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Abstract 

A typical characteristic of modern applied multiclass classification problems is the large scale. It significantly complicates or even 

makes it impossible an application of such popular, convenient and well-interpreted method as Support Vector Machines (SVM), 

which is well-proven for small-size classification problems. In this connection the actual problem is to increase SVM’s 

computational performance. The Double-Layer Smart Sampling SVM (DLSS-SVM) method allows to reduce the training time of 

multiclass SVM via double using the smart sampling technique. This paper proposes the high-performance version of DLSS-SVM 

(HP-DLSS-SVM). It is based on two-level parallel computing scheme, which exploits useful DLSS-SVM properties and computing 

system capabilities more fully. Experimental investigation of the proposed HPDLSS-SVM method was made on three large 

handwritten digit images data sets of different size. Experiments show that the proposed approach allows to essentially decrease 

training and testing times and at that to maintain the obtained recognition accuracy close to the best.  

1. Introduction

Many applied problems from different socially significant areas, 

such as drug design, medical images analysis, video 

surveillance and information security systems and others are 

formulated as the multiclass classification problem. This 

problem in itself is a classic one, but the volume of data that 

should be processed is growing rapidly. As a result, the 

requirements for the computational performance of methods for 

solving them are becoming increasingly stringent.  This leads to 

the need for a significant revision of existing methods.  

In particular, the training time of such popular, convenient and 

well-interpreted method as Support Vector Machines (SVM) 

(Vapnik, 1995; Benfenati et al., 2023), which is well-proven for 

small-size classification problems nonlinearly depends on the 

number of objects. It significantly complicates or even makes 

impossible its application for large-scale tasks.  

Many authors try to accelerate computations using parallel and 

distributed data processing technologies (Dekel et al., 2012; Niu 

et al., 2011; Agarwal et al., 2011; Zhao et al., 2011), including 

expression in MapReduce terms (Chu et al., 2006; Rizzi, 2016; 

Sleeman et al., 2021) and GPU applications (Wen et al., 2018). 

However, since the original sequential algorithms have an 

iterative nature and between-iteration data dependencies, the 

efficiency of parallelization is insufficient: existing parallel and 

distributed processing only mitigates, but does not solve, the 

problem of high computational complexity. At that attempts to 

avoid data dependencies lead to a noticeable decrease in the 

decision quality (You et al., 2015).  

This paper is based on the new enough Dual-Layer Smart 

Sampling SVM (DLSS-SVM) method proposed by us 

(Kurbakov et al., 2024), which actually opens new possibilities 

for solving large scale multiclass SVM problems. The smart 

sampling conception consists in to form samples from the initial 

large training set by selecting objects that are support ones as a 

result of training in random samples.  Such a way to form a 

sample in contrast to traditional random samples (Chauhan et 

al., 2018; Byrd et al., 2016; Makarova et al., 2019) allow easy 

to exclude from the consideration those objects that are far from 

an optimal discriminant hyperplane and not affect the resulting 

decision rule. The DLSS-SVM method consists in double 

applying the smart sampling technique. This allows, even with 

sequential implementation, to significantly reduce the 

computation time of the training stage compared to existing 

open access methods and at the same time maintain recognition 

accuracy close to the best (Kurbakov et al., 2024).  

At the same time, it is easy to see that the DLSS-SVM method 

has internal parallelism which has not yet been used.  

2. Contribution of the Paper

This paper proposes a high-performance version of DLSS-

SVM, called High Performance Double-Layer Smart Sampling 

SVM (HP-DLSS-SVM). It is based on two-level parallel 

computing scheme, which exploits useful method properties and 

computing system capabilities more fully. Experiments with 

three large image data sets shows that the proposed method 

allows to essentially decrease training and testing times for 

large-scale multiclass SVM problem saving a near the best 

accuracy. 

3. Sequential Smart Sampling SVM for Multiclass

Classification 

3.1 Multiclass and Binary Classification Problems 

Let 
*

 be a set of all possible objects  of some kind, each of 

which can be presented by n -length real-valued feature vector 

1( ) [ ,..., ]nx xx . We suppose that some finite subset of 

objects 
*{ , 1,..., }j j N  is oobservable through its 

representations ( ), 1,...,j j j Nx x jointly with class 

labels ( ) {1,..., }, 1,...,j jy y m j N , 2m and 
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constitutes the training set [ , ] {[ , ], 1,..., }j jY y j N . 

