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Abstract

This paper introduces a method to enhance the process of creating training datasets for mineral segmentation in geological images
by addressing the challenges posed by color distortion. Such distortions, which stem from differing imaging equipment, create
inconsistencies in color and brightness that hinder effective segmentation by neural networks. By utilizing the hyperbolic active
learning method (HALO), the proposed method targets regions with epistemic uncertainty in neural network models, enabling the
focused expansion of training data instead of revisiting entire images. Experiments were conducted on the LumenStone S1v2
dataset, revealing that the hyperbolic radius effectively correlates with error maps, thereby highlighting uncertain regions that
need annotation. This method significantly reduces the manual effort needed from specialists during annotation and promises to
improve segmentation accuracy. Future developments include integrating these techniques into a complete neural network pipeline,
leveraging color correction and uncertainty mapping for more precise mineral segmentation.

1. Introduction

Mineral segmentation in geological images is a fundamental
task in modern geoscience. This process is important for dif-
ferent applications including ore deposit characterization, pet-
rological studies, and mineral resource assessment. However,
achieving reliable segmentation results remains challenging due
to variations in sample preparation and inconsistencies in ima-
ging conditions, which has motivated the development of spe-
cialized computational approaches to maintain accuracy across
different datasets.

We propose a method for automatically identifying missing
mineral information when segmenting images of geological
sections obtained using different imaging equipment. The goal
of this work is to enhance the performance of a segmentation
neural network model by strategically expanding the training
dataset.

A key challenge in automatic mineral segmentation is the non-
homogeneity between training and test data, which arises due to
variations in imaging conditions, equipment, and sample pre-
paration. This inconsistency can degrade model performance
when applied to new, unseen data. The example of nonhomo-
genity between geological images is presented in Fig. 1. This
images were specifically taken using different equipment and
light conditions.

a)

b) c) d)

Figure 1. Example of nonhomogenity of geological images.
a) — Image from the train subset of LumenStone S1v2 dataset,

b), c), d) — Images of the same mineral area captured under
different conditions

To address this issue, two primary approaches have been ex-
plored.

The approach of model adaptation to diverse input data
focuses on improving the robustness of the neural network
itself, enabling it to generalize across heterogeneous data-
sets. Techniques include domain adaptation (Wang and Deng,
2018), where the model is fine-tuned to align feature distri-
butions between source and target domains, and the use of
data augmentation to simulate variations in lighting, resolution,
and color balance. Recent advances in self-supervised learn-
ing (Chen et al., 2020b) and contrastive learning (Chen et al.,
2020a) have also shown promise in learning invariant repres-
entations from unlabeled geological images. However, these
methods often require extensive computational resources and
may still struggle with extreme domain shifts.

Another common strategy to improve model robustness is data
augmentation, where synthetic variations (e.g., rotations, flips,
and noise) are introduced to simulate real-world heterogeneity.
However, in mineral segmentation, standard augmentations of-
ten fail to capture the complex color and brightness distortions
caused by different microscopes, lighting conditions, or sample
preparations. While advanced techniques like generative ad-
versarial networks (GANs) (Goodfellow et al., 2020) or neural
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style transfer (Jing et al., 2020) can simulate domain shifts, they
require large amounts of paired data and may produce unreal-
istic artifacts. As a result, augmentation alone is insufficient to
bridge the gap between highly dissimilar datasets.

This limitation motivates an alternative solution: expanding
the training set with partially annotated real images that
reflect true domain variations. Instead of relying on synthetic
distortions, our method identifies and incorporates uncertain re-
gions (areas where the model’s predictions are least confident)
into the training process. This ensures that new samples ad-
dress the model’s weaknesses while maintaining realistic data
distributions.

Instead of modifying the model, the strategy of input image
adaptation to a reference dataset transforms input images
to match the characteristics of a reference dataset used during
training. An example of this approach is the color correction
algorithm (Indychko et al., 2023), which aligns the color and
brightness of new images with those of polished sections used
for model training. The method leverages a transition matrix
between color spaces (Cohen, 1988) to minimize inconsistency
caused by different imaging conditions. While being effect-
ive, this approach assumes that color distribution is the primary
source of variation and may not account for other forms of het-
erogeneity, such as texture or scale differences.

