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Abstract 

 

Modern warehouse complexes face the need for efficient and accurate pallet loading control in conditions of high dynamics and 

variety of objects. This paper proposes an approach to solving this problem based on the Segment Anything model (SAM) for 

automatic image tagging and the YOLOv8 model for subsequent accurate segmentation. This combination provides both high 

processing speed and adaptability to changing lighting conditions, partial overlaps, and complex object geometry. The proposed 

algorithm tracks changes in the area of segmented zones in order to estimate the addition of new cargo. The experiments show that 

YOLOv8 provides the best balance between accuracy and performance (Dice = 0.88), outperforming Mask R-CNN and the newer 

version YOLOv12. Additionally, the paper contains an analysis of the models' resistance to noise and visual distortions. The 

presented solution has the potential for integration into next-generation industrial logistics systems, reducing the need for manual 

annotation and increasing the autonomy of loading control. 

 

 

1. Introduction 

Modern logistics facilities today face escalating demands for 

speed, precision, and adaptability in the handling, storage, and 

dispatch of goods. Contemporary automation challenges in 

warehouse operations have risen to the point where traditional 

manual oversight can no longer keep pace with the volume and 

variability of incoming shipments. Among these critical tasks, 

the accurate monitoring and control of pallet loading stands out 

as one of the most labor-intensive and time-consuming 

processes. In high-throughput environments – in which 

hundreds or even thousands of cartons, boxes, and packages 

traverse conveyor belts and storage racks every hour—any 

delay or error in properly arranging and accounting for 

palletized freight can propagate downstream, causing costly 

misplacements, shipment delays, and logistical bottlenecks. 

 

In this context, computer vision has emerged as a transformative 

enabler of next-generation warehouse intelligence. By 

leveraging advanced cameras, edge-computing hardware, and 

deep-learning algorithms, modern vision systems can 

automatically recognize, classify, and spatially localize 

individual items in real time. Such systems are capable of 

discerning an object’s shape, dimensions, orientation, and even 

surface characteristics–enabling not only binary 

“present/absent” checks but also volumetric assessments and 

overlap detection. The ability to process high-resolution video 

streams at frame rates exceeding 30 frames per second means 

that a vision-based controller can keep continual tabs on fast-

moving forklifts, robotic palletizers, and human operators alike. 

This level of automation drastically reduces reliance on manual 

inspection, cuts down human error, and frees up personnel to 

focus on exception handling rather than routine snapshot 

verifications. 

 

Against this backdrop of surging throughput requirements and 

zero-tolerance for errors, the need for sophisticated, scalable 

computer-vision and machine-learning solutions is more urgent 

than ever. In our work, we present an innovative, two-stage 

approach to precise pallet-loading control that brings together 

the state-of-the-art Segment Anything Model (SAM) for rapid, 

high-quality data annotation and the YOLO (You Only Look 

Once) framework for swift, accurate object segmentation. 

SAM’s breakthrough capability–powered by a massive 

Transformer backbone trained on over a billion masks allows 

for zero-shot extraction of object outlines from various visual 

prompts with minimal human intervention. These rich, 

automatically generated annotations dramatically reduce the 

dataset preparation overhead typically required to train 

supervised models. 

 

Once an initial annotation scaffold is in place, the YOLOv8 

architecture takes the baton, delivering fast, frame-by-frame 

object detection and mask generation optimized for industrial 

environments. Its single-stage pipeline, enhanced by Cross-

Stage Partial (CSP) modules and anchor-free predictions, 

processes each frame in milliseconds, making it ideally suited 

for real-time deployment on edge devices. By integrating 

SAM’s annotation throughput with YOLO’s inference speed, 

our system forms a robust, end-to-end vision stack that can 

reliably track incremental additions to a pallet, even under 

shifting lighting conditions, partial occlusions, and varying 

camera angles. This combined SAM–YOLO paradigm thus 

establishes a new benchmark for autonomous pallet-loading 

control in dynamic logistics settings, delivering both the 

flexibility required for rapid model adaptation and the 

performance necessary for continuous, unattended operation. 

