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Abstract  
The need for better geological risk management techniques has increased due to the frequency and severity of natural disasters like 
floods and landslides, which are being caused by urbanization and climate change.  Such management has always depended on 
limited simulations and static models derived from historical data. But more dynamic methods for modelling physical situations in 
real time and predicting future events are now available thanks to recent developments in digital technology, especially Digital 
Twins (DT).  The use of DT in landslide prediction is examined in this work, with an emphasis on the use of inexpensive sensors in 
real-time monitoring of vital environmental factors such ground movement, pore water pressure, and volumetric water content. The 
research was conducted on a test site located on the Feo di Vito hill within the University of Reggio Calabria, a geologically 
vulnerable area. The proposed system integrates real-time environmental monitoring with advanced modeling and predictive 
techniques, ultimately supporting early risk detection and response. Results highlight the potential of this approach to enhance 
forecasting accuracy and responsiveness, offering an effective, scalable, and low-cost decision-support tool for mitigating landslide 
risk in vulnerable areas. 
 
. 
 
 

1. Introduction 

Climate change, increasing urbanization, and the rise in extreme 
weather events are making natural hazards such as floods and 
landslides more frequent and severe. These events can cause 
extensive damage to human life, the environment, and critical 
infrastructure. 
Rainfall-induced landslides are a major geological hazard, 
especially in tropical and subtropical regions, leading to 
significant loss of life and infrastructure damage. The 
infiltration of precipitation leads to rapid changes in water 
content and other conditions—such as increased soil weight, 
changes in pore water pressure (PWP), and ground 
deformation—that can severely compromise slope stability and 
trigger landslides. 
Traditionally, hydrogeological risk management systems have 
relied on static models based on historical data from past events. 
However, advances in digital technologies have introduced 
innovative tools, such as Digital Twins (DTs), that can replicate 
the physical conditions of a given area in real time and simulate 
predictive scenarios based on dynamic variables like rainfall, 
soil saturation, and ground movement. 
A Digital Twin is a virtual representation of a physical product, 
system, or process that enables real-time monitoring, 
simulation, analysis, and decision-making (Grieves, 2014). The 
key feature of a Digital Twin is its ability to bridge the physical 
and virtual worlds, providing a simulated environment in which 
hypotheses can be tested, scenarios modelled, and outcomes 
predicted—without direct interference with the actual physical 
object (Li & Duan, 2024). 
The concept of the Digital Twin was introduced by Michael 
Grieves in 2002 at the University of Michigan in the context of 
Product Lifecycle Management (PLM). The original model was 
based on three core components: the physical space, the virtual 

space, and the flow of data and information between them 
(Grieves & Vickers, 2016)  
The term "Digital Twin" first appeared in a draft of NASA's 
technology roadmap (Shafto et al., 2010), and was later adopted 
by the U.S. Air Force to support the design and maintenance of 
aircraft (Tuegel et al., 2011, Gockel et al., 2012). 
The use of Digital Twins offers several key advantages: 
reducing errors and inefficiencies, accelerating prototyping, 
improving safety through remote monitoring, and cutting costs, 
since updates and testing occur entirely in a virtual environment 
(Singh et al., 2021).  
DT technology is now widely applied across many industries 
(Singh et al., 2022), including aerospace (Li et al., 2021, Ferrari 
& Willcox, 2024), construction (El Jazzar et al., 2020; Sacks et 
al., 2020; Tuhaise et al., 2023), cultural heritage (Barrile & 
Fotia, 2022; Barrile et al., 2011), oil and gas (Bo et al., 2020; 
Priyanka et al., 2022; Shen et al., 2021), healthcare (Elayan et 
al., 2021; Sun et al., 2023) and agriculture (Elayan et al., 2021; 
Sun et al., 2023; Barrile et al., 2021). 
In the field of hydrogeological risk, Digital Twins enable 
enhanced event forecasting, better emergency management, and 
more effective mitigation planning. These models can 
incorporate detailed representations of landscapes, river basins, 
infrastructure, and weather systems—all with the goal of 
monitoring high-risk conditions in real time and predicting 
imminent hazards. In particular, DTs play a crucial role during 
the forecasting phase, using meteorological predictions to assess 
slope stability and anticipate landslide risks. 
This study aims to predict slope stability by analyzing various 
hydrological, meteorological, and vegetation-related variables. 
The first section presents the results obtained through the use of 
a slope-specific Digital Twin—a virtual model that simulates 
and monitors the terrain’s behavior in real time. This is 
followed by an analysis of hydrological predictions, which are 
fundamental for understanding how moisture, precipitation, and 
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runoff affect slope instability. The study also explores the use of 
data-driven models that rely on collected variables to predict the 
Factor of Safety (FOS)—a critical parameter for assessing slope 
security and landslide risk. 
Finally, the paper outlines the operational framework of the 
Digital Twin system, which leverages low-cost sensors to 
collect real-time data. This approach ensures continuous, 
scalable, and cost-effective monitoring of slope conditions, 
opening the door to more proactive and intelligent risk 
management. 