To further improve mineral segmentation accuracy, we sug-
gest combining color correction with an intelligent training
set expansion strategy. Since manual annotation of mineral
samples is time-consuming and requires expert knowledge, it
is crucial to prioritize only the most informative regions for
labeling. Inspired by recent advances in active learning, we
propose an automated approach to identify uncertain regions
where the model’s predictions are least confident. Specific-
ally, we adapt the Hyperbolic Active Learning (HALO) frame-
work (Franco et al., 2024) to geological image segmentation,
enabling efficient selection of samples that maximize model im-
provement with minimal human intervention.

By integrating uncertainty-aware sample selection with domain
adaptation techniques, our method aims to enhance mineral seg-
mentation accuracy while reducing annotation effort. This work
contributes to the broader goal of automating geological ana-
lysis, making it more scalable and accessible for resource ex-
ploration and material science applications.

2. Used Data and Models

In this work we used the S1v2 subset of the LumenStone data-
set1 containing 3396 × 2547 pixel photos of polished sections
with full semantic segmentation masks for each image. An ex-
ample of image and its semantic segmentation mask from train
subset of LumenStone S1v2 dataset are presented in Fig. 2.

1 https://imaging.cs.msu.ru/en/research/geology/

lumenstone

a)

b)

c)

Figure 2. Example of data from S1v2 train subset of
LumenStone dataset.

a) — Image from the train subset of LumenStone S1v2 dataset,
b) — Semantic segmentation mask for the image a),

c) — Color legend for segmentation mask b).

During the actual work of geologists, using a trained segment-
ation model, it was noticed that color-brightness distortions oc-
cur in images, depending on the equipment used for imaging.
We simulate the distortions by using the following equipment:

• Carl Zeiss AxioScop 40 with a Canon Powershot g10 cam-
era,

• Carl Zeiss AxioImager m1 with a Canon EOS D400 cam-
era,

• LOMO plm 215 with a Canon EOS D400 camera.

To systematically study these real-world color and lightning
distortions, we created experimental datasets that mimic the
variations observed in practice. Based on the S1v2 test set,
three datasets with different color-brightness distortions were
created, corresponding to the real data. Next, we will refer to
these datasets as the “blue”, “pink”, and “yellow” distortions.
The example of simulated image distortions is shown in Fig. 3.
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Original image

”Blue” distortion ”Pink” distortion ”Yellow” distortion

Figure 3. Three types of distortion for image from LumenStone
S1v2 test subset.

Each distortion dataset comprises 10 gradually intensifying
variations for every image in the original test set. These vari-
ations were generated by incrementally applying color channel
adjustments over 10 sequential steps, thus producing a system-
atic progression of distortion for each source image.

For the ”yellow” distortion, the RGB channels were modified
with intensity values of (R:+15, G:+20, B:+2), creating a yel-
lowish tint by predominantly enhancing the red and green com-
ponents.

The ”blue” distortion was implemented with RGB adjustments
of (R:+2, G:+15, B:+20), resulting in a bluish appearance
through stronger enhancement of the green and blue channels.

Similarly, the ”pink” distortion utilized RGB modifications of
(R:+20, G:+2, B:+15), producing a pinkish hue by amplifying
primarily the red and blue components.

These color modifications were applied incrementally across 10
steps, with each subsequent image receiving an additional frac-
tion of the total intensity adjustment. This methodical approach
allowed us to simulate a spectrum of realistic color variations
that might be encountered in practical geological imaging scen-
arios while maintaining control over the distortion parameters.

Original image 4th step 7th step 10th step

Figure 4. Example of increasing ”pink” color distortion degree.

In this work we used two models as trained segmentation mod-
els: ResUnet (Khvostikov et al., 2021) and customized PSPNet
with dilated convolutions and ResNet18 encoder. Both models
were trained on the original 64 images of LumenStone S1v2
train subset.

3. Proposed Method

Recently it was proposed to narrow the search for regions
for a partial segmentation mask to areas of epistemic uncer-
tainty (Depeweg et al., 2018) in a neural network model. To
search for areas of uncertainty, in this paper we adapt the hy-
perbolic active learning method (HALO) (Franco et al., 2024).

