
A New Algorithm for Automated Diagnosis of Delayed Cerebral Ischemia 

in Video-EEG Monitoring Data  
 

 

Dmitry Murashov 1, Yury Obukhov 2, Ivan Kershner 2, Mikhail Sinkin 3, Irina Okuneva 3 

 
1 Federal Research Center “Computer Science and Control” of RAS, 119333, Moscow, Russia – d_murashov@mail.ru 

2 Kotel'nikov Institute of Radio Engineering and Electronics of RAS, 125009, Moscow, Russia – (yuvobukhov, 

ivan_kershner)@mail.ru 
3  Sklifosovsky Clinical and Research Institute for Emergency Medicine, 129090, Moscow, Russia - mvsinkin@gmail.com, 

okunevaiv@mail.ru 

 

 

 

 

Keywords: Video-Electroencephalographic Monitoring, Delayed Cerebral Ischemia, Cross Correlation Function, Edge Map, 

Variation of Information, Epileptiform Discharge. 

 

 

Abstract 

 

The paper proposes a new algorithm for automated diagnosis of delayed cerebral ischemia in video-EEG monitoring data. The 

algorithm uses the indicator of the delayed cerebral ischemia which is the number of epileptiform discharges per hour over a 

sufficiently long observation interval. It combines a detector of epileptiform discharges and a new motion artifact detector. The 

epileptiform discharge detection algorithm analyzes the cross-correlation function of EEG signals with a reference fragment pre-

selected by medical experts. In the motion artifact detection algorithm, we propose to calculate the mobility index from blurred edge 

maps of the region of interest, which are less sensitive to fluctuations in illumination level. As an indicator of mobility, we use the 

variation of information, which characterizes the informational difference of video frames. We obtained preliminary results that 

confirm the effectiveness of the proposed algorithm. The developed algorithm for early automated diagnostics of delayed cerebral 

ischemia provides sensitivity equal to 0.9 and specificity equal to 0.79. The obtained quality measures correspond to the quality level 

of known methods for diagnosing delayed cerebral ischemia based on EEG signals. At the same time, the accuracy of detecting 

motion artifacts is 0.9, and the F1 score is 0.93. The detection algorithm for epileptiform discharges provides sensitivity of 0.95 and 

specificity of 0.85. 

 

 

1. Introduction 

One of the effective methods for early diagnosis of delayed 

cerebral ischemia (DCI) in subarachnoid hemorrhage (SAH) is 

the analysis of electroencephalogram (EEG) signals 

(Kondziella, 2015), (Rosenthal, 2018), and (Kasi, 2025). 

Existing EEG monitoring systems provide real-time EEG 

recording with distortions caused by instrumental artifacts and 

artifacts of the patient's vital activity. To identify and exclude 

time intervals with artifacts caused by the patient's vital activity 

and care by medical staff, it is advisable to analyze video 

recordings synchronous with the EEG. The article (Murashov, 

2023) presented an automated system that made it possible to 

detect, classify and predict in real time the indicators of delayed 

ischemia after subarachnoid hemorrhage based on long-term 

video-EEG monitoring data. To detect ischemia indicators, the 

ridges of the spectrograms of wavelet transforms of EEG signals 

were analyzed. Artifacts caused by the patient's vital activity 

and care by medical personnel were fixed by a threshold 

detector using the optical flow value, which was calculated from 

video recording frames. However, the calculation and analysis 

of wavelet transform spectrogram ridges requires high 

computational costs. Additionally, the optical flow used to 

detect motion artifacts may be distorted by changes in 

illumination in the intensive care unit. Therefore, it is necessary 

to develop a motion artifact detector that reduces the sensitivity 

of the detector to the above-mentioned interference without 

significantly increasing computational costs. The works (Kim, 

2022) and (Zheng, 2022) proposed a new indicator of the DCI, 

which is the number of epileptiform discharges (ED) per hour. 

