensuring that only noisy 

pixels are selectively denoised while the original image content 

is preserved for clean pixels. This targeted approach allows for 

efficient noise removal, without altering the unaffected regions 

of the image. 

To assess the effectiveness of this algorithm, we used the 

PSNR/MAE ratio as the primary fitness measure, a common 

approach in the literature for evaluating image denoising 

performance (Sahe and Singh, 2024). This ratio balances Peak 

Signal-to-Noise Ratio (PSNR) and Mean Absolute Error 

(MAE), offering a quantitative measure of the algorithm's 

denoising quality. In addition to this, we also explored an 

alternative evaluation method based on segmentation 

performance. Here, the segmented images were compared to a 

reference image, with metrics like adapted Rand error and the 

Dice score used to quantify the similarity between the predicted 

segmentation and the reference segmentation. These metrics 

offer insights into how well the segmentation produced by the 

denoised image aligns with ground truth data. 

 

Figure 2 illustrates the evolution of the genetic programming 

algorithm over 30 generations. As the algorithm iterates, there is 

a noticeable improvement in both the fitness measure and the 

segmentation performance. The gradual optimization of the 

filtering process demonstrates the algorithm's ability to adapt 

and refine its approach to denoising. This refinement ultimately 

leads to better noise removal and improved segmentation 

quality, highlighting the effectiveness of the proposed method 

in handling noisy medical images. 

Through these evaluations, it becomes clear that the algorithm 

not only improves the quality of denoising but also contributes 

to better segmentation results, particularly when compared to 
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traditional methods. This makes the approach a valuable tool for 

medical image processing, especially when dealing with noisy 

datasets. 

 

 
Figure 2. Evolution of the genetic programming algorithm for 

30 generations. 

 

 

For testing the algorithm, we follow a similar procedure to the 

one used during training. The central part of each test image is 

stretched, as done in the training phase, to emphasize key 

regions of the image. Then, we apply the best evolved 

individual obtained from the genetic programming algorithm to 

the test images. After the noise is removed, we proceed by 

applying Watershed segmentation to segment the image into 

distinct regions. 

To evaluate the performance of the denoising and segmentation 

process, we compare the results of applying CLAHE (Contrast-

Limited Adaptive Histogram Equalization) after the denoising 

step versus not using CLAHE. This comparison helps determine 

the impact of contrast enhancement on the segmentation 

accuracy, especially after noise reduction. 

All images used for testing are sourced from the CAMUS 

dataset (Human Heart Project, accessed on 28 April 2025), 

which includes medical images with varying levels of noise. In 

addition to the CAMUS dataset, we also plan to extend the 

algorithm's application to other medical datasets, particularly 

those with limited data availability, to assess its generalizability 

and robustness. 

The results of these tests are shown in the following images 

(Figures 3, 4, 5, 6), which illustrate the impact of our proposed 

method on the quality of segmentation, with and without 

CLAHE post-denoising. These results help demonstrate the 

efficacy of the genetic programming algorithm combined with 

CLAHE and Watershed segmentation in medical image 

processing. 

 

 
 

Figure 3. Raw image from CAMUS dataset. 

 

 
Figure 4. Segmentation performed on the image, with denoising 

applied on every pixel 

 

 
Figure 5. Segmentation performed by applying the genetic 

programming algorithm on selected pixels. 
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Figure 6. Watershed segmentation applied after denoising on 

pixel identified as noisy and CLAHE histogram equalisation.  

 

In Figure 6, green rectangles highlight areas where the 

segmentation aligns closely with the actual edges of the 

structures in the image, indicating good segmentation accuracy. 

