
Improving Gesture Recognition Efficiency with MediaPipe and YOLO-Pose 
 

 

Nikita Andriyanov1, Svetlana Mikhailova1 
1Financial University under the Government of the Russian Federation 

 

 

 

 

Keywords: Gesture Recognition, Keypoint Detection, Performance Algorithms, Computer Vision, MediaPipe, YOLO-Pose. 

 

 

Abstract 

 

This paper presents an improved combined approach for gesture recognition, combining a fast and lightweight keypoint detection 

algorithm using the MediaPipe method with a highly accurate YOLO-Pose model (integration of keypoints into the YOLO pipeline). 

This combination allows to drastically reduce the computational load compared to traditional convolutional networks while 

maintaining or even improving the recognition accuracy. As part of the extended study, in addition to the original experiment 

comparing different models on the HaGRID dataset, an additional experiment was implemented to evaluate the robustness of the 

system to changes in camera angle and gesture execution speed. The results show that the proposed method provides stable gesture 

recognition with mean Average Precision above 0.80 even under extreme conditions, which opens up prospects for its integration 

into mobile and embedded systems. We also tested different Artificial Intelligence ensembles to detect and classify gestures, but 

results for traditional methods are worse then YOLO-pose with MediaPipe. 

 

 

1. Introduction 

Gesture-based interfaces are increasingly in demand in a variety 

of fields, from augmented and virtual reality to disability 

assistance systems and smart home control. High interactivity 

without the need for physical contact makes gesture-based 

interfaces a flexible and intuitive means of interaction. 

However, to achieve an acceptable level of responsiveness and 

accuracy, many approaches require powerful hardware and 

significant computational resources, limiting their widespread 

adoption. 

 

The goal of this research is to develop a gesture recognition 

method that combines the accuracy of state-of-the-art 

convolutional network-based detectors with the low 

computational cost of lightweight algorithms. Specifically, we 

integrate MediaPipe, a library optimised for mobile platforms 

and embedded systems, with Yolo-Pose, an extension of the 

classical YOLO model for predicting keypoint localisation. This 

solution allows to redistribute the workload: MediaPipe quickly 

and accurately extracts a set of keypoints, which are then used 

to build spatio-temporal features, while Yolo-Pose provides 

high-speed detection of bounding boxes and pose refinement. A 

schematic of the pipeline's operation is shown in Figure 1. 

 

 
Figure 1. Gesture recognition pipeline architecture: keypoint 

detection (MediaPipe), spatio-temporal feature generation and 

classification (XGBoost). 

 

2. Related works 

Early approaches to gesture recognition were based on classical 

machine learning methods and simple features such as colour, 

texture and gradients (Mallat, 1989; Otsu, 1979). With the 

advent of deep convolutional neural networks (CNNs), 

automatic extraction of complex high-level features became 

possible (LeCun et al., 1998; Simonyan & Zisserman, 2014). 

Despite their high accuracy, such models require significant 

computational power and are not suitable for real-time systems 

on embedded devices. 

 

The breakthrough came with the introduction of architectures 

for fast pose detection, such as OpenPose (Cao et al., 2019) and 

PersonLab (Papandreou et al., 2018), which translate the task to 

skeletally modelled data.These methods have significantly 

reduced the amount of raw data, but are still computationally 

intensive for mobile applications. 

 

MediaPipe (Lugaresi et al., 2019) is a framework for building 

computer vision pipelines optimised for cross-platform and 

mobile devices. It is capable of real-time extraction of up to 33 

key points of the hand with minimal latency. 

 

The advent of YOLO-Pose (Dutta et al., 2022) allowed the 

integration of object detection and keypoint prediction into a 

single YOLOv8-based model. This provided accelerated 

performance while maintaining the accuracy typical of large 

CNNs. The combination of MediaPipe and Yolo-Pose leverages 

the strengths of each: MediaPipe quickly extracts the skeleton 

of the hand, while Yolo-Pose refines information about the 

context and position of the gesture in the frame (Lahiani et al., 

2015; Zhang et al., 2023). 

 

An additional area of optimization is CNN enhancement 

techniques, including pruning, quantization, and distillation 

(Andriyanov, 2022). 

 

3. Materials and methods 

We use the open HaGRID dataset (Kapitanov et al., 2022) 

containing 552,992 images of 18 gestures in FullHD resolution. 
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The images were captured under controlled studio conditions 

and in field scenarios, allowing for a variety of backgrounds, 

lighting and hand positions.  

