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Abstract

Vector representation of geodata is widely used in various application due to high density of information and the advanced level of
information representation, introduced by the human operator while creating a map. We can say that a map is a vector representation
of understanding a scene based on its image. Scene understanding can be considered at different levels of depth, beginning from
image classification and semantic segmentation and completing with rich semantic relationships between objects and retrieving
its hierarchy. With the progress in machine learning methods and tools for obtaining and processing large amounts of data a
set of neural network models has been developed that demonstrate state-of-the art performance (humanlike and better) in image
classification and image semantic segmentation tasks. After object detection and recognition, the next step in scene understanding
is retrieving the relations between objects and their hierarchy. This problem is known as scene graph generation, and recently it
received notable attention by the scientific community. The developed approach incorporates the information about the structural
and functional relationships between objects in the image, which, on the one hand, improves the quality of segmentation through
the use of new a priori data, and on the other hand, reduces the time spent by the operator on subsequent processing of the results
of the neural network algorithm. To train and evaluate the developed framework, a special dataset is collected and annotated. It
contains more than 10k aerial photographs representing various types of objects taken in different years and seasons. The evaluation

results on the created dataset proved the state-of-the-art performance of the developed framework.

1. Introduction

Despite the rapid development of digital technologies in
geospatial information systems, the vector representation of
geodata is still effective and widely used. This phenomenon
can be explained by the high density of information and the
advanced level of information representation on vector maps,
introduced by the human operator who created the map. We
can say that a map is a vector representation of understanding
a scene based on its image. Scene understanding can be con-
sidered at different levels of depth, beginning from image clas-
sification and semantic segmentation and completing with rich
semantic relationships between objects and retrieving its hier-
archy.

With the progress in machine learning methods and tools for
obtaining and processing large amounts of data a set of neural
network models has been developed that demonstrate state-of-
the art performance (humanlike and better) in image classific-
ation and image semantic segmentation tasks. After object de-
tection and recognition, the next step in scene understanding
is retrieving the relations between objects and their hierarchy.
This problem is known as scene graph generation, and recently
it received notable attention by the scientific community.

Scene graph can be defined as a structured representation of a
scene in the form of a set of nodes (objects) connected by edges
reflecting their relations (Johnson et al., 2015). Scene graph
(Figure 1) represents semantic links and interactions between
entities in the scene (entities can be subject or object) in the
form of <subject - predicate - object>. Scene graph
is an abstraction, that gives a new level of the semantic un-
derstanding of an image, and currently widely used in such
image analysis tasks. Among these tasks are image caption-

ing (Nguyen et al., 2021), image retrieval (Johnson et al., 2015),
visual question answering (Johnson et al., 2017), image gener-
ation (Ashual and Wolf, 2019) and similar.

The problem of scene graph generation (Li et al., 2024) has
received a powerful impetus for development with advances
in machine learning methods and tools for obtaining and pro-
cessing large amounts of data. But the most of the studies ad-
dresses to scene graph generation for natural (not remote sens-
ing) scenes. Meanwhile understanding of remote sensing im-
ages is also very important for updating maps and developing
unmanned aerial systems. Moreover the semantic understand-
ing of the remote sensing image provides higher performance in
the tasks of change detection, semantic segmentation and vec-
torization of images by attracting additional information about
the scene as a whole.

Remote sensing scenes usually have hierarchical structure that
is reflected in the maps. Figure 1 shows the scenes with plain
(Figure 1(a)) and hierarchical (Figure 1(b)) structures. Hier-
archical representation more adequate reflects the scene struc-
ture and provides deeper understanding of the scene.

The developed approach incorporates the information about the
structural and functional relationships between objects in the
image, which, on the one hand, improves the quality of seg-
mentation through the use of new a priori data, and on the other
hand, reduces the time spent by the operator on subsequent pro-
cessing of the results of the neural network algorithm.

The main contribution of the study are the following:

o the framework for hierarchical semantic scene graph gen-
eration and vectorization of aerial images
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Figure 1. Scenes with plain and hierarchical structures. In scene with hierarchical structure (b) the complex plant object is further
represented as its interior graph structure.

e the dataset for training and evaluating the proposed ap-
proach

e evaluation of the proposed framework in task of hierarch-
ical scene graph generation

2. Related work
2.1 Scene Graph Generation

The problem of image understanding has long attracted the
interest of the scientific community (Li and Fei-Fei, 2007,
Vishnyakov et al., 2015, Shu et al., 2015). Due to recent ad-
vances in the means and methods of obtaining, storing and pro-
cessing large amounts of data, new machine learning methods
have given a significant boost to this problem, and scene graph
generation being the one of the core task of image understand-
ing problem. While object detection and recognition techniques
try to answer what objects present in the image, scene graph de-
scribes the relations between this objects.