The task is to make a decision function that for any new object 

 will estimate the unknown class-label ˆ( )y X .  

 

3.2 One-versus-the-Rest Multiclass Classification Strategy 

Following (Kurbakov et al., 2024) to solve the initial multiclass 

classification problem we use the One-versus-the-Rest strategy 

(Bishop, C. M., 2006). It consists of fitting one binary classifier 

for each class. So, for m classes, m classifiers must be built. For 

each classifier, the main class is fitted against all other classes, 

and thus the full training set is used each time. The resulting 

class label we select by the maximum value of class probability.  

 

3.3 Smart Sampling Conception 

The Smart Sampling conception was originally proposed by us 

in (Makarova et al., 2020) to accelerate convergence of the 

Kernel-Based Mean Decision Rules method for binary SVM. 

The idea consists to form a smart sample only from support 

objects that are obtained as a result of training for small simple 

random samples. Binary SVM decision is built in form of the 

optimal discriminant hyperplane that is depends only on support 

objects. Excluding any of non-support object from the training 

set does not change the SVM decision. Objects selected in 

accordance with the smart sampling technique are good enough 

candidates to be support objects in the initial large problem for 

the full training set. So, the smart sampling allows to 

intellectually reduce large training set and so to decrease the 

training time. Smart sampling technique has shown its 

effectiveness for binary (Makarova et al., 2020), multiclass 

(Kurbakov et al., 2024) one-class SVM (Kurbakov et al., 2023). 

More detailed description of this conception can be found at 

(Kurbakov et al., 2024).  

 

3.4 Double-Layer Smart Sampling SVM (DLSS-SVM) with 

Early Stopping 

The main idea of the DLSS-SVM consists in double applying 

the smart sampling technique. Namely, it assumes constructing 

a number of first-layer (L1) smart samples, to train in them and 

to form the second-layer (L2) smart sample from support 

objects that are computed at the L1-training. The model, which 

is obtained as the result of training on the L2 smart sample is 

considered as a final decision rule.    

 

It should be noted that a smart sample formation speed at both 

of levels and appropriate smart sample size are data-dependent. 

Thus, to avoid the situation, when the specified smart sample 

size value is too large and cannot be reached or the smart 

sample fills slowly (a small number of new support objects are 

added) the early stopping criterion is applied that allows to 

adapt to the data and to reduce the execution time.  

 

The formal description of forming the double-layer smart 

sample with early stopping is given by Algorithm 1 and 

Algorithm 2.   

 

Algorithm 1. First-layer Smart Sample with early stopping 

Parameters:  

SSize1 - desired size of first-layer smart sample  

RSize – size of random samples  

1
- the threshold for early stopping  

1:     set the 1-layer smart sample as empty 
1L

smart  and    

         its actual size as zero 1 0actSSize  

2:      take small random sample rnd  of size RSize  

3: train SVM with [ , ]rndY  to obtain support objects 

         sup rnd   

4:       update the smart sample 
1 1

sup

L L

smart smart   

5: if the smart sample size is not enough  

                | | 1smart SSize  and early stopping criterion  

                
1

1| | 1L

smart actSSize  does not hold true then 

                 upgrade 
11 | |act

L

smartSSize   and repeat steps 2-5.   

 

 

Algorithm 2. Second-layer Smart Sample with early 

stopping 

Parameters:  

SSize1, SSize2 - desired sizes of first-layer and second-layer 

            smart samples, respectively  

 RSize – size of random samples  

1 2, - thresholds for early stopping at the 1-st and 2-nd  

            levels, respectively 

 

1:  set the 2-layer smart sample as empty 
2L

smart
 and  

     its actual size as zero 2 0actSSize .  