 

The HaGRID (Hand Gesture Recognition Image Dataset) 

(Kapitanov, 2022) was employed in this study to address the 

gesture recognition challenge. Developed by SBERDevices, the 

dataset comprises 552,992 RGB images categorized into 18 

distinct gesture classes, with each class containing 

approximately 30,000 images to ensure balanced representation. 

Notably, 91% of the images are in FullHD resolution 

(1920×1080 pixels), capturing high-detail scenarios of real 

individuals performing gestures under diverse natural 

conditions. These include variations in lighting, camera distance 

(near to far), and hand positioning relative to the body, 

simulating real-world environments. 

 

HaGRID emphasizes demographic diversity, featuring at least 

34,700 unique participants aged 18–60 years, with a near-equal 

gender distribution (slightly skewed toward female 

representation). Each image is meticulously annotated with: 

- bounding boxes identifying hands performing target gestures, 

labeled by gesture class; 

- a leading_hand tag (right/left) to denote the dominant hand; 

- “not gesture” annotations for hands in neutral or non-

participatory positions. 

 

To enhance robustness, the dataset accounts for multi-hand 

scenarios: hands not involved in the target gesture are explicitly 

annotated, mitigating false positives and improving model 

performance under partial occlusions or cluttered backgrounds. 

 

An example of some of the gestures from the dataset is shown 

in Figure 2. 

 
Figure 2. Demonstration of example gestures from the HaGRID 

dataset. 

 

We proposed the original method based on pipeline from Figure 

1 but extended using some new steps. So our method consists of 

the following steps: 

Step 1. Pre-filtering of incorrect frames (missing keypoints or 

noise). 

Step 2. Detection of key points of the hand using MediaPipe 

Hands Landmark pre-trained models. 

Step 3. Detection of bounding boxes and pose refinement of the 

YOLO-Pose model. 

Step 4. Feature generation for the XGBoost classifier for 

Mixture of keypoints: 

1) Angles between skeletal hand segments (interphalangeal, 

wrist-wrist) 
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Step 5. Training and validation of the XGBoost classifier on 

80% of the data, testing on 20%. 

 

Figure 3 shows recognizable gestures from the base. 

 

 
Figure 3. Examples of gestures 

 

Feature extraction based on key points for gesture classification 

involves the application of spatial and temporal features to 

enhance the informativeness of the data. Spatial geometric 

features such as area of triangles, aspect ratio and angles help to 

analyze the physical features of gestures. For example, the 

change in area between key points can be used to recognize the 

“OK” gesture. Temporal dynamic features, including velocity 

and motion trajectories, can analyze kinematics and divide 

gestures into phases, which is critical for dynamic actions such 

as “swing”. 

 

This approach provides invariance to illumination and texture, 

and increases interpretability since each feature has an obvious 

physical meaning. Hybrid features can be integrated into 

various machine learning models such as SVM or LSTM. 

Experimental results show that the use of geometric features 

improves classification accuracy: 

Experimental results show that the use of geometric features 

improves classification accuracy.  
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Figure 4 shows a map of key points based on the MediaPipe 

library. 

 

 
Figure 4. MediaPipe Arm Key Points 

 

A similar pattern was used for the YOLO-pose markup. 

 

ControlNet is an extension of the diffusion image generation 

model (e.g., Stable Diffusion) designed to control the visual 

output by supplying additional conditions in the form of maps 

or images such as pose maps, depth maps, contour images, 

normal maps, and other forms of structural information. The 

primary goal of ControlNet is to enable precise and controlled 

editing of the generated images, while maintaining the creative 

flexibility and generation quality inherent in diffusion models. 

The basic ControlNet architecture builds on the already trained 

text-to-image model of the Stable Diffusion type. The 

difference is that instead of a purely textual prompt, image 

generation also depends on a structural input called a 

conditioning map. This map can be a pose skeleton, a depth 

map, selected contours, etc. In the case of gesture recognition, it 

is most logical to use a pose map derived from the key points of 

the hand extracted by MediaPipe. 

 

ControlNet uses a copy of the weights of the main Stable 

Diffusion U-Net block, trained separately to handle additional 

conditions.In this way, the U-Net model is split into two parallel 

threads: the main thread processes text-based latent 

representations and the auxiliary thread processes image-based 

representations with condition. Integration takes place by means 

of residual (residual) connections between layers.This preserves 

the original generative power of the model while adding 

controllability and accuracy. 

