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Abstract 

Motion structure analysis is a ubiquitous tool for the evaluation of the dynamical properties of various objects. Automation of image 

analysis allows not only speeding up the research, but also eliminating the subjective bias characteristic inevitable under manual data 

processing conditions. The complexity of this task increases dramatically when not one, but several objects of interest are 

simultaneously tracked using the same videos. In turn, this requires specialized algorithms that uniquely associate selected objects 

with tracks. Here we present an original algorithm for multiple objects tracking based on computer vision algorithms developed for 

the image segmentation, as well as subsequent adaptive object selection and tracking. This approach is particularly tailored to the 

complex motion patterns typically exhibited by natural movements of the living objects of interest in biomedical and ecological 

research from microscales (e.g., microbes or cells) to macroscales (e.g. animals in laboratory or natural living conditions).The data 

processing pipeline implementing the proposed algorithms, as well as their validation using simulated data are available at 

https://github.com/Digiratory/StatTools/blob/main/research/kalman_filter.ipynb.  

1. Introduction

Motion pattern analysis is a ubiquitous tool for the evaluation of 

dynamical properties of various objects of interest in a variety 

of biomedical, pharmacological, environmental and other 

problems. Common objects of interest include tracking of 

individual microbes and cells, as well as macro-organisms such 

as animals, fishes, etc. Motion pattern are studied both under 

normal living conditions (e.g. in ecological monitoring), as well 

as under specific laboratory test conditions where experimental 

animals are subjected to treatment with perspective drugs; bio-

indicatory organisms such as crayfish, fish and shellfish, which 

are widely used to assess water quality in both engineered 

reservoirs and natural habitats; microscopic organisms such as 

cells, bacteria and viruses, which are subjected to the effects of 

various substances on their vital activity, such as perspective 

antimicrobials, biocides, chemotherapeutic agents etc. 

Recent advancements in video recording and image processing 

technologies bring this research to a new level, providing 

opportunities to record long-term observations, analyze them in 

a rather automated manner by extracting movement patterns and 

analyzing them to evaluate their normal behavior as well as 

stress response patterns. Automation of image analysis not only 

speeds up the research, but also eliminates subjective bias 

common for manual data processing. 

In this regard, automated video information processing systems 

are becoming more widespread, and require dedicated 

instruments at all stages from image segmentation to the 

selection of objects of interest and their movement patterns 

analysis. The latter is largely based on the analysis of their 

trajectories, which imply using some tracking technologies to 

extract motion patterns from video recordings. The complexity 

of this problem increases drastically when not a single, but 

rather multiple objects of interest are being tracked 

simultaneously from the same video recordings, which in turn 

required specific algorithms that associate selected objects with 

tracks uniquely. 

In this work, we present an original algorithm for multi-object 

tracking based on the in-house developed computer vision 

algorithms for the image segmentation, as well as subsequent 

adaptive object selection and tracking. 

2. Image segmentation and object selection

In computer vision, one of the universal ways to identify 

potential objects of interest in images is to identify sharp 

transitions or edges, corresponding to object boundaries or its 

structural elements. When there are multiple objects of interest, 

including large conglomerates where they partially overlap in 

the images, such as microbial colonies, groups of animals etc., 

these subpopulations are typically characterized by high edge 

densities, in marked contrast to empty surface areas where no 

characteristic objects can be observed, allowing to use the local 

edge density for their identification based solely on its structural 

features (Sinitca, 2023a). Recently, we have successfully 

applied this concept to the segmentation of microbial and cell 

populations (Sinitca, 2023b), as well as ecological zones in 

remote sensing images (Sinitca, 2023c). In this approach, the 

smoothed local edge density is used as a virtual channel which 

is compared against certain threshold(s) for either single- or 

multi-class segmentation, respectively. For the threshold 

selection, we employ an a posteriori approach with multiple 

thresholds being tested for the entire image, and those 

corresponding to the expected image shapes are chosen for each 

individual objects (Volkov, 2020). While selection criteria 

generally depend on the shapes of the objects of interest, 

compact objects with typically circular shapes can be easily 

selected based on the minimization of the perimeter/area ratio 

(Bogachev, 2019) or inverse circularity (Mendoza and Lu, 

2015), since circle exhibits minimum perimeter for a given area, 

respectively.  