Scene graphs, initially introduced for image retrieval problem,
demonstrated their potential in other subtasks of scene under-
standing, such as image captioning (Yang et al., 2019, Gu et
al., 2019, Lee et al., 2019a), visual question answering (Shi
et al., 2019, Lee et al., 2019b), or image synthesis (Li et al.,
2019, Talavera et al., 2019). If the first studies tried to extract
relations of only some specific types (like spatial location in a
scene) (Galleguillos et al., 2008, Gould et al., 2008), the more
common statement and method of relationship identifying in
an image (Lu et al., 2016) was proposed notably later. This
work proposed two-stage approach for scene graph generation:
at first, to detect objects in the image, and, secondly, to identify
the relationships between these objects.

The proposed neural network model (Lu et al., 2016) is trained
separately for objects and predicates, and than combines them
for extracting multiple relationships in the image. The improve-
ment in scene graph generation is obtained by using language
priors from semantic word embeddings. It allows to improve
the prediction of the relationship in terms of the likelihood. The
authors demonstrated the improvements in image retrieval task
due to understanding the relationships between objects.

Basing on this two-stage approach some improvements have
been reached by using residual neural networks (Zellers et al.,
2018, Xu et al., 2017, Li et al., 2017, Cong et al., 2020) with
the global context, by applying standard RNNs to iteratively im-
prove the prediction of the relationships involving the message
passing approach.

The Graph R-CNN neural network model (Yang et al., 2018a)
involves the attention mechanism for efficient retrieving the
contextual information between objects and relationships. Such
approach allowed the Graph R-CNN to show state-of-the-art
performance on the Visual Genome dataset (Krishna et al.,
2017).

Recently, with the invention of the Transformer net-
works (Vaswani et al., 2017), they were applied for retriev-
ing the visual relationship and scene graphs generation. The
RelTransformer (Chen et al., 2022) network model has out-
performed the best baseline models on two large-scale visual
relationship recognition benchmarks. RelTransformer network
model considers each image as a fully-connected scene graph
and represents the given scene in form of the relation-triplet
and global-scene contexts. Efficient message passing from such
scene representation to the target relation and integrated self-
attention mechanism allowed notably improving the perform-
ance in visual relationship recognition task.

Some works involves semantic information (Cui et al., 2018,
Gkanatsios et al., 2019, Yu et al., 2020) and statistics priors (Dai
et al., 2017, Zhang et al., 2019) to improve the performance of
scene graph generation.

It is worth noting that the most part of studies on scene
graph generation and semantic image understanding addresses
ground-based (or so-called natural) images. Due to the spe-
cificity of natural images and related tasks, the developed for
this field scene graph generation techniques rather address to
relationships of the action type such as “walk™, ”seat”, ~’drink”,
etc. or state type such as “lay”, “wear”, etc. For the tasks of
scene understanding in remote sensing imagery it is more im-
portant to retrieve spatial and structural relationships between
objects such as mutual spatial position, spatial structure and
hierarchy. This information allows to improve the quality of
data processing in remote sensing tasks such as semantic image
segmentation, change detection, image vectorization, etc.

Scene understanding in remote sensing imagery has received
less attention due to necessity of creating large dataset required
very time consuming manual annotation. First works addressed
scene understanding in remote sensing imagery explored image
captioning (Shi and Zou, 2017) and the image representation
and the caption representation (Wang et al., 2019).

For simultaneous object detection and their relations retriev-
ing in remote sensing images the multi-scale remote sensing
image interpretation network (MSRIN) was proposed (Cui et
al., 2019). The MSRIN is a parallel deep neural network
that integrates the fully convolutional U-Net network, and a
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Figure 2. Example images from the Segmentation and Visualization Aerial Images dataset extended with relationship annotations.

long short-term memory network (LSTM). Such approached
allowed simultaneously performing objects’ semantic segment-
ation and identifying their relationships. To introduce the se-
mantic meaning to spatial relationships produced by MSRIN,
the multi-scale semantic fusion network (MSFN) (Li et al.,
2021) introduced the dilated convolution block into a graph
convolutional network for integrating and refining multi-scale
semantic context. This architecture allowed to improve the
cognitive ability of the MSFN. For developing and evaluating
the proposed framework the authors created the remote sensing
scene graph dataset (RSSGD), containing a set of objects, their
attributes, and relationships.

Besides the RSSGD dataset there are not so many datasets de-
signed for the tasks of scene understanding in remote sensing
imagery. Among these are the Remote Sensing Image Caption
Dataset RSICD (Lu et al., 2017), containing about 40 categories
for object and 16 for relationship, and Geospatial Relationship
Triplet Representation Dataset (GRTRD) (Chen et al., 2021)
oriented for identifying of geographic objects and predicting
their relationships. It includes twelve object classes and about
20k object and 20k relationship categories.