 

To ensure the versatility of the architecture, a module called 

‘Zero Convolution Layer’ is used - it is initialised with zeros, 

ensuring that prior to training, the impact of the new modality 

on the network is minimal.Subsequently, this module is trained 

by adapting to a given condition structure (e.g., pose) without 

violating the general properties of the underlying model. In this 

way, ControlNet effectively ‘adapts’ to an already trained 

model and does not require a complete re-training of all 

parameters, which speeds up development and makes it 

compatible with existing versions of Stable Diffusion. 

 

A special feature of ControlNet is its high flexibility: the same 

text query can be interpreted differently depending on the shape 

of the input card.For example, the prompt ‘cybernetic hand’ can 

be visualised as an outstretched hand with ‘V’ shaped fingers if 

the corresponding pose is given as input, or as a palm touching 

the screen if the condition is an open-pose from MediaPipe. 

For gesture-based image generation tasks, one of the most 

common ControlNet modes, pose, is used in the context of this 

paper.The key points extracted by MediaPipe (21 points on each 

hand) are connected into a skeletal structure, which is then 

visualised as a binary image (e.g. white lines on a black 

background). This map is fed into ControlNet at the same time 

as a textual cue that sets the overall context of the scene, for 

example:‘robotic arm reaching out of screen’, “superhero in 

action pose”, or “anime character casting spell with fingers”. 

 

The integration of ControlNet into the gesture recognition 

pipeline not only enables precise control over the output of 

generative models but also unlocks new opportunities for 

multimodal interaction. Users can manipulate both the pose of a 

character and the stylistic or semantic content of the generated 

image using hand gestures. For example, a “thumbs up” gesture 

could trigger portrait generation, a pointing gesture could shift 

focus to a landscape scene, while a circular hand motion might 

initiate animation or a transitional visual effect within an 

interface. 

 

Moreover, the ControlNet architecture exhibits high robustness 

to distortions and noise. Even in the presence of partial 

occlusion of keypoints (e.g., due to self-occlusion) or 

suboptimal hand poses, the system is capable of reliably 

interpreting the structural information, owing to its training on a 

large and diverse set of annotated data. This characteristic is 

particularly valuable in real-time applications where hand 

gestures may be captured from non-standard angles by a 

moving or fixed camera. 

 

In practice, ControlNet can be deployed for gesture-based 

image generation either locally on a GPU, in the cloud, or via 

API services. Open-source implementations based on PyTorch 

and the Hugging Face diffusers library are available for local 

execution. The generation speed depends on the hardware 

configuration; however, even on consumer-grade GPUs (e.g., 

RTX 3060/3080), a 512×512 pixel image can typically be 

synthesized within 2–5 seconds, making the method suitable for 

interactive use. 

 

In the context of this study, ControlNet serves as the final stage 

of the generation pipeline: once MediaPipe extracts the hand 

keypoints, they are converted into a pose map and passed, 

alongside a textual prompt, to ControlNet. The output is a 

synthesized image that visually corresponds to both the hand’s 

pose and the semantic context provided by the user. This 

transforms the system from a mere gesture classifier into a 

powerful multimodal interface, integrating computer vision, 

natural language processing, and generative modeling. 

Overall, the architecture of ControlNet demonstrates strong 

potential for a wide range of applications, including creative 

design, visual programming, digital storytelling, and 

educational or game-based interfaces. Thanks to its modular 

design and compatibility with existing image generation 

pipelines, it can be readily adapted to various use cases, 

including gesture-based control, pose recognition, augmented 

reality, and beyond. 

 

4. Results and Discussion 

The mean Average Precision (mAP) metric (for gesture 

detection and classification in the video) was used as the main 

metric. The average frame rate per second (FPS) on the 

HaGRID test data was also measured.  

 

To evaluate the performance of the proposed method, we 

compared the following variants: 

 

- YOLOv12x - basic detection model without keypoint 

detection; 

- MediaPipe + SVM; 

- MediaPipe + decision tree; 
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- YOLOv12-pose + SVM; 

- YOLOv12-pose + decision tree; 

- YOLOv12x + MediaPipe + XGBoost combination. 