A method for calculating the hyperbolic radius is proposed in
the paper (GhadimiAtigh et al., 2022). To calculate the hyper-
bolic radius, we need to operate in the Poincaré ball hyperbolic
manifold, defined as the pair (DN , gD), where DN = {x ∈
RN : ∥x∥ < 1} is the manifold and gDx = (λx)

2gE is the as-

sociated Riemannian metric, λx =
2

1− ∥x∥2 is the conformal

factor and gE = IN is the Euclidean metric tensor. Neural net-
works first extract a feature vector v in Euclidean space, which
is subsequently projected into the Poincaré ball via exponential
map:

expx(v) = x⊕
(

v

∥v∥ tanh

(
λx∥v∥

2

))
, (1)

where x ∈ DN is the anchor and ⊕ is the Möbius hyperbolic
addition. The latter is defined as

h⊕ w =
(1 + 2⟨h,w⟩+ ∥w∥2)v + (1− ∥h∥2)w

1 + 2⟨h,w⟩+ ∥h∥2∥w∥2 , (2)

where h and w are hyperbolic vectors.

The hyperbolic radius is the Poincaré distance from the origin
of a ball to the projection h ∈ DN of a feature vector v. If
h ∈ DN is the projection of v, the hyperbolic radius is defined
as

d(h, 0) = 2 tanh−1(∥h∥). (3)

Pixel-by-pixel calculation of the hyperbolic radius allows us to
create a hyperbolic radius heat map. The example of hyperbolic
radius visualisation as a heatmap for the image from Fig. 5 is
shown in Fig. 6.

Figure 5. Image from the test set of LumenStone S1v2 test
subset.
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Figure 6. Hyperbolic radius map for the image from Fig. 5.

We hypothesize that large values of the radius correspond to
low confidence in the model. To test this, we created heatmaps
of segmentation model errors. These error maps are calculated
by taking the degree of distortion for each pixel in the image
and assigning it a value based on how fast the trained model
is making mistakes when distorting the image. The faster the
model makes mistakes, the larger the value for that pixel in the
error map will be.

Let Mi be the binary error mask at distortion degree i, n —
the total number of distortions (in our expirements n = 10), H
— the resulting heatmap. Therefore, the error heatmap can be
expressed as:

H =

n−1∑
i=0

(n− i) · (1−Mi). (4)

The example of error heatmap for the image from Fig. 5 is
shown in Fig. 7. The color scheme represents on what step of
consequent image distortion trained segmentation model makes
mistake (fails).

Figure 7. Error map for the image from Fig. 5.

To confirm our hypothesis, we calculated the weighted correl-
ation rw(X,Y ) between the hyperbolic radius (X) and the er-
ror maps (Y ) with the weigths w = Y for each mineral from

the dataset separately. We specifically chose weighted correla-
tion rather than standard correlation to penalize our uncertainty
detection method only in cases where the segmentation model
made errors but the uncertainty maps failed to highlight those
pixel areas. By using the error maps as weights (w = Y ), we
give greater importance to pixels where errors actually occur,
ensuring that our evaluation focuses on the method’s ability to
identify problematic regions rather than its performance on eas-
ily classified pixels.

rw =

∑
wi(Xi − X̄w)(Yi − Ȳw)√(∑

wi(Xi − X̄w)2
) (∑

wi(Yi − Ȳw)2
) (5)

where X̄w =
∑

wiXi∑
wi

— weighted average of X
X — flattened hyperbolic radius maps,
Y — flattened error maps,
w = Y — weights.

4. Implementation and Results

The proposed method was implemented using Python 3 and py-
torch.

The experiments were conducted on two segmentation mod-
els, PSPNet and ResUnet, at different stages of training: fully
trained (50 epochs), after 10 and 5 epochs respectively. The
results suggest that, for the more complex PSPNet model, the
hyperbolic radius is more closely correlated with the error maps
than for the simpler ResUnet.The results of the experiments on
Lumenstone S1v1 subset are presented in Tables 1 and 2.