 

A distinctive feature of the proposed method is a unique 

algorithm for analyzing the dynamics of changes in the 

segmented area using a top-mounted camera. This algorithm 

incorporates a specialized mathematical framework that 

accounts for the addition of new objects onto the pallet. The 

solution demonstrates high practical potential, delivering not 

only precise segmentation but also adaptability to varying 

conditions such as lighting changes or partial object occlusions. 

 

Thanks to the universal architectures of SAM and YOLO, the 

developed system can scale and adapt to different logistics 

configurations, including autonomous warehouse robots, sorting 
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lines, and automated platforms. The method’s effectiveness has 

been empirically validated, and its stability and scalability pave 

the way for integration into next-generation logistics systems. 

 

2. Related works 

Recent advances in computer vision have had a profound 

impact on the automation of logistics processes, particularly in 

tasks such as object segmentation and pallet-loading state 

monitoring. Classical segmentation architectures—such as 

Mask R-CNN (He, 2017) and U-Net (Ronneberger, 2015)—laid 

the groundwork for precise object delineation, but their reliance 

on extensive manual annotation remains a significant 

bottleneck, especially in fast‐moving, high‐variability industrial 

settings. Standardized datasets like COCO (Lin, 2014) and 

LVIS (Gupta, 2019) have partially alleviated the annotation 

burden by providing large-scale, richly labeled images; 

however, highly specialized applications—such as real‐time 

pallet‐loading control—demand tailored solutions that account 

for the irregular shapes of cargo, complex overlap patterns, and 

rapid lighting fluctuations. 

 

Several studies have explored the direct application of 

segmentation techniques in logistics. For instance, article 

(Zhang, 2020) employed YOLOv4 for pallet detection, while 

article (Wang, 2022) introduced a multi‐view 3D reconstruction 

pipeline to estimate cargo volume. Although these methods 

achieve promising accuracy, they often struggle with real‐time 

adaptability and fail to generalize across diverse warehouse 

layouts. 

 

The advent of foundation models like SAM (Segment Anything 

Model) (Kirillov, 2023) marked a turning point by enabling 

zero‐shot segmentation with minimal human input. Recent work 

by Chen (2023) confirmed SAM’s potential in industrial object 

detection, yet its integration into dedicated pallet‐monitoring 

systems remains underexplored. 

 

A particularly important research direction focuses on 

approaches that combine automated annotation, robust 

segmentation, and adaptive algorithms to handle geometric 

heterogeneity of palletized loads. For example, authors (Li, 

2021) demonstrated a depth‐sensor–based method, but it 

exhibited limited scalability under variable illumination and 

overlapping scenarios. Continuous innovation is needed to 

bridge these gaps and deliver truly resilient, end‐to‐end 

segmentation pipelines for modern logistics environments. 

 

Specialized tools of using generative models to improve 

detectors and segmentators quality are provided in work 

(Andriyanov, 2024). 

 

Methods for 3D‐structure analysis (Andriyanov, 2021; Sun, 

2024) offer valuable insights into the geometric properties of 

palletized loads but are not always suitable for real‐time 

applications due to their computational complexity and reliance 

on specialized depth sensors. Consequently, there remains a 

substantial gap in existing solutions that can simultaneously 

deliver high processing speed, segmentation accuracy, and 

adaptability to changing warehouse conditions. The present 

work bridges this gap by leveraging the rapid, high‐quality 

annotation capabilities of SAM, the real‐time inference speed 

and precision of YOLO, and a proprietary algorithm that 

dynamically tracks changes in object surface area on the pallet. 

 

Moreover, there is growing interest in multimodal systems that 

combine visual input with textual or semantic prompts, enabling 

the segmentation model to interpret not only the shape and 

position of items but also their category and handling 

requirements. Recent advances in zero‐shot segmentation 

frameworks—such as SAM and SEEM—demonstrate the 

feasibility of fully automated model adaptation to the unique 

appearance and arrangement of goods in a given warehouse, 

without costly manual label creation or extensive retraining. 

This combined visual‐semantic prompting approach holds 

promise for creating next‐generation logistics platforms that can 

self‐optimize based on real‐world operating conditions. 

