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Abstract

The reconstruction of partially destroyed buildings is a critical aspect of architectural preservation, disaster recovery, and urban
planning. Accurate reconstruction not only aids in restoring the historical and cultural significance of structures but also plays a
vital role in ensuring safety and functionality in urban environments. Traditional methods often struggle with incomplete data,
necessitating the exploration of advanced techniques that can improve reconstruction accuracy and efficiency. In this paper, we
propose a novel approach for 3D inpainting of partially destroyed models using a diffusion neural network, termed Restore3D.
This method leverages the principles of diffusion processes to iteratively refine and reconstruct missing sections of 3D wireframe
structures. By integrating temporal features into the inpainting process, Restore3D effectively captures the intricate details and
spatial relationships within the models, providing a more holistic reconstruction compared to conventional techniques. Our experi-
mental results demonstrate that Restore3D not only competes with but also outperforms modern baselines in 3D model inpainting
tasks. The evaluation metrics indicate significant improvements in reconstruction fidelity and detail preservation, showcasing the
potential of our approach in practical applications. The results highlight the effectiveness of leveraging deep learning techniques
for complex reconstruction challenges. In conclusion, this study presents Restore3D as a promising method for the reconstruction
of partially destroyed 3D models. The encouraging results underscore the potential of deep learning in enhancing reconstruction

accuracy, paving the way for future research and application in architectural restoration and urban planning.

1. Introduction

The reconstruction of partially destroyed objects of cultural her-
itage is a crucial endeavor in preserving the historical and cul-
tural narratives embedded in these sites. Such efforts are partic-
ularly vital for ancient cities in the Middle East and abandoned
churches in central Russia, where the ravages of time and con-
flict have left significant portions of these invaluable treasures
in decay. The task of reconstructing these culturally significant
structures involves filling in the gaps that time or destruction has
created, allowing us to appreciate and study these heritage sites
in their intended grandeur.

Traditionally, 3D object completion methods have been em-
ployed to undertake this monumental task. These methods range
from manual reconstructions based on historical records and
photographs, to more sophisticated computational approaches
using 3D scanning and modeling technologies. Recent advance-
ments have introduced machine learning techniques, such as
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Figure 1. Our Restore3D framework is focused on the
prediction of the 3D model of partially destroyed cultural
heritage.

deep neural networks, which have shown promise in automating
parts of the reconstruction process by predicting missing geo-
metries and textures. However, while these methods have im-
proved the efficiency and accuracy of 3D reconstructions, they
often fall short in generating the high-fidelity results needed to
restore cultural heritage artifacts that possess intricate details
and unique characteristics.

Recent advancements in neural methods for 3D reconstruction
have significantly pushed the boundaries of what is achievable
in the field of cultural heritage restoration. Among the state-
of-the-art techniques, RenderDiffusion (Anciukevicius et al.,
2022a) and NeRFiller (Weber et al., 2024) have emerged as
prominent approaches. RenderDiffusion leverages image diffu-
sion techniques to enhance the quality and resolution of 3D re-
constructions, inpainting missing parts of models with remark-
able accuracy. Similarly, NeRFiller employs generative 3D in-
painting to complete scenes, utilizing neural radiance fields to
synthesize missing geometric details and textures. These meth-
ods have demonstrated impressive capabilities in completing
and refining existing 3D models, contributing substantially to
the automation of restoration processes.

Despite these advancements, a critical challenge remains in the
realm of cultural heritage preservation: generating a complete
3D model of a building from a single photograph of its par-
tially destroyed state. Existing methods like RenderDiffusion
and NeRFiller (Weber et al., 2024) primarily focus on the com-
pletion of pre-existing 3D models and do not address the unique
challenge of reconstructing a full model from a limited, singu-
lar viewpoint. This gap in capability requires novel approaches
that can infer complex structures and details from minimal input
data, thereby enabling the reconstruction of heritage sites that
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lack extensive photographic documentation. The development
of such technologies would represent a significant leap forward,
facilitating the safeguarding of historical sites with limited ex-
isting records.

The primary objective of this paper is to develop a neural model
capable of reconstructing the original appearance and complete
3D model of partially destroyed objects of cultural heritage us-
ing a single photograph. This ambitious goal addresses the crit-
ical gap in current methodologies, which lack the ability to gen-
erate detailed and accurate 3D reconstructions from minimal
input data. By harnessing the power of diffusion models, our
approach aims to infer and restore the intricate geometries and
textures that define these cultural artifacts, ensuring that their
historical and aesthetic values are preserved for future genera-
tions. Through this research, we aim to provide a transformat-
ive tool that not only aids in the preservation of cultural heritage
but also expands the capabilities of current generative methods
in 3D reconstruction.