It has been shown that a sufficiently large number of ED per 

hour over a long period of time (more than 3 hours) indicates a 

high risk of developing DCI. The article (Obukhov, 2024) 

proposed a new algorithm for automatic detection of 

epileptiform spike wave discharges (SWD) based on the cross-

correlation of the EEG and the SWD graphic pattern template.  

This paper proposes a new algorithm for automated diagnosis of 

delayed cerebral ischemia in video-EEG monitoring data based 

on the indicator of the DCI presented in (Kim, 2022) and 

(Zheng, 2022), algorithm for automatic detection of 

epileptiform discharges developed in (Obukhov, 2024), and a 

new motion artifact detector. 

 

2. Algorithm for Diagnosing Delayed Cerebral Ischemia 

The algorithm for diagnosing ischemia is based on EEG 

analysis in order to detect signal fragments of a certain shape, 

specified as a reference EEG fragment. A diagnostic decision to 

detect an indicator of DCI is made if the number of ER per hour 

over a sufficiently long observation interval exceeds a 

predefined threshold value. 

The algorithm for detecting artifacts caused by the patient's vital 

activity and the work of medical personnel is based on the 

analysis of the magnitude of the variation of information, which 

is calculated from adjacent frames of video recordings. Using 

the EEG analysis algorithm, we predict the possibility of 

ischemia. By analyzing the information differences in video 

frames, we find motion artifacts and exclude events that can be 

falsely taken for epileptiform discharges and distort the DCI 
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indicator. Below, we will consider the components of the 

proposed algorithm for diagnosing delayed cerebral ischemia. 

 

2.1 Detection of Epileptic Discharges 

The epileptiform discharge detection algorithm proposed in 

(Obukhov, 2024) analyzes the cross-correlation functions of 

EEG signals with a reference fragment pre-selected by an expert 

physician, consisting of a spike-wave discharge with a sharp 

negative spike (peak) with a large amplitude and a subsequent 

slow positive wave. The algorithm detects an epileptiform 

discharge if the patient's EEG fragment has the following 

features: (a) the peak amplitude should exceed 40 μV; (b) the 

correlation function should change sign when moving from the 

peak to the wave; (c) the value of the maximum of the 

correlation function of the ED peak should be greater than 0.4; 

(d) the half-width of the peak should not exceed 100 ms; (e) the 

area under the wave should be greater than the area under the 

peak of the EEG signal; (f) in the interval of 40 ms there should 

be two or more peaks of the correlation function in different 

EEG channels. 

 

2.2 Detection of Motion Artifacts 

In (Murashov, 2023), we used the optical flow value in the 

region of interest (ROI) to detect motion artifacts. However, this 

mobility indicator is sensitive to changes in the illumination 

level in the room where the recording was carried out. A 

number of methods for computing optical flow using operators 

that compute invariant local descriptors have been presented in 

the literature, see for example the review (Trinh, 2019). The 

analysis of these descriptors showed that local descriptors detect 

edges and demonstrate effectiveness on various test image 

databases. In the following subsections, a new motion artifact 

detection algorithm will be proposed that is less sensitive to 

scene illumination variations and simpler in terms of 

computational costs than the one used by the authors earlier in 

their work (Murashov, 2023). 

 

2.2.1 Information-Theoretic Indicator of Mobility: Taking 

into account the analysis of known local descriptors, to improve 

the reliability of motion detection in a frame, we propose to 

calculate the mobility index from blurred edge maps of the 

region of interest, which are less sensitive to fluctuations in 

illumination levels. 

Let the region of interest of frame number k  of the video 

recording be described by the mapping 

 

 2:kU  .  

 

The edge map of the region of interest of the frame with number 

k , blurred by a Gaussian kernel, is represented by the relation: 

 

     , , ,k kI x y G U x y  ,    (1) 

 

where   ,
k

I x y  = brightness level of the blurred edge 

map at a point with spatial coordinates x  and 
y  

   = edge detector operator 

 G  = Gaussian filter kernel 

   = convolution operation 

 

Figure 1 shows the ROI of one of the frames, and the 

corresponding blurred edge map is shown in Figure 2. 