3. Association of selected objects with trajectories

While the above procedures lead to compact objects selection in 

individual frames, the next problem is their correct association 

between different frames to provide motion trajectories of single 

objects. Correct track association is largely complicated due to 

the partial overlap between objects which prevents their 

resolution in individual frames, crossing of trajectories, 

randomness of the motion patterns etc.  

In a more general scenario, missing and duplicated points, as 

well as anomalous measurement errors, require adequate 

algorithms to extrapolate, interpolate and filter trajectories. 
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Tailored design of the above algorithms is associated with the 

knowledge of the relevant imitation model capable of 

simulating tracks with similar statistical properties as the 

observational ones from purely independent (while noise) data.  

 

In recent decades, it has been shown that various biological 

objects in both natural and laboratory environments exhibit 

long-term correlated motion patterns, leading to power laws in 

their fluctuation functions (FF) determined as the standard 

deviations of the object’s random displacements in a finite time 

window s 

 

𝐹𝐹(𝑠) = 𝜎 [
1

𝑘
∑ (𝑋𝑘+𝑠 − 𝑋𝑘)𝑘 ] ~𝑠𝐻, 

 

where H is known as the Hurst exponent. In a more general 

scenario such as motion patterns in restricted environments, H 

may not be a single value, but rather update with s, thus leading 

to the variable slope 𝐻(𝑠) (Bogachev, 2023). 

 

The latter, according to the Wiener-Khinchine theorem, also 

leads to power laws in the respective power spectral densities 

 

𝑆(𝑓)~𝑓−𝛽 , 𝛽 = 2𝐻 − 1, 
 

closely reminiscent of those observed in colored noise series.  

 

Association of selected points with tracks is commonly based 

on the minimal distance from the expected track position that in 

turn can be obtained by the extrapolation of the previously 

observed track positions. The optimal extrapolation rule for a 

long-term power-law correlated random series is governed by 

(Kasdin, 1995) 

xn = ∑−𝑎𝑘𝑥𝑛−𝑘 ,

𝑛

𝑘=1

 

 

where 𝑎𝑘 = (𝑘 − 1 −
𝛽

2
) ∗

𝑎𝑘−1

𝑘
, n is the filter length, which is 

theoretically unbounded, while in most practical scenarios 

chosen simply large enough to achieve the desired accuracy.  

 

With the knowledge of the coefficients 𝑎𝑘, one can easily obtain 

the coefficients of the tailored Kalman filter. For example, the 

2nd order Kalman filter is described by 

 

[
𝑥𝑘
𝑥̇𝑘
] = [

𝐹11 𝐹12
𝐹21 𝐹22

] ∙ [
𝑥𝑘−1
𝑥̇𝑘−1

] 

 

where 𝑥̇𝑘 = 𝑥𝑘 − 𝑥𝑘−1. 

The above can be rewritten in the scalar form 

 

{
𝑥𝑘 = 𝐹11𝑥𝑘−1 + 𝐹12(𝑥𝑘−1 − 𝑥𝑘−2)

𝑥𝑘 − 𝑥𝑘−1 = 𝐹21𝑥𝑘−1 + 𝐹22(𝑥𝑘−1 − 𝑥𝑘−2)
 

 

{
𝑥𝑘 = (𝐹11 + 𝐹12)𝑥𝑘−1 − 𝐹12𝑥𝑘−2

𝑥𝑘 = (1 + 𝐹21 + 𝐹22)𝑥𝑘−1 − 𝐹22𝑥𝑘−2
 

 

In the first approximation, the autoregressive filter can be also 

described by the first two coefficients 

 

𝑥𝑘 = −𝑎1𝑥𝑘−1 − 𝑎2𝑥𝑘−2. 

