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Abstract

Image restoration is a critical task in computer vision, aiming to reconstruct high-quality images from degraded inputs caused
by environmental factors or sensor limitations. Traditional restoration methods are often designed around prior knowledge of
specific degradation types, such as Gaussian noise, rain streaks, or haze. This specificity constrains their flexibility and limits
their effectiveness in real-world scenarios where degradations are diverse and unpredictable. To address this limitation, this study
proposes a unified image restoration framework capable of handling multiple degradation types without requiring explicit prior
knowledge. Specifically, the proposed approach targets three common and challenging degradation scenarios: Gaussian noise, rain,
and haze, which are known to exhibit distinct patterns in the frequency domain. The core of the framework is a Hybrid Convolution
and Attention (HCA) mechanism. This mechanism integrates the localized feature extraction capability of convolutional neural
networks with the global context modeling strength of attention mechanisms, allowing the network to adaptively capture both
spatial details and long-range dependencies. Additionally, a Frequency Attention (FA) module is introduced to enhance the model’s
sensitivity to frequency-domain features. This enables more effective discrimination of degraded image structures and improves
restoration accuracy across tasks. To further improve convergence and perceptual quality, the training process is guided by a
composite loss function combining Multi-Scale Structural Similarity (MS-SSIM) and [; loss. Experimental evaluations conducted
on benchmark datasets demonstrate that the proposed method consistently outperforms existing approaches, achieving a PSNR
of 34.97 dB and an SSIM of 0.950 when trained jointly across all degradation types. Remarkably, the model attains a PSNR of
39.19 dB and an SSIM of 0.990 on the Dehazing (SOTS) dataset, highlighting its strong generalization and robustness in diverse
restoration scenarios.

1. Introduction strategies (Cui et al. 2024) emerged to enhance robustness through

frequency-specific representations. Recognizing the limitations

In recent years, image restoration and enhancement have emerged
as a crucial computer vision research domain, driven by applic-
ations in surveillance, medical imaging, and media processing.
Advances in deep learning have spurred the development of
solutions that overcome the limitations of traditional methods
(Zhang et al., 2017, Gao et al., 2016). Real-world images fre-
quently suffer from degradations like noise, rain, haze, or poor
lighting, which compromise visual information and can under-
mine downstream vision systems (Xue el al., 2022). Conven-
tional restoration approaches typically target specific degrada-
tion types in isolation, relying on prior knowledge of distor-
tion characteristics. Models like the Image Processing Trans-
former (IPT) use multi-input, multi-output frameworks for spe-
cific scenarios (Chen, 2021), while encoder-decoder architec-
tures often specialize in individual degradation types (Singh et
al., 2024). Despite the recent integration of degradation-aware
modules, these methods still struggle with complex or mixed
degradations, such as rain combined with Gaussian noise.

Traditionally, researchers developed task-specific approaches
for distinct degradation categories, such as dehazing (Ren et
al., 2018, Pham et al., 2025), deraining (Jiang et al., 2020, Ren
et al., 2019), and denoising (Zhang et al., 2017, Zhang et al.,
2018). While effective in targeted scenarios, these methods
often struggled with complex real-world degradations. Com-
plementing spatial-domain solutions, frequency-domain-based
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of specialized models, recent research has shifted toward uni-
fied or all-in-one frameworks capable of handling multiple res-
toration tasks within a single model. Notable contributions in-

clude Restormer (Zamir et al., 2022), which leverages a transformer-

based architecture with self-attention mechanisms to capture
long-range dependencies across various tasks; PromptIR (Pot-
lapalli et al., 2023), which introduced a prompt-based frame-
work for adaptive restoration; and more recent architectures
like AdalR (Cui et al., 2025) and HAIR (Cao et al., 2024) that
combine frequency-domain learning with conditional adapta-
tion. Despite these advances, achieving a balanced model that
performs well across various degradation types while remaining
lightweight and efficient remains challenging.