 

In summary, the evolution of computer vision techniques has 

dramatically advanced the state of the art in logistics 

automation, yet critical challenges remain in unifying high 

throughput, segmentation fidelity, and operational robustness. 

Classical two-stage networks such as Mask R-CNN and 

encoder–decoder models like U-Net paved the way for precise 

object delineation but continue to impose prohibitive annotation 

overheads in dynamic warehouse environments. While large-

scale benchmarks (COCO, LVIS) have mitigated this burden, 

they fall short of capturing the idiosyncratic geometries, 

occlusions, and lighting variations characteristic of palletized 

cargo. Early industrial adaptations – ranging from YOLOv4-

based pallet detectors to multi-view 3D reconstructions – have 

demonstrated feasibility yet often lack real-time adaptability 

and cross-site generalizability. 

 

The introduction of foundation models such as SAM, capable of 

zero-shot segmentation, represents a pivotal paradigm shift by 

drastically reducing manual labeling requirements without 

sacrificing mask quality. Nevertheless, the seamless integration 

of such models into end-to-end pallet-monitoring pipelines 

remains nascent. Similarly, depth-sensor-driven and 3D-analytic 

approaches offer valuable geometric insight but struggle to meet 

the stringent demands of real-time throughput. 

 

Our synthesis emphasizes the urgent need for hybrid 

frameworks that leverage automated, high-quality annotation 

(SAM), ultra-fast inference (YOLO), and adaptive algorithms to 

dynamically track load composition. Moreover, the emerging 

paradigm of multimodal prompting – combining visual and 

semantic cues – holds promise for contextualizing segmentation 

outputs with cargo metadata, further reducing human 

intervention. Moving forward, research should prioritize 

scalable architectures that natively support zero-shot adaptation, 

real-time performance, and multimodal integration, thereby 

enabling truly autonomous, resilient pallet-loading control 

systems for tomorrow’s smart warehouses. 

 

3. Materials and methods 

In this study, we employed authentic video recordings of forklift 

operations under real warehouse conditions. The total amount of 

raw footage amounted to approximately 20 hours; from this, we 

selected a representative subset of 20 minutes that covered the 

most critical pallet-loading scenarios, including peak throughput 

periods and challenging loading angles. To ensure a consistent 

temporal annotation framework, the continuous video stream 

was converted into individual image frames at a rate of one 

frame per second, yielding a dataset of 1,200 frames—providing 

extra overlap for late-stage validation. 

 

These frames encompass a wide variety of operational 

circumstances: fluctuating illumination levels caused by 

overhead lighting changes, partial and full object occlusions 

when pallets overlap or are stacked, and variations in camera 

viewing angles as forklifts approach from different directions. 
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For automatic object segmentation within these frames, we 

utilized the FastSAM (Fast Segment Anything Model) tool from 

the Ultralytics library. FastSAM is a pre-trained model based on 

the YOLOv8 architecture that generates precise object masks in 

response to approximate rectangular prompts (bounding boxes). 

This approach dramatically reduces manual annotation effort 

compared to fully hand-labeled datasets, while still delivering 

high-quality segmentation. 

 

A key advantage of FastSAM lies in its robustness to imprecise 

inputs: even when bounding-box prompts are only roughly 

drawn, the model accurately infers object contours. This 

capability is especially important for dynamic scenes featuring 

partial overlaps, complex pallet geometries, and rapid changes 

in object position, enabling reliable mask extraction with 

minimal user intervention. 

 

Figure 1 shows the original frame on the left and the frame 

marked up with FastSAM on the right. 

 

 
Figure 1. Examples of source and labeled images 

 

Figure 2 demonstrates segmented data. 

 

 
Figure 2. Segmented objects 

 

The core SAM model (Segment Anything Model) is a universal 

image segmentation algorithm designed to extract object 

boundaries using various forms of input prompts – including 

points, bounding boxes, and even textual descriptions – without 

requiring additional training or fine-tuning for new tasks. This 

flexibility makes SAM particularly powerful in environments 

where data diversity is high and manual annotation is costly or 

impractical. 