2:  form the 1-layer smart sample 
1

1( 1, , )smart

L SSize Rsize     

     (Algorithm 1)  

3: train SVM with 
1[ , ]L

smartY  to obtain support objects 

    
1 1

sup

L L

smart   

4:  update the smart sample 
2 2 1

sup

L L L

smart smart   

5: if the smart sample size is not enough 
2| | 2L

smart SSize   

    and early stopping criterion 
2

2| | 2L

smart actSSize   

    does not hold true then upgrade  
22 | |act

L

smartSSize   

     and repeat steps 2-5.   

 

It should be noted that in contrast to equal-sized random 

samples, the resulted smart samples can be of different size. The 

desired values SSize1 and SSize2 actually are landmarks, but 

each of them can be slightly exceeded in the process of the 

smart sample updating (step 4 of the Algorithm 2).  Besides, 

actual smart sample size can be essentially less in contrast to the 

specified value due to the early stopping (step 5 of the 

Algorithm 2).  

 

4. High-Performance DLSS-SVM (HP-DLSS-SVM) 

4.1 Upper Level Parallel Computing Scheme  

In accordance with the description in Section 3, DLSS-SVM 

solves the N-class SVM recognition problem by reducing it to 

N binary one-versus-the-rest SVM problems. It is evident that 

all N binary recognition problems are independent and can be 

solved in parallel. The respective parallel computing scheme is 

extremely simple and easily realized.  

 

But the degree of parallelism is limited by the number of classes 

in the original multiclass problem, which can be significantly 

less than the number of available processors. In this connection 

we consider additional level of parallelism.  
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4.2 Lower Level Parallel Computing Scheme  

Additional resources of inner parallelism of DLSS-SVM is in 

the stages of forming smart samples of both layers. By 

definition, each smart sample consists of support objects that 

are obtained as a results of training for some subsamples 

(random samples to form L1-smart samples or L1-smart 

samples to form L2-smart samples). So, all smart samples of the 

same layer can be formed in parallel manner. Since larger 

parallel parts are more preferable, this work exploits the 

parallelism of L2-layer smart samples.  

 

However, the respective approach has the problem, which 

consists in unknown number of L1-smart samples that are 

required to form a L2-smart sample. It varies for tasks (even 

across different binary SVM tasks within single multiclass ones) 

and cannot be determined a priory.  

  

To overcome this obstacle, we introduce an additional 

parameter LP , which defines the number of L1-smart samples 

for parallel computing. If the total number of unique support 

objects obtained from LP  L1-smart samples is greater than or 

equal to the desired L2-smart sample size, the computing of the 

respective smart sample is stopped else a new portion of LP  

samples is generated and used to obtain additional objects. The 

process continues till the desired L2-smart sample size will be 

reached. It should be noted the optimal value of the parameter 

LP  is data-dependent and can be different for different tasks.    

 

The respective lower-level parallel computing scheme is 

presented at the figure 1.   

 

4.3 Software Implementation of HPDLSS-SVM  

It should be noted the proposed parallel scheme can be 

implemented in different ways depending on the computing 

system architecture and programming tools.  

 

In this paper we deal with a shared memory system and the 

Python programming language, since the sequential version 

(DLSS-SVM) is implemented in it. These peculiarities have 

own advantages and disadvantages.  

 

First of all, it is not practical to use multithreading at the lower 

level of a parallel scheme, since only one thread can process 

Python at a time due to the GIL(Global Interpreter Lock). As a 

result, multiprocessing is used at both of levels of the presented 

parallel scheme via the python multiprocessing package.   

 

Processes, unlike threads, operate in different address spaces, so 

when they are used to organize parallel computing, the question 

of organizing interprocess communication arises, as well as the 

question of data duplication, which is especially relevant in 

connection with the large scale of the tasks being solved. 

 

Both of these problems are solved in this work through the 

shared memory mechanism (using multiprocessing. 

shared_memory module) in the case if all data of one task fits 

into RAM and through the memory mapping mechanism (using  

class mmap of the respective python module) if RAM is not 

enough. The memory mapping mechanism put data on disk and 

maps it into process memory by parts. Thus, it removes the 

limitation on the amount of RAM, but is slower compared to the 

shared memory mechanism.  