Distortion ResUnet IOU per mineral
type Ccp Gl Py Tnt Brt

Fu
lly

-
tr

ai
ne

d Blue 0.43 -0.63 -0.37 0.20 0.22
Pink -0.02 0.00 -0.02 0.14 -0.11
Yellow -0.48 -0.18 -0.43 0.04 0.07

10
ep

oc
hs Blue 0.33 -0.63 -0.34 0.17 0.30
Pink -0.10 -0.02 0.00 0.17 -0.07
Yellow -0.34 -0.16 -0.42 0.05 0.05

5
ep

oc
hs Blue 0.56 -0.05 -0.09 0.08 -0.20

Pink 0.50 -0.01 0.12 -0.11 0.19
Yellow 0.10 0.04 -0.00 -0.07 0.08

Table 1. Weighted correlation between the error maps and the
hyperbolic radii for ResUnet model on LumenStone S1v1 Test.

Distortion PSPNet IOU per mineral
type Ccp Gl Py Tnt Brt

Fu
lly

-
tr

ai
ne

d Blue 0.24 -0.24 0.58 0.41 0.62
Pink -0.43 0.38 0.51 0.41 0.16
Yellow 0.39 -0.27 -0.17 0.57 -0.03

10
ep

oc
hs Blue 0.53 -0.41 0.48 -0.02 0.62

Pink -0.34 0.41 0.27 0.49 0.27
Yellow -0.02 -0.32 -0.09 0.45 -0.11

5
ep

oc
hs Blue 0.50 -0.30 -0.03 0.07 0.49

Pink -0.20 -0.36 0.32 0.49 0.07
Yellow 0.31 -0.32 -0.17 -0.04 -0.08

Table 2. Weighted correlation between the error maps and the
hyperbolic radii for PSPNet model on LumenStone S1v1 Test.

Hyperbolic radius maps have been post-processed to identify
areas of uncertainty that require further attention from geolo-
gists. Threshold filtering, dilation, and erosion were applied to
reduce noise and improve the clarity of the map.
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As a result, a we receive an image and a map with missing
markings. In order to expand the dataset, the specialist only
needs to annotate the selected minerals instead of annotating
the entire image as before. An example of such data can be
seen in Fig. 8. The image shows that the neural network model
is uncertain about only one mineral located in the upper right
corner. This significantly reduces a specialist’s workload.

Image Required annotation

Figure 8. An example of a map with required image annotation
from the LumenStone S1v2 dataset.

4.1 Alternative Approaches Comparison

We have considered four different methods for identifying areas
of uncertainty. The example of uncertainty maps, obtained by
these methods, are presented in Fig. 9. For each method, exper-
iments described in section 3 were conducted. The results for
ResUnet and PSPNet models are presented below in the Table 3.

1. Prediction entropy — one of the most commonly used
approach to uncertainty searching in different machine
learning tasks. Such as hydrological data analysis (Chap-
man, 1986), zero-shot learning in image classification
task (Chen et al., 2021), trajectory prediction in autonom-
ous riving (Distelzweig et al., 2025) and so on. Prediction
entropy is determined by the following formula

H[x] := −
∑
i

EPi · logEPi, (6)

where H[x] is the Shannon entropy (Shannon, 1948) of the
predictive output over the probability P = (P1, . . . PC).
In our task Pi — is the probability of belonging pixel to
i-th segmentation class and C — total number of classes.

2. Margin sampling — an approach that quantifies uncer-
tainty by measuring the difference between the probab-
ilities of the two most likely classes (Shin et al., 2021).
This metric highlights regions where the model struggles
to decisively choose between competing class predictions.
Margin sampling can be defined as the difference between
the first and the second most probable labels’ probabilities

Pmarg[x] := maxEPi −max2 EPi, (7)

where max2 means the second-largest component. The
lower the value of Pmarg[x], the higher the uncertainty in
the model’s predictions of pixel x.

This approach is also widely used in different tasks, in-
cluding active learning for semantic segmentation (Didari
et al., 2024).

3. Hyperbolic radius — approach, which was discussed in
details in section 3:

Rh[x] := d(xh, 0) = 2 tanh−1(∥h∥), (8)

where xh is the projection of embedding vector x to a hy-
perbolic manifold.

The hyperbolic radius has been studied in detail from
various perspectives, including hierarchical representa-
tions (Nickel and Kiela, 2017) and hyperbolic vision trans-
formers (Ermolov et al., 2022).

The results of experiments for hyperbolic radius are
presented in Tables 1 and 2.