 

Built upon a scalable and modular Transformer-based 

architecture, SAM was trained on the massive SA-1B dataset, 

which contains over one billion high-quality segmentation 

masks spanning a wide range of object types, shapes, and 

contexts. This extensive training corpus enables the model to 

generalize effectively across unseen scenarios, making it 

suitable not only for academic benchmarks but also for 

deployment in complex, real-world environments. 

 

The model supports both automatic segmentation – where 

masks are generated without any human interaction – and 

interactive segmentation, which allows users to refine results by 

providing feedback or targeted input cues. This dual-mode 

functionality provides flexibility depending on the precision and 

speed requirements of the use case. SAM demonstrates 

impressive robustness to environmental noise, visual clutter, 

object occlusions, and complex backgrounds, making it well-

suited for industrial applications. 

 

A particularly critical advantage of SAM lies in its ability to 

function effectively in low-data or zero-shot settings, where 

traditional models would typically require extensive retraining 

or large labeled datasets. This makes SAM a strong candidate 

for industrial monitoring tasks such as pallet-loading control, 

where scenes are dynamic, lighting conditions vary, and the 

need for real-time, high-accuracy segmentation is paramount. 

Its ability to deliver precise object boundaries without reliance 

on task-specific training pipelines represents a major leap 

forward in automating visual intelligence across logistics and 

manufacturing workflows. 

 

4. Results and Discussion 

The primary evaluation metric used in this study was the Dice 

coefficient, also known as the Dice Similarity Coefficient 

(DSC). This metric is widely adopted in segmentation tasks, 

particularly in scenarios where the overlap between predicted 

and ground truth regions must be accurately quantified. 

 

In the context of pallet-loading control, precise object boundary 

detection is essential, as even small segmentation errors can 

lead to incorrect object counts, misinterpretation of loading 

completeness, or failure to detect overlapping packages. The 

Dice metric provides a direct measure of similarity between the 

predicted segmentation mask and the actual (reference) mask, 

making it highly suitable for evaluating performance in such 

spatially sensitive tasks. 

 

Formally, the Dice coefficient is defined as: 

||||

||2

BA

BA
Dice




 ,                            (1) 

 

where A is the set of predicted mask pixels, and B is the set of 

ground truth mask pixels. The metric ranges from 0 (no overlap) 

to 1 (perfect match), and emphasizes both precision and recall 

simultaneously. 

 

Given the operational need for high segmentation accuracy 

under varying lighting, angles, and object occlusions in 

warehouse conditions, the Dice score is an appropriate and 

reliable metric for assessing the real-world applicability of our 

segmentation approach. Its sensitivity to both over-
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segmentation and under-segmentation allows us to ensure that 

the proposed system performs robustly in dynamic industrial 

environments.  

 

Table 1 shows the comparison results of different approaches.  

 

Model Dice 

YOLOv12 0.86 

YOLOv8 0.88 

Mask R-CNN 0.84 

Table 1. Comparison of Image Segmentation. 

 

The YOLOv8 model achieved the highest segmentation 

accuracy in our evaluation, with a Dice score of 0.88, 

outperforming both YOLOv12 (0.86) and the more traditional 

two-stage Mask R-CNN (0.84). This superior performance of 

YOLOv8 can be attributed to several architectural 

enhancements introduced in this version, such as the integration 

of Cross Stage Partial (CSP) connections, decoupled head 

structures, and optimized anchor scaling mechanisms. These 

improvements not only enhance feature reuse and gradient flow 

but also lead to more stable and precise object boundary 

predictions, particularly in crowded and variable industrial 

scenes. 

 

Despite being a newer iteration, YOLOv12 underperforms 

slightly compared to YOLOv8 in terms of segmentation 

accuracy. This may indicate that YOLOv12 has been optimized 

primarily for speed or model size – potentially through 

lightweight backbones or transformer-like modules – possibly at 

the cost of fine-grained mask quality. Further investigation is 

required to determine the extent to which these architectural 

trade-offs affect detection robustness, especially in cluttered or 

occluded environments like pallet stacks. 