This study proposes a novel framework, called the Adaptive
Hybrid Transformer Network (AdaHybridNet), that eliminates
dependency on degradation-type priors, focusing on three rep-
resentative degradations (Gaussian noise, rain, and haze) by
leveraging their distinctive frequency-domain signatures. In-
spired by AirNet’s contrastive learning approach (Li et al., 2022)
and Restormer’s multi-level Transformer architecture (Zamir et
al., 2022, Liang et al., 2021), AdaHybridNet integrates both
convolutional and attention-based modules while incorporating
frequency-domain learning for robust feature extraction under
diverse image corruption scenarios.

The contributions of this study are threefold, centered around
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three key innovations:

—Hybrid Convolution and Attention (HCA) mechanism, which

combines the local feature extraction strength of convolutional
neural networks (CNNs) with the global dependency modeling
capabilities of attention mechanisms to optimize the restoration
process. —Frequency Attention (FA) module, designed to em-
phasize frequency-domain information, enabling the model to
distinguish more effectively between degraded and clean fea-
tures, thus improving restoration accuracy.

—Composite loss function, which integrates the Multi-Scale
Structural Similarity (MS-SSIM) loss with the /; loss to en-
sure a balance between perceptual quality and pixel-wise fidel-
ity during the training process.

The proposed method is extensively evaluated on widely used
benchmark datasets, including BSD400 (Ai et al., 2024) and

BSD68for Gaussian noise removal (Martin et al., 2001), Rain100L

for rain streak removal (Yang et al., 2019), and RESIDE-6K for
haze removal (Lu et al., 2024). Experimental results demon-
strate not only significant improvements in restoration quality
but also establish a promising direction for practical deploy-
ment in surveillance, healthcare imaging, and other real-world
computer vision systems.

2. Proposed Method

This section presents an all-in-one model architecture designed
for multi-task image restoration, as illustrated in Figure (1).
The proposed model is based on the Restormer (Zamir et al.,
2022) architecture, which follows a layered design to progress-
ively learn features at deeper levels and smaller image scales.
In this approach, the traditional decoder layers are replaced
with Hybrid Convolutional and Attention (HCA) modules and
Frequency Attention Modules. These modifications enable the
model to effectively learn and apply filters, which are then used
to identify and restore the specific pixels that require recovery
within the image. The integration of these advanced attention
mechanisms allows for improved feature extraction and pixel-
level restoration, making the model highly effective for high-
resolution image restoration tasks.

2.1 Transformer Encoder

The Transformer Encoder is a fundamental component of the
Transformer architecture, designed to process input data and
extract meaningful representations through the combined use
of the Self-Attention mechanism and Feed-Forward Networks
(FFN). This architecture enables the model to capture depend-
encies and contextual relationships among input elements without
being constrained by spatial or temporal distances, making it
particularly effective for tasks in natural language processing
and computer vision domains (Vaswani et al., 2017, Devlin et
al., 2019). The Self-Attention mechanism allows the model to
dynamically weight the importance of each input element relat-
ive to others, thereby facilitating the learning of both local and
global dependencies. Mathematically, the output of the atten-
tion mechanism is defined as:

Attention(Q, K, V') = Softmax <QKT) \% (D
b) b) \/dik: b)

where ), K, and V represent the query, key, and value matrices,
respectively, and dj, is the dimensionality of the key vectors,
used for scaling. Following the attention layer, the output is
passed through a position-wise Feed-Forward Network (FFN),
which further transforms the feature representations through

two fully connected layers with a non-linear activation func-
tion:
FFN(z) = max(0, W1 + b1)Wa2 + ba. 2)

This combination of Self-Attention and Feed-Forward compu-
tation allows the Transformer Encoder to effectively learn hier-
archical and context-aware features, which are essential for hand-
ling complex structured data.