In this paper, we present significant contributions to the field
of 3D inpainting through the development of novel methodolo-
gies and resources. First, we introduce the Restore3D model, a
pioneering approach specifically designed for single-image 3D
object reconstruction and the inpainting of missing parts. This
model leverages the power of diffusion processes to generate
detailed and accurate 3D representations from limited visual
input, addressing the complex challenge of reconstructing ob-
jects from incomplete data. Second, we provide a new Des-
troyed2Restored dataset, which serves as a rich resource for
research by offering an unpaired collection of images captur-
ing objects of cultural heritage that are labeled as either par-
tially destroyed or restored. This dataset is instrumental in un-
derstanding the nuances of cultural heritage preservation and
provides a diverse range of examples for testing and valida-
tion. Lastly, we conduct a comprehensive evaluation of our
Restore3D model and compare it with existing baselines using
the Destroyed2Restored dataset, demonstrating the effective-
ness and robustness of our approach in achieving high-quality
3D reconstructions and inpainting results. Through these contri-
butions, we aim to advance the capabilities of generative model-
ing for 3D scenes, particularly in the context of cultural heritage
objects.

The aim of this work is to develop a novel neural model,
Restore3dD, specifically designed to enable the rapid recon-
struction of destroyed buildings from a single image. This ap-
proach addresses the urgent need for efficient restoration tech-
niques in cultural preservation and disaster recovery scenarios,
where detailed architectural data is often sparse or nonexistent.
By leveraging the capabilities of diffusion models, our method
seeks to reconstruct detailed 3D models of buildings using min-
imal visual input, allowing for precise inpainting of missing or
damaged portions. Through this work, we strive to provide a
powerful toolset for architects, historians, and preservationists,
facilitating the digital restoration of invaluable cultural heritage
and enabling the visualization of structures that might otherwise
remain lost to time.

In this paper, we introduce the Restore3D model, an innovat-
ive approach for 3D inpainting and reconstruction of cultural
heritage objects from a single image. Our model builds upon
the foundation of the Stable diffusion model and integrates with
the SSZ model, an Image-to-Voxel Model Translation frame-
work designed for 3D scene reconstruction and segmentation.

The Restore3D model works by processing an image of a par-
tially destroyed building, where we identify and mask the des-
troyed regions, similar to the SmartBrush model, and fill these
areas with Gaussian noise. The core strength of our model lies
in providing a ’restored’ prompt to the diffusion model, which
facilitates the reverse diffusion process, effectively recovering
and reconstructing the masked regions with high fidelity. Sub-
sequently, the inpainted 2D image serves as an input to the
SSZ model, which constructs a detailed 3D voxel model of the
object, capturing its intricate structure and historical essence.
Through this integrated framework, presented in Figure 1, we
offer a powerful method for digitizing and preserving cultural
heritage, enabling a seamless transition from 2D inpainting to
comprehensive 3D reconstruction.

The main contributions of the study are the following:

e the Restore3D model, a pioneering approach specifically
designed for single-image 3D object reconstruction and the
inpainting of missing parts

e new Destroyed2Restored dataset, which serves as a rich
resource for research by offering an unpaired collection
of images capturing objects of cultural heritage that are
labeled as either partially destroyed or restored

e cvaluation of the Restore3D model and baselines on Des-
troyed2Restored dataset

The experimental evaluation of our Restore3D model reveals
promising results, showcasing its effectiveness in the realm of
3D model inpainting when benchmarked against two modern
state-of-the-art models. Our approach demonstrates competit-
ive performance, particularly excelling in scenarios where re-
constructing missing sections of buildings is crucial. Unique to
the Restore3D model is its ability to generate style-consistent
reconstructions, seamlessly integrating the restored parts with
the original architectural aesthetics. This capability is pivotal
in preserving the integrity and cultural significance of heritage
structures. The findings underscore the potential of our model as
a valuable tool for cultural preservation initiatives, highlighting
its superior ability to maintain stylistic coherence in reconstruc-
ted imagery, a feat unmatched by existing methodologies.