 

Next, by substituting 

 

{
𝐹11 + 𝐹12 = −𝑎1
−𝐹12 = −𝑎2

⟹ {
𝐹11 = −𝑎1 − 𝑎2

𝐹12 = 𝑎2
. 

 

And 

 

{
1 + 𝐹21 + 𝐹22 = −𝑎1

−𝐹22 = −𝑎2
⟹ {

𝐹21 = −1 − 𝑎1 − 𝑎2
𝐹22 = 𝑎2

 

 

altogether finally yields 

 

𝐹 = [
−𝑎1 − 𝑎2 𝑎2

−1 − 𝑎1 − 𝑎2 𝑎2
], 

 

where F is the transition matrix of the tailored Kalman filter. 

 

Calculation of the 3rd order Kalman filter 

F = [

𝐹11 𝐹12 𝐹13
𝐹21 𝐹22 𝐹23
𝐹31 𝐹32 𝐹33

] 

 

[

𝑥𝑘
𝑥𝑘̇
𝑥𝑘̈

] = [

𝐹11 𝐹12 𝐹13
𝐹21 𝐹22 𝐹23
𝐹31 𝐹32 𝐹33

] ∙ [

𝑥𝑘
𝑥𝑘−1̇
𝑥𝑘−1̈

], 

 

where 𝑥̇𝑘 = 𝑥𝑘 − 𝑥𝑘−1, 𝑥̈𝑘 = 𝑥̇𝑘 − 𝑥̇𝑘−1. 
 

It's obvious that 𝑥̈𝑘 = 𝑥𝑘 − 2𝑥𝑘−1 + 𝑥𝑘−2. 

 

Let's perform matrix multiplication: 

 

{
  
 

  
 

𝑥𝑘 = 𝐹11𝑥𝑘−1 + 𝐹12(𝑥𝑘−1 − 𝑥𝑘−2) +

+𝐹13(𝑥𝑘−1 − 2𝑥𝑘−2 + 𝑥𝑘−3)

𝑥𝑘 − 𝑥𝑘−1 = 𝐹21𝑥𝑘−1 + 𝐹22(𝑥𝑘−1 − 𝑥𝑘−2) +

+𝐹23(𝑥𝑘−1 − 2𝑥𝑘−2 + 𝑥𝑘−3)

𝑥𝑘 − 2𝑥𝑘−1 + 𝑥𝑘−2 = 𝐹31𝑥𝑘−1 +

+𝐹32(𝑥𝑘−1 − 𝑥𝑘−2) + 𝐹33(𝑥𝑘−1 − 2𝑥𝑘−2 + 𝑥𝑘−3)

 

 

{
  
 

  
 

𝑥𝑘 = (𝐹11 + 𝐹12 + 𝐹13)𝑥𝑘−1 +

+(−𝐹12 − 2𝐹13)𝑥𝑘−2 + 𝐹13𝑥𝑘−3
𝑥𝑘 = (1 + 𝐹21 + 𝐹22 + 𝐹23)𝑥𝑘−1 +

+(−𝐹22 − 2𝐹23)𝑥𝑘−2 + 𝐹23𝑥𝑘−3
𝑥𝑘 = (2 + 𝐹31 + 𝐹32 + 𝐹33)𝑥𝑘−1 +

+(−1 − 𝐹32 − 2𝐹33)𝑥𝑘−2 + 𝐹33𝑥𝑘−3

 

 

The process model is generated by a third-order AR filter.: 

 

𝑥𝑘 = −𝑎1𝑥𝑘−1 − 𝑎2𝑥𝑘−2 − 𝑎3𝑥𝑘−3. 