4. Production of hyperbolic radius and entropy — a
method, which was originally introduced in HALO ap-
proach (Franco et al., 2024). It’s pixel-by-pixel multiplic-
ation of hyperbolic radius and entropy values:

PRh[x] := Rh[x] ·H[x]. (9)

Our experiments revealed several important findings about un-
certainty estimation for mineral segmentation in geological im-
ages:

1. Model-Specific Performance. All uncertainty estimation
methods showed better results on the larger PSPNet model
compared to the smaller ResUnet model. This suggests
that model complexity affects the reliability of uncertainty
estimation.

2. Hyperbolic Radius Effectiveness. The hyperbolic radius
consistently performed better than other methods across
both models. Its mathematical foundation in hyperbolic
space (Franco et al., 2024) allows it to accurately identify
uncertain regions at mineral boundaries, even when color
and texture vary significantly.

3. Method Selection Considerations. While the hyperbolic
radius was the best overall method for our datasets, al-
ternative methods also showed good performance with the
PSPNet model. This indicates that different uncertainty
measures may be suitable for different imaging condi-
tions. The hyperbolic radius can serve as a reliable default
method, with other approaches available as alternatives for
specific applications.

5. Conclusion

In this paper, we presented a method for automatic identifica-
tion of areas of uncertainty for a trained segmentation model
in order to further enrich the training dataset with images of
needed minerals. The method was tested on LumenStone data-
set with three varying levels of color distortion, using two dif-
ferent trained segmentation models — ResUnet and PSPNet.

Our comparative analysis of four uncertainty estimation ap-
proaches revealed notable differences in performance across
model architectures. While all approaches demonstrated satis-
factory results when applied to the larger PSPNet architecture,
the hyperbolic radius method exhibited slightly better perform-
ance. More significantly, when evaluated on the smaller Re-
sUnet architecture, the hyperbolic radius approach substantially
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Prediction entropy Margin sampling Hyperbolic radius Prodcution of radius and entropy

Figure 9. Uncertainty maps for image from Fig. 5, obtained by different methods.

Uncertainty Train Distortion ResUnet IOU per mineral PSPNet IOU per mineral
identifying stage type Ccp Gl Py Tnt Brt Ccp Gl Py Tnt Brt

Pr
ed

ic
tio

n
en

tr
op

y

Fu
lly

-
tr

ai
ne

d Blue -0.44 -0.66 -0.09 -0.18 -0.50 -0.06 -0.07 0.18 -0.04 0.52
Pink 0.02 0.03 -0.10 -0.26 0.24 0.17 0.35 0.21 0.26 0.03
Yellow 0.46 0.09 -0.04 -0.02 -0.58 -0.06 -0.05 -0.15 0.34 0.43

10
ep

oc
hs Blue -0.39 -0.65 -0.01 -0.26 -0.58 -0.05 -0.15 0.29 0.06 0.50

Pink 0.12 -0.02 -0.03 -0.30 0.22 0.34 0.18 0.10 0.43 0.27
Yellow 0.52 -0.02 -0.17 -0.10 -0.67 0.03 -0.13 -0.11 0.33 0.41

5
ep

oc
hs Blue -0.52 -0.34 0.35 0.01 -0.61 0.11 -0.05 0.33 0.02 0.20

Pink -0.34 -0.10 -0.25 -0.11 -0.08 0.17 0.08 0.14 0.08 -0.01
Yellow 0.13 0.25 0.40 0.07 -0.24 0.04 0.14 -0.06 0.10 0.22

M
ar

gi
n

sa
m

pl
in

g

Fu
lly

-
tr

ai
ne

d Blue 0.61 0.53 0.12 0.58 0.54 0.24 0.72 0.39 0.57 0.59
Pink 0.10 0.09 0.13 0.73 - 0.34 0.59 0.45 0.44 0.54 -0.08
Yellow -0.14 -0.27 -0.53 0.17 -0.43 -0.20 0.74 -0.09 0.51 0.38

10
ep

oc
hs Blue 0.62 0.48 0.07 0.60 0.60 0.14 0.62 0.35 0.06 0.56

Pink 0.04 0.19 0.12 0.71 -0.28 0.31 0.34 0.27 0.58 -0.17
Yellow 0.08 0.24 0.34 0.67 0.63 -0.04 0.63 -0.04 0.39 0.33