 

 

Figure 1. The region of interest of one of the frames of the 

video recording. 

 

 

 

Figure 2. A Gaussian blurred edge map of the ROI of the video 

frame shown in Figure 1. 

 

In (Murashov, 2023), the optical flow value in the region of 

interest was used as an indicator of mobility. Computing optical 

flow requires significant computational effort. Therefore, we 

propose to use information variation (Meila, 2007) as an 

indicator of mobility, which requires less computation. The 

variation of information in the problem under consideration is a 

measure of the difference in the edge maps of video frames. To 

use the information-theoretic measure of frame difference, it is 

necessary to represent the procedure for processing video 

recordings in the form of an information channel. 

Let the brightness levels of pixels in the region of interest of 

successive frames of a video recording be described by random 

variables 
k

I  and 
1k

I


 with values 
k

i  and 
1k

i


. We will 

consider the regions of interest of consecutive frames as the 

input and output of some information channel: 

  

  1 1k k kI I    ,   (2) 

 

where  
1k

I


 = channel input 

 
k

I  = channel output 

  
k

  = transformation function 

 
k

  = noise 

 

Variables 
1k

I


 and 
k

  are independent. Variation of 

information in work (Meila, 2007) is defined as follows: 
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       1 1 1, 2 ,k k k k k kVI I I H I I H I H I     ,   (3) 

 

where   
1

,
k k

H I I


 = joint entropy of edge maps 
k

I  and 

1k
I


 of regions of interest of frames with numbers k  

and 1k  . 

  
k

H I ,  
1k

H I


 = marginal entropies of the edge 

maps of the ROIs 
k

I  and 
1k

I


, respectively 

 

When detecting events, smoothing of the mobility index is 

performed using the Kalman-Bucy filtering algorithm: 

  

     1 1
ˆ , ,k k K k kVI I I F VI I I  ,  (4) 

 

where   1
ˆ ,k kVI I I   = smoothed  1,k kVI I I   

 ( )
K

F  = Kalman filter operator 

 

To make a decision about the detection of an artifact, we will 

use a classifier with a quadratic separating function (Duda, 

2001), which we applied earlier in (Murashov, 2023a): 

  

  

 
0

0

1, 0 ,
ˆ

0, 0 ,

if g k and k k M
EventVI

if g k or k k M

  
 

  

,   (5) 

 
   

 

2

12 2

1 2

2 2

1 2 1 2
12 2 2 2

1 2 1 2

1 1 ˆ ,
2 2

ˆ , ,
2 2

k k

k k

g k VI I I

VI I I

 

   

   





 
   

 

   
      
   

,   (6) 

 

where  ˆEventVI  = event indicator 

  g k = separating function 

 
1 , 

2 , 
1 , 

2  = means and standard deviations of 

the mobility index in fragments of a video sequence 

with low and high scene dynamics, respectively 

 
0k  = frame number from which the inequality 

  0g k   is satisfied 

 M  = the length of the frame sequence required to 

make a decision about detecting an artifact 

 

Applying such a classifier is due to the characteristics of the 

medical equipment available in the clinic. The spatial position 

of the camera and, accordingly, the field of view and region of 

interest may change depending on the actions of medical 

personnel associated with medical procedures and patient care. 

In this case, reconfiguring the classifier specified by formulas 

(5) and (6) is reduced to calculating the parameters 1 , 2 , 

1 , and 2  from test video recordings of scenes with low and 

high levels of activity in the region of interest for a new camera 

position. This operation is not difficult and does not take much 

time. 

Figure 3 shows graphs of two indicators of mobility of the 

region of interest, namely optical flow Ĵ  (see (Murashov, 

2023)) and variation of information V̂I , constructed from a 

fragment of a patient’s video recording. The graphs also show 

the results of detecting motion artifacts using Ĵ  and V̂I  values 

(curves ˆEvent J  and ˆEventVI ). These graphs show that 

interframe variation of information, despite a slightly lower 

dynamic range, represents the mobility of the region of interest 

as well as optical flow, and can be used in a motion artifact 

detector. 