 

Mask R-CNN, while once a benchmark in object segmentation, 

shows the lowest performance among the compared models in 

our setup. This is likely due to its inherently slower, two-stage 

architecture, which separates region proposal from mask 

prediction. In dense logistic scenarios, such as those involving 

overlapping boxes or varying lighting conditions, Mask R-CNN 

may accumulate error across stages, leading to reduced 

segmentation fidelity and degraded spatial accuracy. 

 

From an industrial deployment perspective, YOLOv8 offers the 

most practical balance between precision, speed, and 

implementation complexity. Its high segmentation quality 

combined with real-time inference capability makes it ideal for 

on-device execution in warehouse automation systems. 

However, the potential inference speed advantages of 

YOLOv12 (e.g., frames per second, memory efficiency) warrant 

further benchmarking under production conditions. 

 

To further enhance system performance and robustness, we 

recommend integrating additional evaluation metrics such as 

Intersection over Union (IoU), pixel-wise accuracy, and false 

positive/negative rates. Moreover, qualitative tools such as error 

heatmaps, boundary analysis, and visualization of common 

failure cases (e.g., object merging or incomplete segmentation) 

will be crucial for refining the segmentation pipeline and 

ensuring reliable operation in diverse logistics environments. 

 

To assess the robustness of the proposed algorithm under 

realistic and potentially challenging operating conditions, an 

additional experiment was conducted involving the intentional 

introduction of noise distortions. The objective was to simulate 

environmental variations that commonly occur in warehouse 

settings, such as sensor interference, inconsistent lighting, and 

partial occlusion from nearby objects. 

 

As part of this experiment, modified versions of the test dataset 

were generated by applying three types of controlled visual 

perturbations. First, Gaussian noise with varying standard 

deviations was added to simulate sensor-level interference and 

low-quality video feeds. This type of noise helps evaluate the 

model’s ability to maintain segmentation accuracy when the 

input data becomes visually degraded. Second, brightness 

adjustments—both increases and decreases—were applied to 

individual frames to replicate real-world fluctuations in 

illumination, such as those caused by moving forklifts casting 

shadows or temporary light obstructions. Third, artificial 

shadow overlays and occlusion patterns were introduced to 

simulate the presence of overlapping objects or the inconsistent 

visibility of palletized items under dynamic conditions. 

 

By subjecting the model to these distortions, we aimed to 

evaluate not only its base-level segmentation performance but 

also its resilience to common operational noise, which is critical 

for reliable deployment in industrial environments where visual 

clarity cannot always be guaranteed. 

 

Table 2 presents the results of experiment. 

 

Condition Dice YOLOv8 Dice FastSAM 

No distortions 0.88 0.85 

Gaussian noise (σ 

= 20) 
0.87 0.83 

Brightness 

variation (±25%) 
0.86 0.82 

Shadows and 

partial occlusion 
0.84 0.78 

Table 2. Segmentation Accuracy under Visual Distortions. 

 

The experiment demonstrates that while FastSAM maintains 

relatively stable segmentation performance under moderate 

noise and lighting variations, it exhibits noticeable sensitivity 

when subjected to strong occlusions and overlapping objects. 

This indicates that although FastSAM performs well in clean or 

lightly distorted scenes, its segmentation quality tends to 

degrade in more complex visual scenarios typical of dynamic 

warehouse environments—particularly when multiple packages 

overlap or when shadows obscure clear object boundaries. The 

decline in performance under partial occlusion suggests a 

limitation in the model’s ability to infer complete object masks 

when only fragmented visual cues are available. 

 

In contrast, YOLOv8 consistently preserves high segmentation 

accuracy across all tested distortion scenarios, including under 

the influence of Gaussian noise, changes in brightness, and 

artificially introduced shadows. This robustness highlights the 

strength of YOLOv8’s feature extraction capabilities, likely due 

to its optimized architecture and training strategies that enhance 

generalization. Notably, even in scenes with reduced visual 

clarity, YOLOv8 manages to retain structural integrity in its 

predicted masks and continues to accurately delineate individual 

object boundaries. 

