
Assessment of Land Use Changes in Ahvaz and Their Impact on the Morphological Changes 

of the Karun River Using Landsat Time-Series Data 

Javad Hatamiafkoueieh 1, Masoud Shirali 1, Yury Razoumny 1

1 Dept. of Mechanics and Control Processes, Academy of Engineering, Peoples’ Friendship University of Russia, (RUDN 

University), Miklukho-Maklaya Str. 6, Moscow, Russian Federation - 
khatamiafkuiekh-d@rudn.ru, 1042245257@rudn.ru, yury.razoumny@gmail.com  

Keywords: Land use change, river morphology, remote sensing, Landsat data, urban development, CA-Markov model, Ahvaz, 

Karun River. 

Abstract: 

Urban growth and development, especially in metropolitan areas, significantly impact the environment and natural resources. This 

study examines land use changes in Ahvaz and their effects on the morphological changes of the Karun River using a 20-year time 

series of Landsat satellite data (2000–2020). For this purpose, satellite images from the TM, ETM+, and OLI sensors were 

processed, and land use maps were extracted using the Maximum Likelihood Classification (MLC) algorithm. Additionally, riverbed 

changes were analyzed through hydro morphological indices and spatial analyses in a GIS environment. 

The results indicate that over this period, urban areas expanded by 45%, while agricultural lands decreased by 27%. Furthermore, the 

Karun River’s width has narrowed by up to 15% in certain sections, with significant course shifts observed in central and southern 

Ahvaz. Change modeling using the CA-Markov model suggests that if the current trend continues, the river’s width may shrink by 

up to 20%, and urban areas could expand by 60% by 2030. 

This study highlights the importance of using remote sensing and Geographic Information Systems (GIS) for effective water resource 

management and urban planning. It recommends implementing appropriate management strategies to mitigate the negative effects of 

land use changes. 

1. Introduction

Rapid urban expansion, particularly in developing regions such 

as Ahvaz, presents numerous environmental challenges, 

including significant transformations in land use, ecosystem 

degradation, and disruptions to hydrological systems (Seto et 

al., 2011). The increasing footprint of impervious surfaces due 

to infrastructural development results in reduced groundwater 

recharge and elevated surface runoff, contributing to urban 

flooding and erosion (Arnold & Gibbons, 1996). Furthermore, 

the fragmentation of natural habitats and reduction in vegetation 

cover severely impact urban biodiversity and ecological 

resilience (McKinney, 2002). 

The rapid pace of urbanization modifies the natural landscape, 

leading to soil sealing, disruption of natural drainage systems, 

and a decline in evapotranspiration. These changes are 

especially detrimental in semi-arid regions like Khuzestan, 

where water resources are already under stress (Shrestha et al., 

2012). Urban expansion into agricultural and riparian zones 

also intensifies competition for water resources and encroaches 

upon floodplains, amplifying the risk of disaster events and 

hydrological instability. 

Moreover, urbanization is closely linked with changes in river 

morphology, particularly through river straightening, bank 

encroachment, and construction of infrastructure such as 

bridges and embankments, which alter sediment dynamics and 

flow velocity (Walsh et al., 2005). These alterations not only 

impact the ecological functions of natural water bodies but also 

exacerbate flood risks, degrade water quality, and increase 

sedimentation rates (Paul & Meyer, 2001). Long-term 

consequences may include reduced river conveyance capacity 

and increased vulnerability of urban populations to 

hydrometeorological hazards. 

The rapid pace of urbanization modifies the natural landscape, 

leading to loss of vegetation cover, soil sealing, increased 

surface runoff, and changes in riverine dynamics (Zhou et al., 

2014). These alterations not only impact the ecological 

functions of natural water bodies but also exacerbate flood 

risks, degrade water quality, and increase sedimentation rates 

(Paul & Meyer, 2001). 