 

 

Figure 3. Graphs of optical flow Ĵ , variation of information 

V̂I , and motion artifact detection indicators 

ˆEvent J  and ˆEventVI , constructed from a fragment 

of the patient's video recording. 

 

 

2.2.2 Estimation of the Computational Complexity of 

Mobility Indicator: The computational complexity of one 

iteration of the Lucas-Kanade algorithm (Lucas, 1981), used to 

compute the optical flow in (Murashov, 2023), is 

 2 3O n N n  (Baker, 2004), where n  is the number of warp 

parameters and N  is the number of pixels in the region of 

interest. 

To calculate the variation of information, it is necessary to 

perform the operations of forming a two-dimensional and two 

one-dimensional histograms describing the brightness 

distributions in the edge maps 
k

I  and 
1k

I


, and calculating the 

joint and two marginal entropies. 

Let the pixels of the brightness difference maps have l  

brightness gradations. Forming one histogram requires 

performing N  summation and N  division operations. To 

calculate the joint entropy  
1

,
k k

H I I


, 
2l  multiplication 

operations, 
2 1l   summation operations, and 

2l  logarithm 

operations are required. Calculating marginal entropy requires 

l  multiplications, 1l   summations, and 
2l  logarithm 

operations. In total, the calculation of  1,k kVI I I   requires 

  22 4 2 2(4 2)N m l m l     operations, where m  is the 

number of terms of the logarithm expansion series. Taking into 

account the rules for estimating the complexity of an algorithm 

(Arora and Barak, 2009), we find that the complexity of 

calculating the variation of information is equal to 

 2O N ml . It is shown that for the used sizes of the region 

of interest (
57 10N    pixels), 2n  , 5n   and 256l  , 
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the use of information variation as an indicator of mobility is 

more preferable compared to the value of optical flow. 

 

2.3 Algorithm for Detecting the Indicator of Delayed 

Cerebral Ischemia 

Based on the algorithms described in subsections 2.1 and 2.2, 

we propose a DCI detection algorithm based on the indicator, 

which takes into account the number of epileptiform discharges 

per hour. EEG signals and video recordings are analyzed 

synchronously. The algorithm includes the following steps:  

1) resetting the ED counters 0
ED

C   in the left and right 

hemispheres of the brain and resetting the time counter 

0tC  ;  

2) analysis of EEG signals in the channels of the left and right 

hemispheres of the brain: checking conditions (a) - (f) (see 

subsection 2.1) and making a decision on the detection of an 

epileptiform discharge at time t  corresponding to frame 

number k  of the video recording; 

3) analysis of the regions of interest of video recording frames 

with numbers k  and 1k  , calculation of the value of the 

mobility index  1
ˆ ,k kVI I I   (see formulas (1) - (4)) and 

verification of conditions (5), (6) (see subsection 2.2); 

4) if at time t  conditions (a) ‒ (f) of the ED detection algorithm 

and (5) and (6) of the motion detector in the region of interest 

are met, then a decision is made to detect an artifact caused by 

the patient’s vital activity or the work of medical personnel; 

5) if conditions (a) - (f) are met, but conditions (5) and (6) are 

not met, then a decision is made that an epileptiform discharge 

is detected, and the counter 
ED

C is increased by one: 

1
ED ED

C C  ; 

6) checking the time counter and comparing the value of the ED 

counter with the threshold T : if the value of the time counter 

exceeds 1 hour 1tC   and the ED counter value exceeds the 

threshold 
ED

C T , then a decision is made about the 

appearance of the DCI indicator, go to step 1);  

7) the time counter value does not exceed 1 hour 1tC  , go to 

step 2). 

A diagnostic decision to detect DCI is made if the number of 

EDs per hour over a sufficiently long observation interval 

exceeds the threshold value T . 

The flow chart of the DCI indicator detection algorithm is 

shown in Figure 4. The next section will describe a 

computational experiment that confirms the functionality of the 

proposed algorithm. 