The potential future implications of our Restore3D model are
significant, particularly in the preservation and restoration of
cultural heritage. The model’s ability to rapidly reconstruct ob-
jects from a single image makes it invaluable during archaeolo-
gical expeditions, where time and resources are often limited.
By enabling quick and accurate 3D reconstructions, our model
can assist researchers in documenting and analyzing artifacts in
situ before they degrade further. Additionally, the Restore3D
model’s capacity to generate comprehensive 3D reconstructions
from a limited number of archived photos opens new aven-
ues for revitalizing historical records and reconstructing lost or
damaged heritage sites. This capability not only aids in aca-
demic research but also enhances public engagement and edu-
cation by providing immersive and interactive representations
of cultural heritage, allowing broader access to our shared his-
tory. Through these applications, the Restore3D model stands
to make a lasting impact in fields such as archaeology, history,
and digital preservation.

2. Related Work

Our model uses two kind of neural models: 2D Inpainting mod-
els and single image 3D reconstruction models. The following
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Figure 2. Overview of the proposed Restore3D framework.

section provides review of the related work on these families of
neural models.

2.1 2D Inpainting

Image inpainting is a crucial process in digital image restora-
tion, aimed at filling in missing pixels in a manner that appears
plausible and seamless. This task is essential for repairing dam-
aged images, removing unwanted objects, and enhancing visual
content. The methodologies employed for image inpainting are
broadly categorized into traditional techniques and those lever-
aging deep learning. Traditional methods rely heavily on math-
ematical reasoning and utilize existing information within the
image to infer and reconstruct missing areas. Notable examples
include the model proposed by Bertalmio (BSCB) (Bertalmio
et al., 2000) as well as the Criminisi model (Criminisi et al.,
2004). These foundational models have inspired subsequent de-
velopments such as the Total Variation (TV) model (Shen and
Chan, 2002) and the PatchMatch model (Barnes et al., 2009).
While traditional algorithms have demonstrated effectiveness in
addressing minor defects, they often fall short when confronted
with extensive damage or complex textures.

In contrast, the field of image inpainting has experienced a trans-
formative shift with the advent of deep learning techniques,
driven by advancements in computational power and hardware
capabilities. The introduction of architectures like AlexNet (Kr-
izhevsky et al., 2012, Kniaz et al., 2021a, Knyaz and Kniaz,
2020), VGG networks (Simonyan and Zisserman, 2015), Res-
Net (He et al., 2016), and Generative Adversarial Networks
(GAN) (Goodfellow et al., 2014, Mizginov et al., 2021, Kniaz
and Bordodymov, 2019) has significantly propelled the devel-
opment of sophisticated image inpainting algorithms. Early
deep learning models such as the Context Encoder (Pathak et
al., 2016), Globally and Locally Consistent Image Completion
(GLCIC) (Iizuka et al., 2017), Generative Multicolumn Convo-
Iutional Neural Networks (GMCNN) (Wang et al., 2018), Gen-
erative Image Inpainting with Contextual Attention (CA) (Yu et

al., 2018), and Edge Connect (Nazeri et al., 2019) have em-
ployed encoder-decoder structures combined with GAN dis-
criminators to optimize generative adversarial loss between in-
painted and real images. These innovations have led to more
realistic restorations by leveraging both global context under-
standing and local detail refinement.

Moreover, several image inpainting models have adopted the U-
Net architecture (Ronneberger et al., 2015) due to its efficacy in
handling various scales of defects through its unique encoder-
decoder structure with skip connections. Models such as Shift-
Net (Yan et al., 2018), Deep Fusion Network (DFNet) (Hong et
al., 2019), Partial Convolutions (Liu et al., 2018) designed for
random defects, and Pyramid-Context Encoder Network (PEN-
Net) (Zeng et al., 2019) exemplify this approach. These U-Net-
based models often incorporate GAN’s generative adversarial
loss to enhance the realism of restored images further. Con-
sequently, many studies categorize these models under both U-
Net class and GAN-based image inpainting models due to their
dual reliance on structural encoding-decoding mechanisms and
adversarial training paradigms. This dual classification under-
scores their capability to produce credible and visually coherent
results even when faced with complex inpainting challenges.