The Karun River, as the longest and most voluminous river in 

Iran, serves as a critical ecological and economic artery for the 

region. However, increasing population density and 

industrialization in Ahvaz have imposed anthropogenic stresses 

on the river’s morphology. Observations indicate channel 

narrowing, bank erosion, and disrupted flow regimes in sections 

adjoining major urban growth (Falahatkar et al., 2018). 

To understand and mitigate these impacts, it is essential to 

monitor spatial-temporal changes using advanced technologies. 

This study integrates satellite imagery analysis, GIS-based 

spatial modeling, and hydrological assessment to evaluate the 

extent and implications of land use changes on the Karun River. 

By examining the period from 2000 to 2020 and simulating 

future trends through predictive modeling, the research aims to 

contribute to sustainable urban development and river 

conservation strategies in Ahvaz. 

2. Materials and Methods

2.1 Methodology 

The methodology consists of integrating remote sensing 

techniques with spatial analysis tools. Landsat imagery (2000–

2020) from TM, ETM+, and OLI sensors was pre-processed for 

radiometric and geometric corrections. MLC was used for land 

use classification into urban, agriculture, water, and barren 

lands. River morphology was analysed using spatial metrics in a 

GIS environment. Finally, CA-Markov modelling was 

employed for predictive mapping of future land use and river 

morphology scenarios. 
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2.2 Study Area 

Ahvaz lies in Khuzestan Province, Iran, at 31°20'N and 

48°40'E. Covering an area of over 18,000 hectares, it is a major 

industrial and population center intersected by the Karun River. 

The region's hot climate and strategic location make it highly 

susceptible to both natural and anthropogenic pressures. 

 

 

Figure 1. Ahvaz lies in Khuzestan Province 

 

2.3 Data Acquisition and Processing 

Landsat images were obtained from USGS Earth Explorer. 

Preprocessing steps included atmospheric correction using 

FLAASH, geometric rectification, and mosaicking. Ancillary 

data such as cadastral maps and land cover surveys aided in 

validation. 

 

Before utilizing satellite imagery, it is necessary to correct any 

errors that may have occurred during data acquisition or 

transmission. When using imagery, particularly when high-

accuracy interpretation is desired, it is essential to apply 

geometric and radiometric corrections, depending on the 

objectives of the study (Richards & Jia, 2006). Geometric 

corrections usually begin with enhancing the image resolution, 

which depends on factors such as the spectral band, spatial and 

radiometric resolution, and the physical characteristics of 

surface features. 

 

In visual interpretation, higher-resolution images assist 

analysts in achieving more accurate results. Moreover, suitable 

image clarity is important for identifying control points and 

selecting training samples during classification. To achieve this, 

image enhancement techniques are employed. In this study, 

the 2% linear stretch method was used. Preprocessing is 

generally carried out to prepare the data for classification and 

varies depending on the data type. Each data type requires 

specific preprocessing techniques. The main preprocessing steps 

for classification include: 

 Radiometric correction 

 Geometric correction 

 Band reduction 

 Image calculations 

 Filtering 

Raw remote sensing images typically contain geometric errors 

and pixel value inaccuracies. Geometric errors relate to spatial 

distortion, while radiometric errors concern pixel intensity 

values. Although some of these errors are corrected at ground 

receiving stations, the images must still be reviewed by users to 

identify and correct residual errors. Generally, satellite image 

corrections are divided into geometric and radiometric 

corrections. 

 

2.4 Land Use Classification 

The satellite images from 1989, 1994, 2001, 2006, 2011, and 

2016 were classified using the Maximum Likelihood 

Classification (MLC) method, a robust and widely adopted 

supervised classification technique grounded in statistical 

probability theory. MLC assigns each pixel to the class it most 

likely belongs to, based on the mean and covariance of training 

data drawn from each category. This method is particularly 

effective for land cover analysis where distinct spectral 

signatures are observed. 

 

To ensure classification accuracy, training samples were 

manually selected from the study area through visual 

interpretation and field data. These samples were chosen with 

high precision and homogeneity to prevent misclassification 

caused by mixed pixels. The minimum number of training 

samples per class followed the standard guideline of at least 10 

times the number of bands used. 