 

3. Computational Experiment 

To evaluate the effectiveness of the developed DCI diagnostic 

algorithm, we conducted a computational experiment. The 

experiment included three stages. In the first stage, we tested a 

new algorithm for detecting motion artifacts based on the 

information-theoretic indicator of the mobility of the region of 

interest and compared it with the algorithm previously used in 

the work (Murashov, 2023). At the second stage, the quality of 

epileptiform discharge detection was assessed taking into 

account the detection of artifacts caused by the patient's vital 

activity or the work of medical personnel. At the third stage, the 

characteristics of the developed algorithm for diagnosing DCI 

as a whole were assessed. 

The calculations were performed on a computer with an Intel 

CORE i7-9750H processor with a clock frequency of 2.60 GHz 

and 32 GB of RAM. 

 

 
 

Figure 4. Flowchart of the algorithm for detecting delayed 

ischemia indicator. 

 

3.1 Testing the Information-Theoretic Mobility Indicator 

To test a new indicator of mobility, video recordings of three 

patients with a duration of 24, 31 and 27 hours were used 

synchronous with EEG signals. We examined 192 fragments 

that recorded events corresponding to the epileptiform 

discharge patterns found in the EEG signals. These fragments 

were tested using two algorithms with different mobility 

indices. The first algorithm used the value of variation of 

information between the blurred edge maps of the ROIs of two 

consecutive frames. In the second algorithm, we used the 

magnitude of the optical flow in the region of interest as an 

indicator of mobility.  

The detection results are shown in Table 1. Based on the data in 

Table 1, the quality measures of motion artifact detection are 

calculated and presented in Table 2. The data presented in 

Table 1 show that the algorithm with the mobility indicator in 

the form of variation of information produced a greater number 

of true positive and false positive, but fewer false negative 

decisions. This resulted in higher sensitivity, accuracy and F1-

score values compared to those of the optical flow-based 

algorithm (see Table 2). 

Detect ED 

1
ED ED

C C   

t tC C t   

1tC   

Computing 

 1
ˆ ,

k k
VI I I


 

Artifact is 

detected 

Indicator of DCI 

is detected 

Yes 

No 

ˆ 0VIEvent   

Compute 

ˆEvent VI  

Yes 

EEG 

signal 

Video 

recording 

0
t

C   

Is event 

detected? 

ED
C T

 

0
ED

C   

No 

No 

Yes 

Yes 

No 
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Detection results Number of detections 

 Optical 

flow-based 

VI-based 

True positive 99 111 

True negative 67 63 

False positive 1 5 

False negative 25 13 

Table 1. Results of motion artifact detection by two algorithms 

with different mobility indices. 

 

Quality measure Detector results 

 Optical flow-

based 

VI-based 

Precision 0.99 0.96 

Sensitivity 0.8 0.9 

Specificity 0.99 0.93 

Accuracy 0.86 0.9 

F1 score 0.88 0.93 

Table 2. Quality measures of detectors with different mobility 

indices. 

 

3.2 Assessing the Quality of Localization of Epileptiform 

Discharges in EEG Signals Taking into Account the Motion 

Artifacts 

The quality of localization of epileptiform discharges was 

assessed using the same video-EEG monitoring data as testing 

the motion artifact detector. A total of 168 events were 

identified in the EEG signals. Detection of motion artifacts was 

performed on time intervals of 25 seconds, centered relative to 

the time moments at which epileptiform discharges were 

localized in the EEG signals. In the video recording 

synchronized with the EEG, 68 artifacts were correctly found, 

12 artifacts were missed, and 4 were found incorrectly. The 

obtained results of the ED detector operation are presented in 

Table 3. 

 

Patients True 

positive 

True 

negative 

False 

positive 

False 

negative 

Patient 1 8 19 0 1 

Patient 2 27 29 2 3 

Patient 3 49 20 10 0 

     

Total 84 68 12 4 

Table 3. Results of the epileptiform discharge detector 

operation taking into account motion artifacts. 