2.2 Single Image 3D Reconstruction and Inpainting

The field of 3D model inpainting has evolved considerably over
the years, beginning with traditional handcrafted photogram-
metry methods that leverage stereo pairs and manual recon-
struction techniques. These early approaches relied heavily on
skilled human intervention and detailed measurements to gen-
erate 3D models, often involving complex processes to match
and blend images for reconstructing missing parts of an ob-
ject or scene. As technology advanced, the introduction of
the structure-from-motion (SfM) pipeline (Remondino and El-
Hakim, 2006) marked a significant improvement by automating
the process of 3D reconstruction. SfM utilizes a series of over-
lapping images to estimate camera positions and recover dense
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Figure 3. Example images from the dataset used for fine-tuning the Flux. 1 model.

point clouds, eventually constructing a coherent 3D model of the
scene. However, these methods are limited by the quality and
number of input images available. In recent years, neural-based
techniques like RenderDiffusion (Anciukevicius et al., 2022b)
and NeRFiller (Weber et al., 2023) have further revolutionized
3D inpainting. RenderDiffusion, for instance, applies diffusion
models to enhance and complete 3D reconstructions, refining
details and textures with high fidelity. NeRFiller, on the other
hand, employs generative neural radiance fields to effectively
synthesize missing components in 3D space, achieving impress-
ive results in scene completion. These modern approaches mark
a significant shift toward using artificial intelligence to tackle
the challenges of 3D model inpainting with reduced dependency
on extensive input data.

The rapidly evolving landscape of 3D inpainting has seen signi-
ficant advancements through the integration of neural radiance
fields and diffusion models. One noteworthy contribution is
the SPIn-NeRF dataset (Mirzaei et al., 2023), which centers on
multiview segmentation and perceptual inpainting using neural
radiance fields. This dataset facilitates the exploration of ro-
bust methods to segment and reconstruct missing portions of a
scene, providing a pivotal resource for training and evaluating
advanced inpainting models. Another important development is
the Instruct-NeRF2NeRF method (Haque et al., 2023), which
introduces an innovative approach for instruction-based editing
of NeRFs utilizing a 2D diffusion model. This enables intuitive
modifications to existing NeRFs, offering users a powerful tool
to edit and enhance 3D scenes with minimal manual interven-
tion. Extending these capabilities further, InNNeRF360 (Wang et
al., 2023) presents a text-guided framework for 3D-consistent
object inpainting across 360-degree neural radiance fields. By
incorporating text inputs, InNeRF360 allows precise and coher-
ent inpainting over complete panoramic views, ensuring high
levels of detail and continuity. These advancements underscore
a growing trend towards using machine learning to achieve in-
tricate and contextually aware reconstructions in the realm of
3D inpainting.

Other approaches for 3D reconstruction take in account rein-
forcement learning (Kniaz et al., 2021b, Kniaz, 2015, Kniaz,

2014), structured light techniques (Knyaz, 2012) and deep volu-
metric U-nets with skip connections (Knyaz et al., 2019, Kniaz
et al., 2020). The important task in the field of 3D reconstruc-
tion is a development of a holistic validation technique that
compares the ground truth model with respect to the predicted
model (Mizginov and Kniaz, 2019, Knyaz and Moshkantsev,
2019).

3. Method

The aim of our Restore3D framework is simulatenous estim-
ation of the original appearance of a partially destroyed ob-
ject of cultural heritage and synthesis of its 3D model. Our
framework operates in four domains. The input image domain
A € RU*"*3 the depth map domain B € R*“*", the synthet-
ically restored image domain C € R**"*3 and the implicit 3D
model domain D = {x € R¥|f(x) = 0}, where D is the sur-
face of a given 3D object represented by an implicit function
f(x) that represents a signed distance function from the object’s
surface to a given point in a 3D volume x (Wang et al., 2021,
Yang et al., 2024c). We use the marching cube algorithm to
transform the implicit 3D model representation to the explicit
3D mesh that can be utilized by 3D artist and scientists in the
field of history of architecture. The overview of our framework
is presented in Figure 2.

The rest of this Section presents details on the architecture of
our framework and provides a brief description of fine-tuning
procedure leveraging the Low-rank adaptation approach.

3.1 Framework Overview

Our framework operates by receiving a single color image
A € A presenting a partially destroyed object of cultural her-
itage. Our approach is generation of an synthetically restored
image C' € C using a diffusion model. Following the recent
research (Margaryan et al., 2024) on the depth-guided image
synthesis with diffusion models, we assume that an additional
input channel representing the depth map B for an image A
will improve the stability of prediction of the restored image C.
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Hence, we firstly estimate a depth map B for an image A using
the DepthAnythingV2 model (Yang et al., 2024a, Yang et al.,
2024b).