 

2. Materials and methods 

2.1 Study area 

The study area is located in the city of Reggio Calabria, in 
South Italy. The city is collocated on the slopes of Aspromonte 
mountain and is separated from Sicily Island by the Strait of 
Messina. Unfortunately, the city and its hinterland are 
characterized by a hilly and mountainous landscape, with a 
complex geology that can accentuate the risk of landslides and 
flooding 
The first experimentation of this approach was applied in the 
hilly reliefs in the locality of Feo di Vito, Reggio Calabria, an 
area located within the Mediterranean University of Reggio 
Calabria, precisely in the part that hosts the Faculty of 
Agriculture, as shown in the following figure, figure 1. This 
area already subject to studies to monitor slope stability (Barrile 
et al., 2014).  

 
Figure 1. Study area. 

In order to provide a more scientific framework, next figure 
(figure 2) shows the pedologic region of the study area 
(ARSSA, 2003). In detail, the soils in the study area fall within 
soil province 6.9 characterized by steep and steep slopes. the 
texture is medium-textured with neutral or subalkaline reaction, 
high surface stoniness. 

 
Figure 2. Pedologic region of the study area. 

 
 
2.2 Mems and sensors 

For this study, several sensors were strategically installed across 
the slope to continuously monitor key geotechnical and 
hydrological parameters, including volumetric water content 
(VWC), soil temperature, and pore water pressure. These values 
are fundamental variable in managing geotechnical hazard and 
ensuring slope stability. VWC refers to the volume of water 
retained by the soil pore system; higher VWC values are 
correlated to reduction in matric suction and a decreasing in soil 
shear strength. Soil temperature regulates several dynamics, in 
particular phase changes (e.g., freeze-thaw cycles) which can 
alter pore structure and soil’s permeability, in turn influencing 
the movement and retention of water inside the soil matrix 
The sensors were distributed both horizontally, to capture 
spatial variations across the slope surface, and vertically, to 
assess how soil conditions evolve with depth. 
All sensors are connected to a centralized microcontroller 
system that collects data at regular intervals, storing it for long-
term analysis and transmitting it in real time to a monitoring 
platform. This system supports the visualization of data through 
interactive dashboards, which allow for real-time trend analysis, 
threshold-based alert generation, and historical data evaluation. 
The following table, table 1, summarizes the sensors utilized for 
the experiment. 
 

Sensor Variable  Measurements time 
interval 

YL-69 Volumetric water 
content (VWC) 
Soil moisture 

           5-10 minutes 

DS18B20 temperature             5 minuti 

GEOTECH 
PVT 

Pore Pressure (PWP)              1 hour 

Table 1. sensors used for the experiment. 

The sensors used were placed on the top of the slope at different 
pro-depths 0.1 m, 0.5 m, 1 m, 2 m, 4 m and 6 m. In contrast, 
GEOECH PVT electronic piezometers (Figure 3) were installed 
at four different depths: 6 m, 9 m, 15 m and 23 m. 

 
Figure 3: Piezometer 
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2.3 Digital twin creation 