 

Let's compare the expression above sequentially with the three 

lines of equations. 

 

𝐹13 = −𝑎3;  𝐹23 = −𝑎3;  𝐹33 = −𝑎3. 
 

Comparison with the first equation yields the following: 

 

{
𝐹11 + 𝐹12 + 𝐹13 = −𝑎1
−𝐹12 − 2𝐹13 = −𝑎2

⟹ {
𝐹11 + 𝐹12 − 𝑎3 = −𝑎1
−𝐹12 + 2𝑎3 = −𝑎2

⟹ 

 

{
𝐹11 = −𝑎1 + 𝑎3 − 𝐹12
−𝐹12 = −2𝑎3 − 𝑎2

⟹ {
𝐹11 = −𝑎1 − 𝑎2 − 𝑎3
𝐹12 = 𝑎2 + 2𝑎3

. 

 

Comparison with the second equation yields the following: 

 

{
1 + 𝐹21 + 𝐹22 + 𝐹23 = −𝑎1

−𝐹22 − 2𝐹23 = −𝑎2
⟹ {

𝐹21 = −1 − 𝑎1 − 𝑎2 − 𝑎3
𝐹22 = 𝑎2 + 2𝑎3

. 

 

Comparison with the third equation yields the following: 
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{
2 + 𝐹31 + 𝐹32 + 𝐹33 = −𝑎1
−1 − 𝐹32 − 2𝐹33 = −𝑎2

⟹ 

 

{
𝐹31 = −2 − 𝐹32 − 𝑎1 + 𝑎3
−1 − 𝐹32 = −𝑎2 − 2𝑎3

⟹ 

 

{
𝐹31 = −1−𝑎1 − 𝑎2 − 𝑎3
𝐹32 = −1 + 𝑎2 + 2𝑎3

. 

 

altogether finally yields 

 

𝐹 = [

−𝑎1 − 𝑎2 − 𝑎3 𝑎2 + 2𝑎3 −𝑎3
−1 − 𝑎1 − 𝑎2 − 𝑎3 𝑎2 + 2𝑎3 −𝑎3
−1 − 𝑎1 − 𝑎2 − 𝑎3 −1 + 𝑎2 + 2𝑎3 −𝑎3

]. 

 

4. Simulation study 

Figures 1-3 show the results of simulation data series with 

specified values of the Hurst index and the results of their 

processing using Kalman filters of the 1st, 2nd and 3rd orders. 

 

We simulated Gaussian data series with zero mean and unit 

variance exhibiting linear long-term correlations (LTC) with 

𝐹𝐹(𝑠)~𝑠𝐻 typically occurring in complex systems, where H is 

the Hurst exponent. We used the algorithm by (Kasdin, 1995) 

with 0.5 ≤ 𝐻 ≤ 1.5 with step H = 0.1 to generate  

𝑁 = 10 random series of size 𝐿 =  212. Two types of data 

disturbances were simulated, the first one represented by 

additive white Gaussian noise (AWGN) with signal-to-noise 

ratios (SNR) defined as the ratio between the standard 

deviations of the signal and the noise, respectively, in the range 

[-20…10] dB. The second type of disturbance considers missing 

data (gaps) occurring at random points in the series (Poisson 

flow) with exponential gap length with two free parameters, the 

average gap length and the average gap rate, respectively. 

 

Figure 1 illustrates the reconstruction of original data series 

from the disturbed measurements described above (with noise 

of the left and gaps on the right, top to bottom: simulated, 

disturbed and reconstructed data, respectively). The figure 

shows that, as expected, increasing the order of the Kalman 

filter reduces the noise level in the reconstructed signal.