 

The land surface was categorized into five distinct land use/land 

cover (LULC) classes: vegetation cover, urban areas, industrial 

zones, barren lands, and water bodies. These categories reflect 

the major land cover types in the Ahvaz region and provide a 

suitable basis for temporal change detection and spatial 

modelling. 

 

To enhance class differentiation and feature visibility, False 

Color Composites (FCCs) were applied. FCC 742 (bands 7–red, 

4–green, 2–blue) was used for the years 1989 to 2011, and FCC 

753 (bands 7–red, 5–green, 3–blue) was employed for the 2016 

image acquired by the OLI sensor. In both composites, 

vegetation appears in green tones, aiding in its visual 

identification, while built-up and barren areas are depicted in 

varying shades of pink and grey. 

 

After training data selection, the separability of classes was 

assessed using the Jeffries–Matusita (J-M) index, a statistical 

metric for evaluating spectral distinction between classes. Most 

classes achieved the maximum separability value of 2.0, 

indicating minimal spectral overlap and high confidence in the 

classification results. 

 

To further verify classification performance, confusion matrices 

and Kappa coefficients were used for each year. The results 

revealed classification accuracies ranging from 85% to 91%, 

reflecting the consistency and reliability of the methodology 

across the multi-temporal dataset. 

 

The land use maps generated through this process enabled the 

analysis of spatiotemporal trends, showing a clear pattern of 

urban expansion and agricultural land decline in Ahvaz. These 

classified images served as inputs for subsequent spatial 

modelling and river morphological analysis in the study. 
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Figure 2. Land Use/Land Cover Classification Map for the Year 

1989 

 

 

 
 

Figure 3. Land Use/Land Cover Classification Map for the Year 

1994 

 

 
 

Figure 4. Land Use/Land Cover Classification Map for the Year 

2001 

 

 

 
 

Figure 5. Land Use/Land Cover Classification Map for the Year 

2006 
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Figure 6. Land Use/Land Cover Classification Map for the Year 

2011 

 

 
 

Figure 7. Land Use/Land Cover Classification Map for the Year 

2016 

 

Land Use Area 

The total land use area of the study region is 45,025.26 

hectares. Since changes have occurred in the extent of each land 

use class during the period from 1989 to 2016, the status of the 

area for each land use class in different years is presented in 

Table 1. 

 

Table1. Area of Land Use Classes in Different Years (per 

hectares) 

 

Land Use Class 1989 1994 2001 2006 2011 2016 

Vegetation 

Cover 
7,446.87 4,362.12 6,474.15 10,225.26 11,007 12,146.94 

Urban Areas 10,097.64 17,447.49 12,573.09 12,817.80 15,531.31 14,279.40 

Industrial Areas 24.03 567.27 1,819.89 1,326.24 1,490.04 1,665.45 

Barren Lands 25,685.19 19,841.94 22,590.09 19,006.92 15,712.47 15,610.32 

Water Bodies 1,771.83 2,806.74 1,568.34 1,649.34 1,474.74 1,323.45 

 

Validation of Land Use Maps 

To validate the generated land use maps, training samples from 

the classified classes were prepared for each year and then 

compared with reference land use maps of the corresponding 

years. For accuracy comparison, an error matrix was first 

created, and then Kappa coefficient and overall accuracy were 

calculated. Due to the large volume of the error matrices and 

their outputs, only the Kappa and overall accuracy values are 

presented in Table 2. According to the results in Table 4-2, the 

classification achieved relatively good accuracy, with an 

average Kappa accuracy of 86% and an average overall 

accuracy of 91% across all generated land use maps. 