Regarding slope stability, DT could be seen such as a realistic 
virtual replica of a slope, created in order to simulate, analyze 
and forecast the behaviour of the slope under different 
conditions. This digital replica integrates geotechnical, 
environmental and hydrological information with data from 
multiple sources, including field surveys, monitoring data and 
meteorological conditions, to provide a complete and dynamic 
representation of the slope. 
A parametrically adjustable virtual environment was also 
created, starting from a three-dimensional base model and using 
the modeling software Rhinoceros (McNeel & Associates, 
1993), together with the visual programming tool Grasshopper 
(Davidson, 2021) and the Firefly plugin, in order to integrate 
data collected from the MEMS sensors. 
Data from Mems are used as input in Rhinoceros 3D, which 
through the Grasshopper plug-in allows the prediction of the 
hydrological Variables (VWC and PWP) for seven consecutive 
days.   
In this virtual environment modelled with Grasshopper, a 3D 
model of the area under study was created. This model can be 
modified based on the coordinates of the nodes, which represent 
the points in three-dimensional space used to define the 
geometry of the virtual terrain. 
The Firefly plugin powers the model by sending sensor data to 
the Grasshopper environment, allowing changes in the real 
world to be processed in real time (or using stored data) within 
the virtual world. In this way, the virtual environment 
reproduces real conditions. 
Node coordinates represent points in three-dimensional space 
that define the geometry of the virtual terrain.  
Data collected by sensors and weather forecasts, such as 
precipitation (P) and temperature (T) are used, together with 
other variables explained ahead,  to calculate variables such as 
the Factor of Safety (Fos), which helps assess the stability of the 
terrain. 
Next, for the simulation of the landslide we will use the Unreal 
Engine graphics engine, developed by Epic Games. 
To work directly in the two environments in a fluid way, we 
will install the Rhino Inside Unreal plugin on both Rhinoceros 
3D and Unreal Engine. Rhino Inside Unreal creates a direct 
connection between the two software, allowing the visualization 
of the Rhinoceros 3D models within the Unreal Engine 
interface. 

 
Figure 4: example of Node and sensor distribution 

. 
The predicted VWC and PWP values, along with predictions of 
climate and vegetation variables, are used as inputs to data-
driven models to predict Fos (factor of safety). 
VWC and PWP values are modeled using both sto-ric 
measurements and forecasts of precipitation (P), air temperature 
(T). Historical and forecast metereological data are retrieved 
from Online resources. Meteorological data together with Leaf 

Area Index (LAI) are used as input in Rhinoceros 3D to predict 
hydrological variables. The LAI is a measure of leaf area per 
unit land area and is an essential parameter for the study of 
forest and agricultural cover. 
Subsequently, the simulation of the landslide phenomenon will 
be carried out using the Unreal Engine graphics engine, 
developed by Epic Games, famous for its high-performance 
real-time rendering capabilities and support for complex 
interactive environments.  
To ensure seamless integration and workflow between the 
modelling and simulation environments, we will install the 
Rhino Inside Unreal plugin on both Rhinoceros 3D and Unreal 
Engine. This plugin establishes a direct connection between the 
two software platforms, allowing Rhinoceros 3D models to be 
visualized and manipulated directly within the Unreal Engine 
interface—eliminating the need for manual exporting or file 
conversion processes. This connection significantly improves 
efficiency and maintains model fidelity throughout the 
workflow. 
For online visualization and remote interaction, we will use 
Pixel Streaming, a native feature of Unreal Engine. Pixel 
Streaming allows the simulation of the 3D model—specifically, 
the area of interest affected by the landslide—to be broadcast in 
real time directly to a standard web browser. This makes it 
possible to view and interact with the simulation remotely, 
without the need for specialized software or powerful local 
hardware. 
Methodology is resumed in the following figure (figure 5) 
 

 
Figure 5: proposed methodology 

 
 
2.4 Data-based model 

A validated numerical slope model was defined in (Piciullo et 
al., 2022). The model was used to calculate FOS using six 
different 1-year period datasets: 4 belonging to the past and 2 to 
the future. The time-dependent input variables used are divided 
into meteorological and vegetation. They are P, T, Leaf Area 
Index. 
Daily and forecasted data of P and T were obtained from 
different sources, such as satellite data and online repositories. 
The trends of the variables examined are summarized in the 
following figure (figure 6). 
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Figure 6: trends of climatic variables.  

 
 
2.5 Data-based IA model for slope stability prediction 

The next step involved training data-driven model to predict 
FOS through the incorporation of different variables.  
This was obtained with the aim of defining the relationship 
between FOS and meteorological, hydrological and vegetation 
variables.  
Different Data-driven models were considered for FOS 
forecasting:  

 Linear Regression, 
 Polynomial Regression, 
 Random Forest (RF), 
 Bayesian Ridge, 
 Multilayer Perceptron, 
 Support Vector Machine (SVM) 

The best scores were achieved from RF and SVM. 
SVM finds the optimal hyperplane that best separates data 
points of different classes in a high-dimensional space. This 
hyperplane is chosen to maximize the margin between the 
classes, which helps improve generalization on unseen data. 
SVM can handle both linear and non-linear classification 
problems. SVM is known for its  robustness, especially in high-
dimensional spaces, and is widely used in areas such as image 
recognition, bioinformatics, and text classification. 
RF, instead, works by building a large number of decision trees 
during training and outputting either the mode (for 
classification) or the mean (for regression) of their predictions. 
The key idea behind Random Forest is to improve accuracy and 
reduce overfitting by combining the predictions of multiple 
decision trees. Each tree is trained on a random subset of the 
data and at each split, a random subset of features is considered. 
 