 

 
Figure 1. Data reconstruction using Kalman filters (I, II and III order) in the presence of gaps of additive noise of a given intensity 

(left column) and in the presence of gaps (right column). The left panel shows, from top to bottom, an example of the implementation 

of a series of data (a), a series of data with introduced interference (additive Gaussian noise of varying intensity) (c), a fragment of a 

series of data with omissions on an enlarged scale (e), the results of restoration (g), respectively, by filters of 1-3 orders. The right 

panel shows, from top to bottom, an example of the implementation of a series of data (b), a series of data with introduced 

interference (gaps) (d), a fragment of a series of data with noise on an enlarged scale (f), and filtering results using filters of different 

orders (h). 

a b 

c d 

e f 

g h 
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Figure 2. Comparison of the effectiveness of different signal recovery methods under varying noise levels and original signal 

parameters. For each value of the Hurst exponent 𝐻 = 0.5, 0.75, 1.0, 1.25, 1.5, a signal is generated by the Kasdin model. Various 

noise levels are set from -20 to 10 dB. For each noise level, 15 noisy versions of the original signal are created and restored using 

three different Kalman filters (designated as I, II, and III according to the inherent model order). For each noise level, the error 

(MSE) between the original and noisy signals, the original and each of the three reconstructed signals is calculated with a 90% 

confidence interval (5th and 95th percentiles). 

 

Figure 2 shows the dependence of the MSE (mean squared 

error) on SNR obtained for different H values with error bars 

denoting 5% and 95% quantiles, respectively. The figure shows 

that the first-order filter is unable to reconstruct the original 

signal, and thus the error increases with increasing disturbance. 

In contrast, second- and third-order filters are potentially 

capable of reconstructing the signal with accuracy bounded 

solely by the fluctuation error. A plateau at low SNR values 

could be attributed to the regime where measurements are given 

minimal weight, and thus the reconstruction quality is fully 

determined by the extrapolations. In marked contrast, for the 

non-stationary regime, corresponding to 𝐻 > 1, in addition to 

the fluctuations there is an obvious accumulation of the regular 

bias, resulting in the linear increase of the MSE with increasing 

(equivalent) noise level.  

 

Figure 3 shows how the MSE depends on the Hurst exponent H 

for fixed SNR levels and gap model parameters, respectively. 

 

Figure 3 (a) summarizes the results obtained for a fixed noise 

level of -20 dB across different Hurst parameter (H) values. The 

figure shows that the MSE decreases with increasing filter 

order, while remaining independent of the Hurst exponent for 

all fractional Brownian motion scenarios, although increases at  
𝐻 > 1 due to the additional accumulation of the regular bias 

(see also Fig. 2). 

 

Figure 3 (b) extends the previous noise analysis by examining 

how different Kalman filter models handle another common 

data problem – gaps and how their performance depends on the 

Hurst exponent. The gap occurrence frequency was set to 0.1, 

and the total number of test signals for each H is N = 10. The 

figure shows that the MSE reduces monotonously with both 

increasing the filter model order and the Hurst exponent. The 

latter could be attributed to the fact that large Hurst exponents 

correspond to strongly persistent data series with remarkably 

slower dynamics, in comparison with high-frequency white 

noise, and thus even simple linear extrapolations are performing 

rather well in the presence of gaps, reducing the effective error 

levels for Kalman filters of different orders. 

 

In the following, we reconstruct the simulated signals using 

Kalman filters of the 1st, 2nd and 3rd orders. For each filter 

model, the MSE between the reconstructed and the original 

signals is calculated and visualized by boxplots.  
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Figure 3. Dependences of the MSE on the value of the Hurst exponent with additive Gaussian noise and a signal-to-noise ratio  

of -20 dB (a) and with gaps (b) 

 

5. Application to empirical video recordings 

We use a simple algorithm that performs segmentation and 

quantification of heterogeneous regions in various biomedical 

images based on an estimate of the density of their local 

boundaries. The algorithm consists of several simple steps, 

including a conventional edge detector, followed by a 

smoothing filter that extracts local edge density values, which 

are eventually used for segmentation using a multi-threshold-

based procedure. 