 

 

Figure 1. Lower level parallel scheme to form L2 smart sample 

to train model for class j.  

 

5. Parallel testing 

The recognition process consists of substituting each of test 

objects , 1,...,j tstj N  into the decision rule, which results 

in the determination of the respective class labels estimates 

ˆ , 1,...,j tsty j N . Test of one object is made fast enough. To 

speed up testing of a set of objects, simple natural data 

parallelism is used by dividing the entire set into groups and 

testing each subgroup in parallel.  

Update 

the L2 

smart 

sample 

2| | 2L

smart SSize  

           and  
2| | 2L

smart actSSize  

2  

22 | |act

L

smartSSize   

Smart sample size is 

not enough and early 

stopping does not hold 

true 

False 

True 

Training set [ , ]jY  to 

separate class j from the rest  

Smart sample 
2[ , ]L

j smartY   

for class j 
 

Set smart sample 

as empty and its 

actual size as 0 

2L

smart  

2 0actSSize  

Form L1 smart 
sample 
(algorithm 1) 

Form L1 smart 
sample  
(algorithm 1) 

train SVM with 
1(1)[ , ]L

j smartY  to 

obtain support 
objects 

train SVM with 
1( )

[ , ] LL P

j smartY  

to obtain 
support objects 

1(1)
smart

L

 

1( )L
smart

L P  

1(1) 1(1)

sup

L L

smart
 

2

1( )2 1(1)

sup sup... L

L

smart
L PL L

smart

  

1( ) 1( )

sup
L LL P L P

smart
 

PARALLEL  TASKS 
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6. Multiclass Recognition Quality Estimation 

To estimate the multiclass recognition quality, such standard 

quality measure as accuracy is used (Opitz, J., 2024):  

 

100%
correct classifications

Accuracy
all classifications

 . 

 

7. Experiments 

7.1  Data description   

In experiments of this paper 3 large MNIST data sets and the 

KDDcup data set are used.  

 

Originally MNIST is the data set of 60000 handwritten digit 

images for the training and 10000 images for the testing.  In 

these experiments the basic data set was extended by addition 

synthetic images obtained as pseudo-random deformations and 

translations of original MNIST images. Synthetic images were 

generated using infiMNIST program by Leon Bottou that is 

available at https://leon.bottou.org/projects/infimnist.  

 

Main characteristics of obtained data sets are presented at the 

Table 1. 

  

Training sets Objects  

(original / synthetic) 

features 

MNIST60k 60 000  (60 000 / 0) 784 

MNIST200k 200 000 ( 60 000 / 140 000) 784 

MNIST500k 500 000 ( 60 000 / 440 000) 784 

Test set    

MNIST10k 10 000 (10 000 / 0) 784 

Table 1. MNIST data sets characteristics 

Feature values of all MNIST data sets have the meaning of 

image pixel brightness and are in the range of 0…255. Before 

training and testing all MNIST data are normalized by dividing 

by 255.  

 

KDDcup data set contains a standard set of data to be audited, 

which includes a wide variety of intrusions simulated in a 

military network environment. It contains 4 898 431 objects for 

the training and 311 029 objects for test. The original KDDcup 

data set with data description can be downloaded at 

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.  

 

Each object of KDDcup data set is initially represented by 38 

numerical and 3 categorical features. Each categorical feature 

was encoded through the One-Hot-Encoding procedure. As the 

result of encoding 122 numerical features were obtained.  

 

Originally KDDcup data set contains 5 class labels: normal (no 

attack) and 4 types of attacks: dos, u2r, r2l and probe. But since 

3 last of them contain a very small number of samples, in this 

experiment we combined them into one class, thus obtaining 

three classes: "no attack", "dos attack" and "other types of 

attacks".  

 

7.2 Computational System Characteristics   

Experiments described in the paper were carried out on a 

computational system with the following characteristics: 

Процессор: Intel(R) Xeon(R) Platinum 8255C CPU @ 

2.50GHz (22 cores / 44 threads), RAM 196 Gb.   

 

7.3 Related Approaches    

This section describes popular approaches and open-access 

tools for solving the binary SVM classification problem. Each 

of them is considered below as the basis for construction the 

multiclass SVM classifier.  