3. Results 

Unlike common practices that rely on empirical threshold 
values and displacement monitoring for slow-moving 
landslides, the proposed approach is characterized by its 
exclusive reliance on hydrological and meteorological 
parameters. This paper presents the implementation of a Digital 
Twin model of a slope system, capable of replicating 
hydrological behavior as a function of vegetation characteristics 
and dynamically varying meteorological inputs. The Digital 
Twin was developed using Rhinoceros 3D and Unreal Engine, 
and integrated data from low-cost in-situ sensors alongside 
meteorological datasets derived from ERA raster files. These 
inputs are processed by a numerical model that simulates the 
slope's hydrological response and estimates its Factor of Safety 
(FOS). While sensor deployment presents limitations, such as 
potential issues with measurement accuracy, material durability, 
and real-time data transmission, the predictive model 
compensates by enabling hydrological forecasting.  
FOS estimations are generated through data-driven models, and 
although not all sources of uncertainty in the physical system 
are captured, the application of a machine learning techniques 
model contributes to enhanced predictive performance. 
To facilitate interpretation and operational use, the dashboard 
was designed to present both hydrological and geotechnical 
forecast variables in a clear and intuitive manner. While the 
Factor of Safety (FOS) values are inherently easy to interpret, 
the meaning of hydrological variables such as Volumetric Water 
Content (VWC) and pore water pressure (PWP) becomes 
relevant only when contextualized against historical 
measurements taken at corresponding locations and depths. To 
this end, forecasted hydrological variables are displayed using a 
radar chart (figure 7), which allows users to assess the relative 
magnitude of each variable in a compact visual format.Figures 
and Tables. 

 
Figure 7: Radar chart of VWC.  

On the other hand, gauge indications are used to depict the 
predicted FOS values (Figure 8), where each gauge corresponds 
to a one-day forecast.  This method makes it easier to quickly 
and easily evaluate slope stability across brief time periods, 
which is essential for early warning applications. 
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Figure 8: gauge charts of FOS forecast.  

Users can also monitor the temporal evolution of all forecasted 
variables by using the dashboard's time series graphs. Real-time 
observations from in-situ sensors are superimposed on predicted 
hydrological parameters to enable direct comparison. When 
significant differences between expected and observed values 
are found, this configuration facilitates anomaly detection and 
the use of quality control measures. The dashboard offers a 
powerful tool for well-informed decision-making in landslide 
early warning systems by combining forecast models, historical 
data, and real-time monitoring into a single visual interface. 
Finally, the last figure (Figure 9) shows a digital twin of a 
spatial area, obtained by parametric modeling tools within the 
integrated working environment between Grasshopper and 
Rhinoceros. 

 

4. Conclusion 

Hydrogeological risk is among the most significant 
environmental threats globally, exacerbated by climate change, 
which has increased the frequency and intensity of extreme 
weather events.  Among these, landslides brought on by rainfall 
are a major threat to infrastructure and people, underscoring the 
urgent need for creative risk monitoring, forecasting, and 
management solutions. 
In order to better handle the complexity of landslide events, the 
current study suggested an integrated strategy that combines 
inexpensive sensors, digital twin models, and data-driven 
modeling tools. It was possible to create a system that could 
dynamically estimate the factor of safety (FOS) and provide 
easily comprehensible risk forecasts through interactive 
dashboards by processing important hydrological variables like 
volumetric water content (VWC) and pore water pressure 
(PWP) and using predictive machine learning models. 
These results demonstrate that, even in regions with limited 
financial or technical resources, the utilization of scalable and 
easily accessible technology in conjunction with the capacity to 
deliver real-time updated forecasts can be a useful tool for 
reducing hydrogeological risk.  However, there are still several 
obstacles to overcome, like the requirement for precise model 
calibration and the reliance on the quality, density, and 
consistency of field data. 
In the future, the established system might be improved even 
more by incorporating satellite observations and growing the 
sensor network, which would allow for a multi-scale view of the 
phenomena and wider territory coverage. The use of 
increasingly sophisticated AI algorithms that can adapt to 
changing inputs could increase system resilience and prediction 
accuracy even more. This strategy might be transformed into an 
operational tool for the early protection of people and 
infrastructure by simultaneously integrating predictions directly 
with early warning systems and emergency management 
platforms in collaboration with civil protection agencies. A key 
component of sustainable land management may eventually be 
the incorporation of such technology into more comprehensive 
territorial planning and climate resilience plans. 
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