 

To binarize the original monochrome image, a threshold T 

should be chosen. The image pixels that exceed the threshold 

will be set to 1 and will represent the objects of interest. The 

pixels that are less than the threshold will be set to zero and will 

correspond to the background of the image.  

 

Too small threshold values result in the inclusion of background 

image fragments in the objects of interest, thus distorting them. 

Excessively large threshold values lead to disruption of the 

connectivity of the selected objects of interest and changes in 

their shape. Thus, an unjustified choice of threshold leads to an 

increase in the level of noise in the image after binarization and, 

accordingly, to a distortion of the selected objects of interest. 

 

To reasonably choose the binarization threshold, we used a 

technique based on the application of the coefficient of 

elongation of the perimeter of the object (Bogachev, 2019; 

Volkov, 2020): 

 

𝑃𝑆 =
𝑃2

4𝜋𝑆
, 

 

where 𝑃 is the objects perimeter, 𝑆 is its area. Of note, the 

above metric is also an inverse to the well-known circularity 

metric (Mendoza and Lu, 2015). This coefficient is normalized, 

and for objects that have a shape close to a circle, it tends to 1. 

When an object is lengthened or its boundaries are distorted, 

this coefficient increases. In practice, it is advisable to consider 

a series of values of the binarization threshold T, taken with a 

certain step ∆𝑇. In our study, it is assumed that the objects of 

interest have a round shape. Thus the optimal threshold for 

image binarization will be one at which the values of the 

perimeter elongation coefficient for selected objects will be 

minimal. 

 

Trajectory processing is the process of association of the 

specific objects selected in individual frames with their unique 

trajectories. It starts with the initialization of individual 

trajectories. We assume that, once there are samples in the 

processed frame that have not been identified with other 

trajectories, they should be considered the starting points of new 

trajectories. 

 

After the initialization, selected objects in each incoming frame 

are associated with one of the existing trajectories. The simplest 

method that implements this stage is the Global Nearest 

Neighbor (GNN) method: the point closest to the last reference 

point of this trajectory will be considered a continuation of the 

trajectory. To increase the effectiveness of this method, we 

performed several actions: to search for the nearest point not to 

the last reference, but to the interpolated value based on the 

extrapolation by the proposed Kalman filter model, in turn 

calculated based on the previous object position and movement, 

as well as incoming measurements. 

 

When no new points associated with a particular trajectory for a 

certain period of time could be detected, the trajectory is being 

terminated. However, a tracking failure situation is also possible 

– when the object continues to be in the field of view, but new 

readings for one or another reason do not appear due to errors in 

the computer vision system. To avoid this situation, one 

continues to interpolate the object's movement, and then, after a 

while, transfers the trajectory to the “lost” category – search for 

new points potentially belonging to this trajectory continues, 

while no further extension of the trajectory is being performed, 

until the receipt of any new observations that automatically 

transfer the trajectory back into the “observed” status. 

 

Following the above strategy, an algorithm that processes the 

initial unstructured array of coordinates of potential objects into 

an array of trajectories of individual objects convenient for 

further analysis and processing has been implemented. 

 

Figure 4 exemplifies the reconstruction of multiple animal 

movement trajectories based on the video capture of ants’ 

colony movements (b) from object selections in single frames 

shown in (a), respectively, indicating successfully resolved 

missing events, merged duplicates, as well as denoising based 

on the Kalman filter-based processing of trajectories. The 

a b 
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proposed approach is particularly suited for the analysis of long-

term correlated motion patterns common in many natural and 

especially living systems, and thus provide a tailored approach 

to the trajectory analysis in biomedical and ecological research 

dealing with motion patterns of living objects from microscales 

(e.g., microbes or cells) to macroscales (e.g. animals in 

laboratory or natural living conditions). 

 

 

  
Figure 4. (a) Multiple object selections; (b) reconstructions of multiple animal movement trajectories.
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