3. Materials and Methods

The proposed approach to simultaneous image semantic seg-
mentation and scene graph generation is based on machine
learning and uses the neural network model developed at the
previous stage of the study (Knyaz et al., 2024, Emelyanov et
al., 2024). The developed neural network model firstly applies
visual transformer to extract deep features from the input aerial
image. Then graph neural network carries out clusterization of
these deep features resulting in semantic segmentation of the
image. The developed network model was trained and evalu-
ated on specially created SVAI (segmentation and vectorization
of aerial imagery) dataset (Emelyanov et al., 2024).

To extend the developed framework for solving the task of
scene graph generation it was modified by adding object clas-
sification block and relation retrieving block. The overview of
the proposed framework is shown in Figure 3. For training the

developed neural network model the SVAI (segmentation and
vectorization of aerial imagery) dataset has also been modified.
It was extending by including about 39 object categories and
16 relationship categories and annotations triplets <subject
- predicate - object>.

3.1 Dataset

SVAI (Segmentation and Vectorization of Aerial Imagery) data-
set is designed for the tasks of aerial imagery analysis, including
change detection, segmentation and vectorization, and scene
graph generation. Currently it includes 8400 very high resolu-
tion aerial images of different scenes obtained at different times
and with different sensors. The change detection split of the
SVALI dataset contains two thousand pairs of images of the same
scenes acquired at various times and containing changes in the
scene. The change detection split is annotated for training and
testing change detection neural network models, the annotation
being binary masks labelled by zero for unchanged regions, and
by non-zero value for changed ones.

New annotations have been added to study the problem of scene
graph generation. First, the objects represented in the images
were classified into 24 classes, such as a building, a road, ariver,
a bridge, and a background. The classes for classification was
chosen according the topographic map classification for further
quick adaptation to the task of map updating.

Secondly, 12 categories of relations were introduced, represent-
ing the spatial topology and functional description of objects.
They describe possible relationships between objects in a scene,
such as adjacent, distant, around, passing through, passing un-
der, etc. The samples of images and their annotations are shown
in Figure 2.

To receive good initial approximation to annotation triplets
(<subject - predicate - object>) data from Open-
StreetMap resource (OpenStreetMap Foundation, 2026) was
exploited.

The OSM offers three types of basic elements for conceptual
modelling the real world. These are nodes, ways and relation.
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Figure 3. The HSGG-AI framework architecture. Firstly, the pre-trained visual transformer retrieves deep features from the input
aerial image basing on attention mechanism, and graphical neural network performs clustering of these deep features thus creating
object region proposals and a set of object’s nodes and edges. Secondly, the relationship proposal network RePN. Finally, the graph
labeling is performed iteratively to refine the scene graph.

Node defines the point in the space and is given by a pair of
WGS84 coordinates and identifier.

Way defines a linear entity or a region boundary. Way is given
by a set of nodes.

Relation defines the relationship between elements of the OSM
data. These elements can be nodes, ways, or other relations.

We use OpenStreetMap data as initial annotation for images
from SVAI dataset. Than this data was proved and edited to
generate ground truth annotation for the task of scene graph
generation.

3.2 Framework for hierarchical scene graph generation

In scene graph generation task, the scene graph G is represented
as a set of vertexes V' (image regions), edges E (relationships
between image regions), and their labellings. For image I with
aset V of the objects detected in the image I, and a set I of the
edges (relationships), labels O correspond to objects and labels
R denote correspond to relationships.

So the problem of scene graph generation can be formulated as
the task of designing the model P(G|I), that generate the scene
graph S for given image I. This problem can be represented as
three subtasks:

1. (1) object region proposal P(V'|I),
2. (2) objects’ relationship proposal P(E|V, I), and
3. (3) objects and relationships labelling P(R,O|V, E, I):

Therefore, the generation of scene graph can be described as
follows:

PG ) =PV |DPE|V,)PRO|V,E,I), (1)

Accordingly, the proposed framework for generating hierarch-
ical scene graphs and vectorizing aerial images HSGG-AI con-
sists of three blocks that solve the whole problem. The outline
of the proposes framework is shown in Figure 3.

3.2.1 Segmentation, vectorization and object region pro-
posal. We use the original graph semantic segmentation
model for aerial images (GSS-AI) (Emelyanov et al., 2024) as
a starting point for the framework for scene graph generation.
The GSS-AI network model is used for scene semantic seg-
mentation and object region proposal P(V|I).

The GSS-AI network model utilizes attention mechanism to re-
trieve deep features, which then are aggregated in clusters by
the graph neural network. Applying Vision Transfomer (Doso-
vitskiy et al., 2020) trained with DINO (Caron et al., 2021) al-
lows to extract deep features in self-supervising mode resulting
in attention maps.