After that, we leverage the Flux.1 (Labs, 2024) model to per-
form depth-guided image synthesis using the original image
A, and its depth map B as an input. We additionally provide
a textual prompt 7" that indicates that a translation from the
destroyed to the restored state is required. The Flux.1 pre-
dicts the restored image C that is processed by the Hunyan3D
model (Yang et al., 2024c¢) to predict the implicit representation
of a 3D model as signed distance function f(x). Processing of
the object volume with a marching cubes algorithms produce the
required explicit 3D model representation of the restored state
of the given object of cultural heritage.

3.2 Low Rank Adaptation

Fine-tuning large diffusion models is a resource-intensive pro-
cess, often requiring significant computational power and
memory resources. The Low-Rank Adaptation (LoRA) tech-
nique offers a solution by enabling the fine-tuning of these mod-
els with a substantially reduced number of parameters. This
is achieved by incorporating smaller matrices into the attention
weights of the model, which typically results in a reduction of
trainable parameters by approximately 90

LoRA operates by freezing the pre-trained model weights and
introducing trainable rank decomposition matrices into various
layers of the model. Unlike traditional fine-tuning methods that
require updating all model parameters, LoORA employs low-rank
decomposition to break down weight updates into smaller, more
manageable matrices. This strategy significantly diminishes the
number of parameters that need to be trained while preserving
the model’s efficacy. For instance, when applied to GPT-3
175B, LoRA achieved a reduction in trainable parameters by
a factor of 10,000 and decreased GPU memory requirements by
threefold compared to conventional full fine-tuning methods.

The mechanism of LoRA involves adding pairs of rank de-
composition matrices specifically to transformer layers, with a
primary focus on attention weights. During inference, these ad-
apter weights can be seamlessly integrated with the base model
without incurring additional latency overheads. This makes
LoRA particularly advantageous for adapting large language
models to specific tasks or domains while keeping resource de-
mands within practical limits. The ability to merge adapter
weights back into the base model ensures that there is no in-
crease in computational delay during inference.

LoRA presents several key advantages, particularly in terms
of memory efficiency and training features. By storing only
adapter parameters in GPU memory and keeping base model
weights frozen—potentially in lower precision—LoRA facilit-
ates the fine-tuning of large models even on consumer-grade
GPUs. Furthermore, it supports native integration with min-
imal setup and offers compatibility with QLoRA (Quantized
LoRA) for enhanced memory efficiency. Adapter management
is streamlined through features that allow for saving adapter
weights during checkpoints and merging them back into the
base model as needed. In our work, we leverage LoRA to fine-
tune the Flux model for 2D generative inpainting tasks involving
partially destroyed objects of cultural heritage, demonstrating
its practical applicability and effectiveness in specialized do-
mains.

4. Evaluation

We evaluated our Restore3D framework and two baselines us-
ing the collected Destroyed2Restored. The following section
presents details on the evaluation protocol and qualitative and
quantitative results for the task of the prediction on the restored
3D model of a partially destroyed object of cultural heritage. Fi-
nally, we present a brief ablation study proving the necessity of
all components of our Restore3D framework.

oo v I

Figure 4. Implementation of the proposed Restore3D
framework using ComfyUI.

4.1 Evaluation Protocol

We use the following evaluation protocol. For each model we
use the training split of the Destroyed2Restored dataset includ-
ing 5k images of 5 objects of cultural heritage to train the model.
We use the test split including 200 images of two other objects
of cultural heritage for the evaluation.

We perform evaluation in terms of 3D Intersection over Union
and Frechet Inception Distance (Heusel et al., 2017) between
the real images of object and synthetic renderings of its digitally
restored 3D model.

4.2 Qualitative Evaluation

We evaluate our Restore3D and baselines qualitatively on the
task of reconstruction of a restored 3D model of a partially des-
troyed object of cultural heritage. Qualitative results for our
framework and baselines are presented in Figure 5.

3D Model

Input

2D Inpainting

Figure 5. Qualitative results for our Restore3D framework and
baselines.
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4.3 Quantitative Evaluation

We evaluate our Restore3D and baselines qualitatively in terms
of 3D intersection over union and Frechet Inception Distance
(FID) (Heusel et al., 2017). Results are presented in table 1.
The usage of a modern diffusion architecture and an implicit
3D model representation allows our Recover3D model surpas
modern 3D Inpainting models.

Table 1. Quantitative comparison between our Recover3D
framework and baselines.