 

7.3.1 SVC and LinearSVC. First of all, we consider 

implementations that allow to obtain an accurate decision of the 

SVM problem. In this study we use implementations that are 

based on the traditional state-of-the-art LibSVM Ошибка! 

Источник ссылки не найден. library and included in python 

scikit-learn package: sklearn.svm.LinearSVC (optimized for 

linear problems) and universal sklearn.svm.SVC that is used for 

construct nonlinear decisions.   

 

7.3.2 RBFSampler + LinearSVC. This is one of popular 

heuristic approaches aimed to accelerate SVM training in the 

nonlinear case. It combines generation of nonlinear features 

whose inner product is approximately equal to the kernel values 

(Rahimi and Recht, 2008). 

 

We use python scikit-learn implementation here sklearn. 

kernel_approximation.RBFSampler with consequent well-

scalable linear training by sklearn.svm.LinearSVC. 

 

7.4 Experimental Setup     

The main goal of this work is to speed up the solution of the 

multi-class SVM recognition problem, i.e. to obtain a result 

equal or near in quality to the libsvm result, which is recognized 

as the standard for the quality of the solution of this problem. 

Therefore, we compare only SVM-based approaches and do not 

consider other methods for solving the multi-class recognition 

problem.  

 

Each of methods for solving binary SVM problem described in 

Section 7.3.1 and 7.3.2 was coupled with both One-versus-Rest 

(OvR) and One-versus-One (OvO) strategies (Bishop, C. M., 

2006) for extending binary SVM to multiclass one and applied 

to each of training sets from the Table 1.   

 

In all experiments we set the SVM parameter C=10 and for all 

nonlinear methods (including RBFSampler) the RBF kernel 

with 0.01  was used.  

 

For LinearSVC (as a separate classifier and after RBFSampler 

transformation) default parameters were set in (except of C=10).  

 

The main parameter of RBFSampler, named nc (number of 

components that corresponds to the dimensionality of the 

computed feature space) was taken equal to 1000 and 3000.   

 

For sequential version of the Double-Layer Smart Sample SVM 

(DLSS-SVM) method next parameters were varied: the random 

sample size (rs), the 1-st and 2-nd layer smart sample size (ss1 

and ss2, respectively). The early stopping thresholds for the 1-st 

and 2-nd layers were set in as 100 in all experiments.   

 

The proposed HPDLSS-SVM compared to DLSS-SVM has 

three additional parameters: UP , LP  and tstP . The first two of 

them set the number of processes at the upper and the lower 

levels of the proposed parallel computing scheme of training, 

respectively. And last set the number of processes for testing.   
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7.5 Experimental Results     

7.5.1 Comparing to other methods. Tables 2-5 contain 

training and testing times and accuracy averaged through 3 

runs. Standard deviations of accuracy for MNIST60k and 

MNIST200k does not exceed 0.001, for MNIST500k does not 

exceed 0.002, and for KDDcup does not exceed 0.005.  

 

Method Time (s) Accuracy 

(%) train test 

SVC OvR 2738 101.90 97.35 

SVC OvO 203.50 232.50 96.94 

LinearSVC OvR 79.75 0.44 87.44 

LinearSVC OvO 21.99 1.28 88.39 

R
B

F
 

S
am

p
le

r 

 

nc = 1000 OvO 84.65 0.9284 92.84 

nc = 1000 OvR 78.79 14.67 93.99 

nc = 3000 OvO 249.44 2.79 95.47 

nc = 3000 OvR 180.89 49.50 95.90 

D
L

S
S

-S
V

M
 rs=3000  

ss1=ss2=1000 
51.20 77.02 96.07 

rs=5000  

ss1=ss2=3000 
476.82 146.03 97.26 

rs=6000 ss1=1000 

ss2=10000 
874.07 288.25 97.40 

HP-DLSS-SVM rs=6000 

ss1=1000 ss2=10000 

10UP  4LP  20tstP   
199.19 33.46 97.40 

Table 2. Experimental results for MNIST60k 

 