5
ep

oc
hs Blue 0.61 0.23 0.41 0.50 0.64 0.00 0.51 0.20 0.35 0.72

Pink 0.38 0.12 -0.29 0.60 -0.09 -0.02 0.00 -0.02 0.14 -0.11
Yellow -0.33 -0.23 0.04 0.58 0.28 0.41 0.60 0.49 0.64 -0.20

Pr
od

uc
tio

n
of

hy
pe

rb
ol

ic
ra

di
us

an
d

en
tr

op
y Fu

lly
-

tr
ai

ne
d Blue 0.12 -0.70 -0.63 0.08 -0.31 0.23 -0.37 0.47 0.16 0.61

Pink -0.12 -0.07 -0.03 -0.07 0.04 -0.33 0.35 0.36 0.40 0.15
Yellow -0.14 -0.27 -0.53 0.17 -0.43 0.35 -0.30 -0.18 0.49 0.09

10
ep

oc
hs Blue -0.43 -0.71 -0.68 0.08 -0.15 0.51 -0.48 0.41 -0.00 0.61

Pink -0.08 -0.13 0.07 0.05 -0.02 -0.21 0.32 0.18 0.44 0.26
Yellow 0.10 -0.28 -0.58 0.30 -0.44 -0.00 -0.35 -0.09 0.39 0.00

5
ep

oc
hs Blue 0.02 -0.32 -0.40 0.20 -0.61 0.48 -0.33 -0.00 0.09 0.48

Pink 0.09 -0.03 0.27 0.17 0.07 -0.14 -0.34 0.30 0.41 0.13
Yellow 0.09 0.21 0.04 0.23 -0.05 0.26 -0.25 -0.11 0.00 -0.06

Table 3. Weighted correlation between the error maps and the uncertainty map, obtained by various methods, for ResUnet and PSPNet
models on LumenStone S1v1 Test.

outperformed other methods, highlighting its robustness across
model scales.

Our work demonstrates that strategic sample selection guided
by uncertainty metrics can effectively identify the most inform-
ative regions in geological images, potentially reducing annota-
tion effort while maximizing model improvement. This is par-
ticularly valuable in mineral segmentation where expert annota-
tion is time-consuming and costly, and where certain mineral
classes or textural features may be underrepresented in training
data.

In the future, we plan to expand the training dataset based on
the information we receive, as well as to implement a full cycle
of neural network operation on images with preliminary color
correction, based on partial markings by a geologist on auto-
matically selected areas of uncertainty and integrate it into the
petroscope2 python package.

2 https://github.com/xubiker/petroscope

6. Acknowledgments

This work was supported by the Russian Science Foundation,
project no. 24-21-00061.

References

Chapman, T. G., 1986. Entropy as a measure of hydrologic
data uncertainty and model performance. Journal of Hydrology,
85(1), 111-126.

Chen, T., Kornblith, S., Norouzi, M., Hinton, G., 2020a. A
Simple Framework for Contrastive Learning of Visual Repres-
entations. 119, 1597–1607.

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.,
2020b. Big self-supervised models are strong semi-supervised
learners.

Chen, Z., Huang, Z., Li, J., Zhang, Z., 2021. Entropy-Based
Uncertainty Calibration for Generalized Zero-Shot Learning.
139–151.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W9-2025 
ISPRS Intl. Workshop “Photogrammetric and computer vision techniques for environmental and infraStructure monitoring, Biometrics and Biomedicine” 

PSBB25 , 9–11 June 2025, Moscow, Russia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W9-2025-123-2025 | © Author(s) 2025. CC BY 4.0 License.

 
128



Cohen, J. B., 1988. Color and color mixture: Scalar and vector
fundamentals. Color Research & Application, 13(1), 5–39.

Depeweg, S., Hernández-Lobato, J. M., Doshi-Velez, F., Ud-
luft, S., 2018. Decomposition of Uncertainty in Bayesian Deep
Learning for Efficient and Risk-sensitive Learning. Interna-
tional Conference on Machine Learning.

Didari, S., Hu, W., Woo, J. O., Hao, H., Moon, H., Min, S.,
2024. Bayesian Active Learning for Semantic Segmentation.
ArXiv. https://api.semanticscholar.org/CorpusID:271709402.

Distelzweig, A., Look, A., Kosman, E., Janjoš, F., Wag-
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