On the other hand, blue rectangles indicate areas where 

oversegmentation has occurred, meaning that the segmentation 

algorithm has split regions incorrectly or too finely. This 

oversegmentation can be a result of small variations in the 

image, such as noise or lighting inconsistencies. Upon 

examining the images, it becomes clear that differences in 

illumination are often as influential as the noise itself in 

determining segmentation quality. This suggests that for further 

improvement, the algorithm needs to account for illumination 

variations in addition to noise removal. While CLAHE has 

provided better segmentation in many cases by enhancing 

contrast, relying solely on CLAHE to address illumination 

discrepancies does not yield optimal results for real-world 

applications. Although CLAHE helped improve segmentation in 

some cases, the method is still limited when dealing with 

complex lighting conditions. To evaluate the reliability of the 

proposed methodology, we present the average results from the 

comparisons in Table 1. These results assess the performance of 

our method under varying conditions, such as the number of 

randomly sampled pixels and the choice of classifiers. The 

segmentation performance of our methodology was compared 

with that of ITK-SNAP, a widely used software tool for manual 

and semi-automatic segmentation of medical images. The 

Intersection over Union (IoU) metric was used for comparison, 

and the method yielded a value of 0.94, indicating excellent 

agreement in certain regions of the image when compared to 

ITK-SNAP’s segmentation. Additionally, in Table 2, we 

compare the performance of our methodology with other 

commonly used segmentation and classification techniques, 

applied across various regions of the images. 

 

Method Accuracy Precision Recall 

    

Thresholding 0.83 0.82 0.77 

Convolutional 

Neural Network 

(CNN) 

0.93 0.90 0.89 

Self-Normalising 

Neural Network 

(SNN) 

0.94 0.92 0.89 

Genetic 

Programming 

0.93 0.92 0.94 

    

Table 2. Comparison of the proposed methods with other 

common segmentation techniques. 

The results highlight variations in performance depending on 

image conditions, such as noise levels and illumination 

differences. This further emphasizes the need for a more 

adaptive approach that can handle different image 

characteristics effectively. 

While the proposed methodology shows promising results, 

incorporating further improvements to handle illumination 

variations and refine oversegmentation is a key next step for 

making it more robust and applicable in real-world medical 

imaging scenarios. 

 

 

4. Conclusion  

In this study, a genetic programming algorithm was applied 

selectively to pixels that were considered to be affected by 

speckle noise, with the algorithm being trained on a single 

image. After training, the images from the test set were 

processed using a histogram equalization algorithm (CLAHE) 

to enhance contrast. Although the evolution of the algorithm 

was modest, with improvements around 10%, some areas of the 

image showed better segmentation, while other regions 

exhibited oversegmentation. The oversegmentation issue, 

however, was primarily observed when CLAHE was applied. 

Despite this, denoising through the algorithm resulted in 

smoother boundaries and less jagged segmentation, which 

contributed positively to the overall segmentation quality. 

However, no significant differences in terms of segmented area 

were observed when compared to other methods. 

One area for improvement in this approach would be to enhance 

the brightness and contrast conditions by incorporating 

additional image enhancement functions like CLAHE, gamma 

correction, or similar methods within the evolution process. 

Moreover, using a larger dataset for training, rather than relying 

on a single image, would likely lead to more robust 

performance and a better generalization of the algorithm. 

Another important observation is that, despite being 

implemented in Python (rather than a more performance-

optimized language like C/C++), the algorithm's computation 

times were relatively high. This is primarily due to the 

calculation of more complex terminal functions, such as MAD 

(Mean Absolute Deviation), quantile absolute deviation, and 

others. To address this, the algorithm's performance could be 

improved by using terminals that require faster calculations. For 

instance, instead of calculating the median directly from the 

pixel values, it could be computed using histogram values, 

which would allow for a linear calculation time (O(1)). A 

similar approach could be taken with the Gaussian filter, 

optimizing its implementation to reduce processing time. 

Additionally, one potential improvement would be to replace 

computationally expensive functions like Quantile Absolute 

Deviation and MAD5 (Mean Absolute Deviation for 5 

neighbors), which have higher computational complexity, with 

more efficient alternatives that can be calculated in linear time. 

This adjustment would help reduce the overall processing time, 

making the algorithm more efficient without sacrificing its 

performance. 

We can conclude that while the genetic programming algorithm 

shows promise, further optimization in terms of dataset size, 

image enhancement integration, and computational efficiency 

would contribute to improved segmentation quality and faster 

execution times, making the approach more suitable for real-

world applications. 
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