Method Time (s) Accuracy 

(%) train test 

SVC OvR 20688 302.2 98.7 

SVC OvO 2686 504.9 98.54 

LinearSVC OvR 1098 0.184 88.69 

LinearSVC OvO 297.6 0.639 91.44 

R
B

F
 

S
am

p
le

r 

 

nc = 1000 OvO 320.6 1.73 94.87 

nc = 1000 OvR 282.7 10.81 95.45 

nc = 3000 OvO 787.28 2.68 96.94 

nc = 3000 OvR 688.08 45.87 97.43 

D
L

S
S

-S
V

M
 rs=3000  

ss1=ss2=1000 
80.00 87.59 96.73 

rs=5000  

ss1=ss2=3000 
304.71 194.08 98.11 

rs=6000 ss1=1000 

ss2=10000 
854.75 280.09 98.40 

HP-DLSS-SVM rs=6000 

ss1=1000 ss2=10000 

10UP  4LP  20tstP   
128.91 60.49 98.40 

Table 3. Experimental results for MNIST200k 

As we can see from the Tables 2-5, the accurate state-of-the-art 

LinearSVC method is scalable well enough. Its accuracy is 

higher for OvO strategy in contrast to OvR one, but absolute 

values are much less then SVC because binary SVM 

subproblems are as a rule linear inseparable and nonlinear 

decision functions are required.  

 

The accurate state-of-the-art SVC method is nonlinear, but 

despite the use of a number of heuristics to speed up the work 

with kernels, its scalability is very low and for MNIST500k the 

training time for OvR strategy as well as for KDDcup for both 

OvR and OvO strategies exceeds 10 hours. Applying OvO 

strategy essentially reduces the training time due to decreasing 

size of binary problems, but the absolute values remain to be 

very large.  

 

An attempt to replace work with kernels with a specially 

generated feature space using RBFSampler allows to reduce 

training time, but leads to loss of information and consequent a 

noticeable loss of accuracy.  

 

Method Time (s) Accuracy 

(%) train test 

SVC OvR >36000 - - 

SVC OvO 17133 784.5 98.76 

LinearSVC OvR 2457 0.174 88.39 

LinearSVC OvO 729.5 0.641 91.60 

R
B

F
 

S
am

p
le

r 

 

nc = 1000 OvO 782.8 1.958 94.64 

nc = 1000 OvR 750.41 1.047 94.78 

nc = 3000 OvO 2548.19 2.243 96.93 

nc = 3000 OvR 2266.32 3.371 97.16 

D
L

S
S

-S
V

M
 rs=3000  

ss1=ss2=1000 
135.05 99.71 97.19 

rs=5000  

ss1=ss2=3000 
379.87 184.67 97.81 

rs=6000 ss1=2000 

ss2=10000 
861.32 308.2 98.60 

HP-DLSS-SVM rs=6000 

ss1=2000 ss2=10000 

10UP  4LP  20tstP   
131.20 62.93 98.60 

Table 4. Experimental results for MNIST500k 

 

Method Time (s) Accuracy 

(%) train test 

SVC OvR >36000 - - 

SVC OvO >36000 - - 

LinearSVC OvR 3335.13 0.308 79.67 

LinearSVC OvO 860.58 0.624 78.40 

R
B

F
 

S
am

p
le

r 

 

nc = 1000 OvO 822.26 3.399 86.20 

nc = 1000 OvR 447.54 1.686 85.06 

nc = 3000 OvO 
Internal error 

nc = 3000 OvR 

D
L

S
S

-S
V

M
 rs=3000  

ss1=ss2=1000 
11.98 14.69 83.00 

rs=5000  

ss1=ss2=3000 
475.63 91.68 87.80 

rs=6000 ss1=2000 

ss2=10000 
1740.70 192.40 88.00 

HP-DLSS-SVM rs=6000 

ss1=2000 ss2=10000 

10UP  4LP  20tstP   
353.22 12.34 88.00 

Table 5. Experimental results for Kddcup 

DLSS-SVM allows achieving the best or near the best accuracy 

in significantly less time compared to SVC or achieving 

essentially better quality for the same time compared to other 

sequential methods.  