 

Experiments were conducted on a workstation with an Intel 

Core i9-10900K processor (10 cores, 3.7-5.3 GHz), an NVIDIA 

RTX 3080 graphics accelerator (10 GB GDDR6X), 32 GB of 

DDR4 RAM and an NVMe SSD. 

 

Table 1 shows the comparison results of different approaches in 

quality and performance. 

 

Model mAP FPS 

(average) 

YOLOv12x 0.82 12 

MediaPipe+SVM 0.74 25 

MediaPipe+Decision Tree 0.76 30 

YOLOv12-pose+SVM 0.67 10 

YOLOv12-pose+Decision Tree 0.69 11 

YOLOv12x+MediaPipe+xgBoost 0.86 20 

Table 1. Comparison of Gesture Recognition. 

 

The poor results of YOLO-pose may be due to the undertraining 

of the model.However, we observe that the approach combining 

YOLO and MediaPipe improves the model quality by 4 

percentage points. It should be noted that MediaPipe includes 

optimized models that can be implemented on CPUs. 

 

The results demonstrate that the combined method achieves the 

highest mAP at an acceptable FPS level sufficient for real-time 

applications. 

 

Furthermore extended experiment was produced. It investigates 

robustness to viewing angle and speed of gesture execution. 

 

Purpose of the experiment include estimation of proposed 

method in different angles of view. 

To test how varying the viewing angle (30°, 45°, 60°) and 

gesture execution speed (0.5, 1 and 2 gestures/s) affects 

recognition performance. 

 

For each of the 18 gestures, subsets of 1000 images were 

generated for each pair of conditions (angle × speed). Total: 18 

× 3 × 3 = 162 sets (162,000 images). 

 

We also use mAP for each combination and estimate standard 

deviation of mAP within each gesture. 

 

We use one-factor analysis of variance (ANOVA) to assess the 

statistical significance of the effect of parameters. 

 

Table 2 shows mAP at different viewing angles and speeds. 

 

Angle Speed mAP StdDev 

30° Slow 0.88 0.02 

30° Normal 0.86 0.03 

30° Fast 0.83 0.05 

45° Slow 0.87 0.02 

45° Normal 0.85 0.03 

45° Fast 0.82 0.06 

60° Slow 0.86 0.03 

60° Normal 0.84 0.04 

60° Fast 0.80 0.07 

Table 2. Robustness Investigation. 

 

One-factor ANOVA confirmed a statistically significant effect 

of angle (p < 0.01) and velocity (p < 0.01) on mAP. 

 

The analysis of Table 1 shows that among all tested methods the 

combined approach YOLOv12x + MediaPipe + XGBoost 

demonstrates the best accuracy (mAP = 0.86). This supports the 

hypothesis of the synergistic effect of combining easy and fast 

keypoint localisation with high performance classification. In 

addition, this method maintains an acceptable processing speed 

of about 20 frames per second, which allows it to be used in 

real-time tasks. 

 

If we compare MediaPipe in combination with simple classifiers 

(SVM and decision tree), we see mAP at 0.74-0.76. This means 

that even without the YOLO component MediaPipe can extract 

quite informative features, especially in stationary conditions. 

However, they lose out to the more powerful XGBoost-based 

ensemble, indicating the importance of sophisticated analyses of 

spatio-temporal features, especially in the case of variable 

gestures. 

 

The behaviour of the YOLOv12-pose model is also of interest. 

Despite its potential power in localising key points, the accuracy 

in combination with SVM and decision tree does not exceed 

0.69. This may be due to the fact that the model is not adapted 

to the features of HaGRID annotations or that its built-in 

architecture is not so efficient without additional feature 

aggregation. 

 

The analysis of Table 2, reflecting the model's robustness to 

external parameters, confirms stable performance even when the 

viewing angle and gesture speed are changed. The greatest 

decrease in accuracy occurs at an angle of 60° and fast speed (2 

gestures/s), where mAP drops to 0.80. This is logical: at high 

angles, some key points may become invisible (self-occlusion), 

and high speed leads to image blurring or incomplete gesture 

capture. However, a decrease of 6 percentage points is 

considered moderate and acceptable for most practical 

applications. 

 

It can also be seen how accuracy decreases with increasing 

speed and angle. The smoothness of the mAP decline confirms 

that the model is not retrained for specific conditions and is able 

to generalise to variable situations. 