Basing on this attention maps, the problem of image semantic
segmentation is considered as the graph-cut task, the image
being represented by an undirected graph G = {V,E} with
node set V and edge set £. And the clusterization of the sim-
ilar areas is performed using the similarity matrix W, whose
elements w;; are the similarities between image areas ¢ and 7,
i,j = 1...n obtained from output feature vector of the Vision
Transformer.

Considering the matrix W as a map of image areas similarit-
ies, the partitioning of the image is performed with normalized
cut criterium, that requires maximizing interconnections within
a partition and minimizing the number of partition-to-partition
connections. For two parts A and B of a graph the normalized
cut Ncut(A, B) of the graph G is:

> w(w,w) > w(u,v)
N A B) = uEA,vEB uEA,WEB 9
wlldB) ==y T wGn @
1€EA,JEV i€B,jeEV

This procedure allows to perform image semantic segmentation
in self-supervising manner resulting in pixel-wise segmentation
map.
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Figure 4. Sample of semantic segmentation and vectorization for
the images from SVAI dataset

As a result, the initial graph G = {V, £} representing the im-
age, can be described by its adjacency matrix A with zero ele-
ments for edges eliminated by the graph-cut procedure (borders
between clusters). The adjacency matrix A serves for gener-
ating the vector representation of the image that can be trans-
formed into the map. Figure 4 shows an example of semantic
segmentation and vectorization of images from the SVAI data-
set after postprocessing the primary data to filter noise and out-
liers.

3.2.2 Objects relationships proposal and graph labelling.
Remote sensing imagery has the specifics due to the need of
analyzing data at different scales. This fact makes it imperative
to tackle the data hierarchically, that is reflected in producing of
maps at various scales and in applying the hierarchical classi-
fication of objects.

So, to take into account hierarchical structure of geospatial data
we introduced hierarchical relationships such as “’belong to”,
“include” in annotation of the scene graph generation split of
the SVAI dataset.

For the second term of Equation (1) we exploited the relation-
ship proposal network RePN (Yang et al., 2018b) that directly
models relationship proposals P(E | V,I) and allows to per-
form learning in end-to-end mode.

The third subtask of the graph labeling was solved as iterative
refinement of the scene graph (Xu et al., 2017), using the Gated
Recurrent Unit (GRU) (Cho et al., 2014).

4. Results

The sample results of hierarchical scene graph generation by
the proposed HSGG-AI framework are shown in Figure 5. We
evaluate of the proposed HSGG-AI framework in task of Phrase
Detection (PhrDet) (Lu et al., 2016) in terms of the RQk met-
ric, that considers the part of ground-truth relationship triplets
(<subject - predicate - object>>)among the top k most
confident triplet predictions in an image.
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Figure 5. Qualitative results of aerial images processing for
scene graph generation.

The evaluation has been carried out on the testing split of SVAI
dataset and has demonstrated the performance of RQ100 =
42.87 and RQ50 = 36.02, being at the state of the art level.

We also evaluated our HSGG-AI framework in task of image
segmentation on extended SVAI dataset in comparison with the
state-of-the-art unsupervised baselines similar to the previous
study (Emelyanov et al., 2024) in terms of mean Intersection-
over-Union (mloU) metric. Table 1 presents the numerical val-
ues of the mean Intersection-over-Union metric for each of the
methods. Table 1 shows that adding information about hier-
archical structure of the scene also contributes in overall seg-
mentation accuracy.

Method SVAI dataset
OneGAN (Benny and Wolf, 2020) 56.82
BigBigGAN (Voynov et al., 2021) 67.54
Spectral Methods (Melas-Kyriazi et al., 2022) 72.37
TokenCut (Wang et al., 2022) 74.74
GSS-AI (Emelyanov et al., 2024) 77.83
HSGG-AI (current study) 78.11

Table 1. Values of the mean Intersection-over-Union metric on
the extended SVAI dataset for HSGG-AI and baselines.

5. Conclusion

The framework for hierarchical scene graph generation and vec-
torization of aerial images is developed. It uses the Vision
Transformer and graph neural network for accurate image seg-
mentation, vectorization, and object region proposal, and than
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generates the graph of the scene that reflect hierarchical struc-
ture of the scene using relationship proposal network (RePN)
and Gated Recurrent Unit models.

Segmentation and Vectorization of Aerial Imagery (SVAI) data-
set has been extended for training the developed framework in
task of hierarchical scene graph generation. It was extended
by annotations of object classes and relationship categories, in-
cluding hierarchical annotation for the images.

The proposed HSGG-AI network model was evaluated on the
testing split of the SVAI dataset in comparison with modern
network model models. The evaluation showed that the de-
veloped model successfully competes with the baseline models,
and that adding information about hierarchical structure of the
scene contributes in overall segmentation accuracy.
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