 

Table 2. Validation of Land Use Classification Maps 

 

Land Use Map 

Year 

Overall Accuracy 

(%) 

Kappa Accuracy 

(%) 

1989 89 84 

1994 91 86 

2001 90 85 

2006 93 87 

2011 93 89 

2016 91 85 

Average 91% 86% 

 

2.5 Change Detection 

In this study, land use changes have been analysed across five 

distinct time intervals: 1989–1994, 1994–2001, 2001–2006, 

2006–2011, and 2011–2016. Each period has been separately 

examined to detect and describe spatial and temporal shifts in 

land use. Additionally, cumulative changes over the entire 

study period from 1989 to 2016 have been monitored to 

understand long-term trends and transformations in the 

landscape. The analysis aims to identify the dynamics of urban 

expansion, vegetation cover, industrial growth, barren land 

reduction, and fluctuations in water bodies. The graph in Figure 

X visually represents the magnitude of increase or decrease in 

each land use class throughout the period from 1989 to 2016. 

Among all time intervals, the most notable changes were 

observed between 1989 and 1994, particularly in the urban 

areas and barren lands categories. During this time, urban land 

cover showed a sharp upward trend, reflecting rapid urban 

expansion, while barren lands experienced a marked decline, 

likely due to land conversion for development or agriculture. 
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Subsequent sections detail these patterns of change for each 

period under investigation.  

 

Figure 8. Land Use/Land Cover change detection  

2.6 River Morphological Extraction 

Following the land use classification, the Karun River was 

extracted from the classified land use maps. For this purpose, 

areas classified as water bodies were isolated from other land 

use classes using ArcGIS software. Subsequently, mean 

filtering techniques were applied to eliminate water features 

located outside the main channel of the Karun River. As a 

result, the morphological structure of the Karun River was 

extracted for each year under study. 

 

Figure 9. Land Use/Land Cover change detection Karun River 

 

 

Figure 10. Land Use/Land Cover change detection Karun River 

 

2.7 Modelling with CA-Markov 

The CA-Markov model simulated 2021 scenarios based on 

2011–2016 transitions. Transition probability matrices were 

derived, and neighbourhood rules were defined. Results 

projected a continuation of urban growth and further river 

narrowing. Model validation used simulated 2016 against 

actual 2016with high similarity indices.  

 

 

Figure 11. Land Use/Land Cover CA-Markov model simulated 

for 2021. 

 

3  Conclusion 

This study highlights the transformative effects of urbanization 

on land use and river morphology in Ahvaz, demonstrating how 

the expansion of human settlements and infrastructure has 

reshaped the landscape and influenced ecological stability. By 

analyzing multi-temporal satellite data and applying 

classification models such as logistic regression and artificial 

neural networks through the LCM framework, the research 

revealed significant changes between 1989 and 2016. These 

include a notable increase in urban areas and a concurrent 

decline in vegetative and agricultural land cover. While the 

classification accuracy was acceptable—with Kappa statistics 

ranging from 84% to 89%—limitations such as 

misclassification and underrepresentation of certain land cover 

transitions indicate the need for model refinement. 
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The findings underscore the necessity of integrating geospatial 

technologies into urban planning and environmental 

management. The degradation of natural and agricultural spaces 

in favor of urban expansion calls for immediate policy 

interventions. These include stricter zoning laws, 

implementation of river conservation projects, and the 

promotion of green infrastructure. Sustainable urban 

development should incorporate buffer zones along riverbanks, 

afforestation initiatives, and controlled urban growth strategies 

to mitigate adverse environmental effects. Water resource 

management must also be prioritized to address sedimentation, 

pollution, and disruptions to hydrological cycles caused by 

unchecked development. 

Looking ahead, future research should leverage high-resolution 

satellite imagery, advanced machine learning classification 

techniques, and socio-economic data integration to enhance 

both the accuracy and applicability of land use monitoring. The 

application of artificial intelligence and deep learning in remote 

sensing can further improve detection and predictive modeling. 

Moreover, the inclusion of climate change scenarios and 

hydrodynamic modeling could provide deeper insights into the 

long-term impacts of land use transformation. A data-driven, 

interdisciplinary approach that combines advanced geospatial 

tools, effective policy design, and community engagement is 

essential for ensuring sustainable urban growth and preserving 

vital environmental resources in regions like Ahvaz. 
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