 

Additionally, statistical analysis (ANOVA) showed that both 

factors - angle of view and speed of movement - have a 

statistically significant effect on accuracy, but their effect is 

additive, i.e. the model degrades smoothly rather than abruptly, 

which also speaks in favour of its stability. 

 

Thus, the proposed method has a balance between accuracy, 

stability and performance, which makes it applicable in a 

variety of scenarios from industrial interfaces to user 

applications. and perspectives 

 

Figure 5 shows the results of processing different gestures using 

proposed method. 

 

The MediaPipe + YOLO-Pose + XGBoost model can interpret a 

specific gesture as one of the conditional commands to generate 

an image. For example, Table 3 shows different variants for 

using it in ControlNet (L. Zhang, 2023). 
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Figure 5. Results of processing 

 

 

Hand Gesture Interpretation Input for 

ControlNet 

Fingers in a ‘V’ 

shape 

 

‘create landscape’ prompt = 

"mountain view" 

Palm Up ‘add light’ conditioning = 

brightness mask 

 

Fist ‘generate portrait’  pose + face 

prompt 

Table 3. Interaction with ControlNet. 

 

Further, based on the recognised gestures, interaction with 

image generation systems, e.g. using ControlNet, can be 

implemented. The key points of the hand extracted using 

MediaPipe can be converted into a pose map, a structure that is 

used as a control input to the ControlNet model. Such a map can 

be constructed by visualising 21 key points and connecting 

them with lines to create a skeletal representation of the hand on 

a black and white background. ControlNet supports various 

conditional control modes, including pose and openpose, which 

makes integration particularly convenient. 

 

In the next step, the visual position of the hand (e.g. an 

outstretched palm or a clenched fist) can be interpreted as not 

only a command, but also as a pose to generate an image. This 

allows unique scenes to be generated in combination with a 

textual description. For example, the combination: Gesture → 

skeleton → ControlNet image together with the prompt 

‘cybernetic hand reaching out’ creates an image of a character 

with an outstretched arm. This control gives you more freedom 

and visual accuracy when generating images. 

 

An example of a practical scenario could be as follows. A 

camera captures a user demonstrating a certain gesture. This 

gesture is categorised as a ‘create character with wings’ 

command. The pose is then formed from key points, visualised 

and fed to ControlNet as a conditioning image. In combination 

with the text prompt, the Stable Diffusion model creates an 

image of a character with the desired body configuration - for 

example, an outstretched arm or flight. This sets the stage for 

the use of gesture recognition in creative interfaces and VR/AR 

scenarios. 

 

The advantages of this approach are clear: it requires no 

keyboard input, scales easily to different devices, and can 

provide intuitive real-time interaction, making the image 

generation process more visual, interactive, and adaptive to user 

gestures. between accuracy, robustness, and performance, 

making it applicable in a variety of scenarios from industrial 

interfaces to custom applications. and perspectives. 

 

Figure 6 demonstrates ControlNet application using gestures. 

 

 
Figure 6. Example of image generation using gestures 

 

5. Conclusions 

In this work, a combined method for gesture recognition was 

proposed and experimentally validated, integrating MediaPipe, 

Yolo-Pose, and the XGBoost classifier. This approach achieved 

high accuracy (mAP = 0.86) with acceptable processing speed 

(around 20 frames per second), making it suitable for real-time 

systems. Unlike traditional CNN models, the proposed 

architecture is effective even on consumer-grade hardware and 

maintains quality across a variety of background conditions and 

hand positions. 

 

Additionally, experiments demonstrated the method's 

robustness against variations in viewing angles and hand 

movement speeds. Even under unfavorable conditions (60° 

angle, high speed), the accuracy remained at mAP = 0.80. This 

result confirms the model's ability to generalize and its 

applicability in practical scenarios—ranging from user 

interfaces to robotic systems and VR/AR environments. By 

utilizing key points and analytical features, the system shows 

resilience to shifts, partial occlusions, and noise. 

 

Particular attention was given to the integration of recognized 

gestures with the image generation system ControlNet. It was 

shown that hand key points can be used as input structures for 

the generative model, allowing users to specify not only 

commands but also visual representations. This expands the 

scope of application from recognition to multimodal interaction, 

encompassing computer vision and generative neural networks. 

In the future, this approach could serve as a foundation for 

creating intuitive and adaptive interfaces in creative, 

educational, and interactive applications. 
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