2.2 Frequency Attention Module (FAM)

The Frequency Attention Module (FAM) is a deep neural net-
work module that combines both spatial and frequency domain
processing to enhance feature extraction. The effectiveness of
feature representation in the frequency domain has been previ-
ously demonstrated in another study on the Efficient Complex
Valued Neural Network with Fourier Transform for Image De-
noising (Pham et al., 2022). The input is first processed through
a 3 x 3 convolutional layer to extract local spatial features. Sub-
sequently, the data is transformed into the frequency domain
using the Fast Fourier Transform (FFT) (Pham et al., 2022).
In the frequency domain, a learnable global filter (Rao et al.,
2021) adjusts the information before it is returned to the spa-
tial domain using the Inverse FFT (IFFT). An additional branch
of the module uses Global Average Pooling (GAP) to compute
the global mean across each channel, followed by two 1 x 1
convolutional layers that learn weights. The Sigmoid activation
function is then applied to generate an attention mask, which
helps adjust the channel weights. The GAP calculation is given
by:

1 H W
GAP: = T ;;X] 3)

where X, ; ; is the value at position (i, j) of channel c. The
learned attention weight for each channel is computed as:

Se = o (Wa-ReLU (W, - GAP.)), @)

where W1 and W5 are the weights of the two 1 x 1 convo-
lutional layers, and o is the Sigmoid activation function. The
attention weight is then applied to the features X, resulting in
the modified feature representation:

X, =X Se. (&)

These two branches are combined using Channel-Wise Cross
Attention (CWCA) (Wang et al., 2022), enabling the module to
focus on important channels. Finally, a 1 x 1 convolutional layer
is applied to adjust the output before the data undergoes CWCA
processing again. By integrating both spatial and frequency
domains, FAM effectively learns important features, thereby
improving performance in image restoration tasks at various
levels.

2.3 Hybrid Convolutional and Attention (HCA)

Hybrid Convolutional and Attention (HCA) is a model that com-
bines Convolutional Neural Networks (CNN) and the Attention
mechanism to simultaneously leverage local feature informa-
tion and long-range dependencies within the feature space. Ini-
tially, the input is processed through a convolutional layer (Conv)
to extract local features, and is simultaneously passed through
a fully connected (FC) layer to map the features to a higher-
dimensional space. The results from these two processes are
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Figure 1. The overall architecture of the proposed AdaHybridNet model.

then combined through element-wise multiplication, enabling
the model to effectively capture the correlation between the two
feature sets derived from different transformations.
F.=Conv(X), Fj.=FC(X), F=F.0F]. (6)
The output from this stage is normalized through Layer Nor-
malization (LayerNorm) before being passed into the Multi-

DConv Head Transposed Self-Attention (MDTA) (So et al., 2022).

MDTA is a variant of Self-Attention where weight-shared con-
volutions are used to reduce the number of parameters and op-
timize computational cost. This mechanism allows the model to
better capture relationships between pixels in the feature space
without significantly increasing the computational complexity.

Fo++ = MDTA(LayerNorm(F')). @)

After passing through MDTA, the features are once again nor-
malized via LayerNorm before being processed through a Con-
volutional Feed-Forward Network (CFFN). CFEN includes a
series of transformations, such as a 1 x 1 convolution (to adjust
the number of feature channels), a 3 x 3 convolution (to extract
deeper local features), a non-linear activation function (GELU)),
and a final 1x1 convolution to re-normalize the feature space.

Fy¢n = GELU(Convsy3(Convix1(LayerNorm(Fozt)))),
®)
Fcffn = COHlel(Fffn). (9)

The output of the CFFN is combined with the output of MDTA
through a residual connection, helping to mitigate information
loss during the backward pass and optimize the training pro-
cess.

Fruca = Faue + Fefpn. (10)

The HCA model leverages the advantages of CNNs for local
feature extraction and the attention mechanism for capturing
global relationships between pixels. This architecture improves
performance in image processing tasks, especially those requir-
ing the model to combine information from multiple spatial
ranges simultaneously.