 

Such performance under stress conditions is especially valuable 

in industrial and warehouse settings, where visual 

inconsistencies—caused by camera motion, variable ambient 

lighting, or occlusions from equipment and workers—are the 

norm rather than the exception. The results affirm that YOLOv8 
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is well-suited for real-world deployment in logistics operations, 

offering a reliable foundation for automated pallet monitoring 

and item tracking, even when ideal imaging conditions cannot 

be guaranteed. This resilience makes it a preferable choice for 

systems that must operate continuously and with minimal 

human supervision. 

 

Due to the fact that we choose the area of interest with 

segmented area counts larger than the pallet, we observe the 

area drop when the loader takes a new object, as shown in 

Figure 3. 

 
Figure 3. Object number estimation 

 

Building on the observation provided in Figure 3, the 

segmentation-based area tracking produces a distinctive 

stepwise pattern over time, which serves as a powerful indicator 

of discrete loading events. Because the region of interest (ROI) 

in the segmentation process is deliberately defined to include all 

objects placed on top of the pallet—regardless of shape or 

position – each new addition by the loader results in a 

measurable increase in the total segmented area. Conversely, 

when a loader temporarily obstructs or adjusts an object, or 

when repositioning occurs, we may see small fluctuations. 

However, the most significant and consistent trend is the sharp 

increase in area each time a new object is added. 

 

This behavior forms a staircase-like curve, where each 

horizontal plateau corresponds to a static state – i.e., a moment 

when no new items are added – while each upward step signals 

the placement of a new object. This temporal profile allows for 

an implicit count of objects added, without relying on direct 

object recognition or classification. The method thus enables 

object-level event detection purely through geometric changes 

in the segmented mask area, which proves especially useful in 

real-time monitoring contexts. 

 

Importantly, a sharp drop in the segmented area to near-zero 

levels acts as a reliable signal that the pallet has been removed 

or cleared from the field of view, typically due to its transport 

out of the camera’s coverage zone. This behavior is crucial for 

resetting the counting process: rather than relying on external 

triggers or human input, the system autonomously determines 

when a new loading cycle should begin. This automated reset 

mechanism minimizes error accumulation between cycles and 

enhances the system’s autonomy in multi-cycle operations. 

 

Overall, Figure 3 not only confirms the system’s sensitivity to 

discrete loading actions but also demonstrates its ability to 

segment operational sequences into logical units: loading 

events, static holds, and pallet departure. This segmentation 

timeline can be further integrated into downstream analytics – 

such as efficiency tracking, anomaly detection, or worker 

performance evaluation – making it a foundational element of 

intelligent warehouse automation. 

 

5. Conclusions 

The proposed pallet loading segmentation and control system, 

based on a combination of SAM and YOLOv8 models, 

demonstrates high accuracy, adaptability and practical 

applicability in warehouse logistics. The developed area 

dynamics analysis algorithm allows tracking loading events in 

real time and opens up prospects for integration into 

autonomous logistics complexes. 

 

The integrated use of zero-shot segmentation from SAM for 

automated annotation and high-speed, accurate inference from 

YOLOv8 allows for the formation of a stable architecture 

suitable for implementation in industrial processes without the 

need for lengthy manual adjustment. The experiments 

confirmed that the system maintains stable operation in the 

presence of visual distortions, such as noise, changing lighting 

and partial overlapping of objects, which is critical for real 

operating conditions. In addition, the ladder profile of the area 

dynamics of segmented objects provides a simple and reliable 

metric for counting loaded elements, allowing the system to 

autonomously identify the completion of a loading cycle and 

begin a new one. 

 

The paper also highlights the potential of multimodal and 

adaptive approaches that can extend the capabilities of the 

current architecture by integrating semantic hints and self-

correction mechanisms. All this opens the way to creating more 

versatile, self-adjusting solutions in the field of computer vision 

for logistics, capable of functioning in conditions of high 

variability and minimal human intervention. 

 

Thus, the proposed system can become an important step 

towards fully automated warehouses of the new generation, 

providing not only loading control, but also intelligent analysis 

of logistics processes in real time. 
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