Model 3D IoU| FID
Recover3D 0.371 | 23
NeRFiller (Weber et al., 2024) 0.261 | 65
RenderDiffusion (Anciukevicius et al., 2022b)| 0.201 | 45

4.4 Ablation Studies

We evaluate the necessity of all components of our model by
performing 3D model reconstructions using an ablated version
of our model.

We compare the performance of our Restore3D using empty or
wrong inputs for the depth map input B and the reference im-
age A. Results are presented in Figure 6. The different reference
images A inputs are given for different columns. The different
depth maps B are given for different rows. The resulting im-
age C is located on the intersection of a given row and a given
column.

Target

Wrong Empty

Target

Wrong

Empty

Figure 6. Evaluation of ablated versions of our Restore3D
framework.

It’s obvious that the depth map B defines the shape of the object
in the output image. The reference image A provides the ref-
erence style for the output image. The empty reference image
A causes the background to be empty. While the empty depth
map B completely removes any relation with the shape of the
original object.

The ablation study proves the necessity of all components of our
Restore3D model. Only the combination of the input reference
image and depth map allows independent control of the shape
and style of the object in the output image.

4.5 Discussion

The main application of our Recover3D framework is a syn-
thesis of a draft prototype of a reconstruction of a partially des-
troyed 3D object. Still, the consistency with the architectural
style of a given epoch is an important requirement for scientists
in the field of history of architecture.

The models predicted from a single image in Figure 5 and Fig-
ure 6 are highly realistic and have elaborate architectural ele-
ments. However, it can be noted that probabilistic nature of a
neural diffusion model took some liberties in modeling details.
That does not allow us to speak about the completeness of the
development of the method for obtaining a historically sound
three-dimensional models from a single image of a partially des-
troyed object.

This is expressed in changes in the shape and number of win-
dows on the facades of buildings, the appearance of columns
where they should not be.

Such a freedom in the historical style appearing in the recon-
struction can be explained if we take into account that the time
of construction of the building is not provided to the model
in the input prompt. Also no differentiation into architectural
styles was provided in the training dataset (Figre 3) that was
used to fine-tune the Flux.1 model. The dataset was collected
by crawling 20k of open source images of churches from the
internet. Hence even some images of churches with a modern
architecture were used for training.

It is obvious that the reason for these errors is the imperfection
of the training methodology. Firstly, for architecture, where ar-
chitectural details are significant because they are a kind of style
markers, the training samples and the modeled objects must be-
long to the same styles. Secondly, it is necessary to take into ac-
count the time of construction of the building and do not include
the training samples with a modern architecture for a model de-
signed for 3D reconstruction of old buildings. Such a differen-
tiation should be strict even if architectural styles are similar.

Finally, the images in the training dataset must have sufficient
spatial resolution so that it is possible to unambiguously determ-
ine small but key architectural elements for the style and the
time of construction.

Thus, it can be said that with the proposed efficient algorithm,
an accurately annotated dataset, and a properly trained model,
it will be possible to obtain plausible three-dimensional models
of partially destroyed objects. In further research we are going
to focus on semi-automatic analysis of the training dataset that
will divide it into splits for different historical epochs. Also we
are going to annotate images with textual prompts indicating the
historical epoch and style of a depicted object. This will allow
us to develop a controllable robust model for single image 3D
reconstruction
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5. Conclusion

We developed the Restore3D generative diffusion model for 3D
inpainting and reconstruction. This model’s ability to simultan-
eously perform single image 3D reconstruction and restoration
offers a robust solution for addressing the challenges posed by
digital restoration of partially destroyed architectural structures.
By harnessing the power of diffusion processes, Restore3D ef-
fectively reconstructs missing sections with high fidelity, pre-
serving intricate details and spatial relationships that are often
lost in traditional methods. Our comprehensive dataset collec-
tion facilitated rigorous training and testing of the framework,
ensuring its robustness and generalizability across diverse scen-
arios.

The empirical results substantiate the efficacy of Restore3D, as
it consistently outperforms two modern baselines by achieving
an 11% improvement in terms of 3D Intersection over Union
(IoU) and a notable enhancement of 22 points in the Frechet
Inception Distance (FID) metric. Such advancements not only
demonstrate the superiority of our approach but also highlight
its applicability for scientists working in the history of architec-
ture, where accurate reconstructions are paramount. The find-
ings from this study pave the way for future research endeavors
aimed at further refining generative models for architectural pre-
servation, disaster recovery, and urban planning, underscoring
the transformative potential of integrating deep learning tech-
niques into these critical domains.
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