The proposed HP-DLSS-SVM method for optimal number of 

processes (that are stated at tables 2-5), uses the computing 

system possibilities more fully in contrast to other methods. As 

we can see, it allows to speed-up DLSS-SVM training and 

testing without losing accuracy. From the other hand it 

outperforms almost all other results both in time and quality at 

once. In particular, HPDLSS-SVM for MNIST500k (Table 4) is 

more than 100 times faster in contrast to the traditional libsvm 
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library (in this paper the SVC from the python scikit-learn 

tools) with losing the only 0.14% in the quality.   

 

Since HP-DLSS-SVM following DLSS-SVM implements a 

nonlinear model, even with parallel realization its testing time is 

expectedly longer compared to linear models (LinearSVC and 

RBF Sampler+LinearSVC), but shorter compared to other 

nonlinear models.  

 

7.5.2 Scalability investigation. This subsection describes 

experiments whose main goal is to show how change the 

performance of the proposed HP-DLSS-SVM for different 

number of processes. All experiments of this section are 

presented for MNIST500k data set for parameters rs=6000, 

ss1=1000, ss2=10000.  

 

Table 6 presents HPDLSS-SVM training times in seconds  for 

different number of parallel processes at the upper ( UP ) and 

lower ( LP ) levels of the proposed parallel computing scheme. 

In this table, only those cells are filled that correspond to the 

total number of processes  U LP P  that is suitable for the 

computing system used (Section 7.2).  

 

UP   LP  

1 2 4 6 8 10 15 20 

1 906 720 553 488 454 415 400 408 

2 470 433 352 283 267 264 278 286 

4 358 219 202 198 194 190 - - 

6 253 193 178 164 - - - - 

8 201 185 178 - - - - - 

10 183 138 131 - - - - - 

Table 6. HPDLSS-SVM training time (s) for different number 

of parallel processes at the upper ( UP ) and lower ( LP ) levels  

Table 7 contains speed-up values, computed for the table 6 

respectively to the sequential time, obtained for UP =1 and 

LP =1.  

UP   LP  

1 2 4 6 8 10 15 20 

1 1.00 1.26 1.64 1.86 2.00 2.18 2.27 2.22 

2 1.93 2.09 2.57 3.20 3.39 3.43 3.26 3.17 

4 2.53 4.14 4.49 4.58 4.67 4.77 - - 

6 3.58 4.69 4.90 5.52 - - - - 

8 4.51 4.90 5.09 - - - - - 

10 4.95 6.57 6.92 - - - - - 

Table 7. HPDLSS-SVM speed-up for different number of 

parallel processes at the upper ( UP ) and lower ( LP ) levels  

Figure 2 shows dependences of acceleration on the total number 

of processes U LP P .  

 

As we can see from tables 6 - 7 and the figure 2, the 

parallelization at both of levels decreases the training time. 

Most speed-up is reached for 10UP , that corresponds to the 

number of MNIST classes. At that the best speed-up is obtained 

for parallelization at both of levels which confirms the 

feasibility of using the proposed two-level parallel computing 

scheme.  

At that, the obtained speed-up is evidently less than the total 

number of processes. At the upper level this fact is explained by 

different computational complexity of binary SVM problems 

and forced wait for the slowest task. At the lower level there is 

some sequential fragment, which limits the maximal possible 

speed-up. And moreover, the speed-up gain naturally slows 

down significantly (or even becomes negative) when the total 

number of processes ( U LP P ) exceeds the number of computing 

system cores (24 for the current system), as we can clear see at 

the figure 2.  

 

 

Figure 2. Dependences of speed-up on the total number of 

processes ( U LP P ).  

8. Conclusions 

The paper proposes high performance version of the modern 

sequential method for large-scale multiclass SVM learning 

named HP-DLSS-SVM. It is based on the two-level hybrid 

parallel computing scheme and uses the shared memory 

mechanism for process communication and the memory 

mapping mechanism to avoid the lack of memory problem. 

Experiments show that the proposed approach allows to 

essentially decrease training and testing times and at that to 

maintain the obtained recognition accuracy close to the best. 
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