 

Table 4 presents the quality measures of the epileptic discharge 

detector calculated using the data from Table 3. The data in 

Table 4 shows that the proposed algorithm for detecting 

epileptic discharges demonstrates sensitivity, accuracy and F1 

score values acceptable for diagnosis (more than 90%). 

 

Quality measure Value 

Precision 0.88 

Sensitivity 0.95 

Specificity 0.85 

Accuracy 0.9 

F1 score 0.91 

Table 4. Measures of ER detector quality taking into account 

motion artifacts. 

 

3.3 Testing the DCI Detection Algorithm 

To test the proposed algorithm, long-term (more than 24 hours) 

video-EEG monitoring data from 23 patients were studied, 

including 14 without the development of DCI after SAH and 9 

patients with DCI after SAH. As an indicator of DCI, we used 

the hourly number of EDs detected in EEG signals over a long 

time interval (more than 6 hours) excluding artifacts caused by 

patient movement and medical personnel. 

To decide whether a DCI indicator is detected, a threshold value 

T  of the number of EDs per hour must be set. In the 

experiment, we used three threshold values (10, 15 and 20). In 

the analysis of clinical records, we assessed the accuracy, 

specificity and sensitivity of the automatic DCI detection 

algorithm at the selected threshold values and at a cluster 

duration of the hourly number of epileptiform discharges in the 

EEG equal to six hours. The obtained results are presented in 

Table 5. 

 

Threshold number 

of ED per hour 

Measures 

Sensitivity Specificity Accuracy 

10 0.9 0.79 0.83 

15 0.9 0.79 0.83 

20 0.78 0.79 0.75 

Table 5. Measures of the quality of the algorithm for detecting 

the DCI indicator for a given duration of clusters of 

the hourly number of ED. 

 

From the data in Table 5 it can be seen that with an increase in 

the threshold value from 15 to 20 epileptic discharges per hour, 

the sensitivity and accuracy decrease from 0.9 to 0.78 and from 

0.83 to 0.75, respectively. At the same time, the specificity for 

all threshold values does not change and is equal to 0.79. 

According to Table 5, we can conclude that a threshold value in 

the range of 10 – 15 EDs per hour is preferable. 

The quality measures obtained in the experiment correspond to 

the results of DCI detection from EEG signals published in the 

literature. For example, in the work (Rosenthal, 2018), the 

authors achieved a sensitivity level of 91 and 95 percent, and a 

specificity of 83 and 77 percent for different groups of patients. 

The authors of the work (Zheng, 2022) obtained sensitivity 

values of 0.69 and 0.76 and specificity of 0.67 and 0.59 for 

different periods after SAH. In the work (Santana, 2024), the 

authors reported that based on the results of six studies, levels 

of the pooled sensitivity and pooled specificity were equal to 

0.74 and 0.78, respectively. 

 

4. Conclusions 

A new algorithm for automated diagnostics of delayed cerebral 

ischemia based on video-EEG monitoring data has been 

developed. To make a diagnostic decision, the DCI indicator 

proposed in (Kim, 2022) is used. The indicator is calculated 

using the epileptiform discharge detection algorithm developed 

by the authors in (Obukhov, 2024) and a new motion artifact 

detector based on an information-theoretical measure of activity 

in the region of interest. To evaluate the effectiveness of the 

proposed algorithm, a computational experiment was 

conducted. The obtained preliminary results showed that the 

values of quality measures (sensitivity is 0.9 and specificity is 

0.79) of the developed algorithm for automated diagnosis of 

DCI after SAH correspond to the quality level of known 

algorithms for detecting DCI from EEG signals. The 

experimental results also showed that the accuracy of motion 

artifact detection is 0.9, and the F1-score is 0.93. The algorithm 
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for detecting epileptiform discharges with artifact exclusion 

provides sensitivity equal to 0.95 and specificity equal to 0.85. 

Further research will be aimed at improving the quality of 

diagnosis by using additional DCI features. 
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