3. Experiment Results

3.1 Experiment Setup

The proposed model was systematically evaluated across three
distinct image degradation tasks: Gaussian noise removal, rain
streak removal, and haze removal. For the Gaussian denoising
task, synthetic noise levels of ¢ = {15, 25, 50} were applied to
the BSD400 dataset (Ai et al., 2024) for model training, while
the BSD68 dataset (Martin et al., 2001) was used for testing and
performance evaluation. For the deraining task, the Rain100L
dataset (Yang et al., 2019), consisting of 200 paired images,
was employed for training, and a separate set of 100 images
was used for testing. Regarding dehazing, a compact subset
named RESIDE-6K (Lu et al., 2024), extracted from the lar-
ger RESIDE benchmark, was adopted to reduce computational
cost and training time. The model’s generalization capability
was further assessed on the SOTS benchmark dataset (Li et al.,
2018).

All experiments were conducted over 100 training epochs, with
input images resized to a fixed resolution of 256 x 256 pixels.
The optimization process was carried out using the AdamW op-
timizer, configured with 81 = 0.9, 82 = 0.999, and an initial
learning rate set to 1 x 10~*. To ensure alignment with human
visual perception, the training objective combined Multi-Scale
SSIM (MS-SSIM) and [y loss as the loss function, formalized
as:

LComposite(y:Q) = MS'SSIM(ZJ’ ?J)) +8- ||Z/ - ?3”1

where y and ¢ denote the ground-truth and predicted images, re-
spectively. The parameters o = 0.84 and = 0.16 were empir-
ically selected based on prior studies investigating the influence
of loss function weighting on image restoration performance
(Zhao et al., 2017).

The quantitative performance of the model was evaluated us-
ing two widely adopted metrics: Structural Similarity Index
(SSIM) (Wang et al., 2004) and Peak Signal-to-Noise Ratio
(PSNR) (Gonzalez et al., 2022). Model training was conduc-
ted on an NVIDIA RTX 4090 GPU equipped with 24 GB of
VRAM. All experiments were implemented using PyTorch ver-
sion 2.4.1 and executed on the CUDA 12.3 platform. Inference
and validation were performed on a workstation featuring an
Intel Xeon E5-2676 processor, 32 GB RAM, and an NVIDIA
RTX 2060 Super GPU with 8 GB of VRAM, operating under
Ubuntu Desktop 22.04.
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Table 1. Comparison of model performance on combined rain, noise, hazy datasets

SOTS BSD68 (Denoising) Rain100L Average
(Dehazing) ¢ =15 =25 é =50 (Deraining)
BRDNet (Tian et al., 2020) 23.23/0.895 | 32.26/0.898 | 29.76 / 0.836 | 26.34/0.693 | 27.42/0.895 | 27.80/0.843
LPNET (Gao et al., 2019) 20.84/0.828 | 26.47/0.778 | 24.77/0.748 | 21.26/0.552 | 24.88 / 0.784 | 23.64 /0.738
FDGAN (Dong et al., 2020) 24.71/0.929 | 30.25/0.910 | 28.81/0.868 | 26.43/0.776 | 29.89/0.933 | 28.02/0.883
MPRNet (Zamir et al., 2021) 25.28/0.955 | 33.54/0.927 | 30.89/0.880 | 27.56/0.779 | 33.57/0.954 | 30.17/0.899
DL (Fan et al., 2019) 26.92/0.931 | 33.05/0.914 | 30.41/0.861 | 26.90/0.740 | 32.62/0.931 | 29.98 /0.876
AirNet (Li et al., 2022) 27.94/0.962 | 33.92/0.933 | 31.26/0.888 | 28.00/0.797 |34.90/0.968 | 31.20/0.910
Restormer (Zamir et al., 2022) 27.78/0.958 | 33.72/0.930 | 30.67/0.865 | 27.63 /0.792 | 33.78 /0.958 | 30.75/0.901
PromptIR (Potlapalli et al., 2023) | 30.58/0.974 | 33.98/0.933 | 31.31/0.888 | 28.06/0.799 | 36.37/0.972 | 32.06/0.913
AdalR (Cui et al., 2025) 31.06/0.980 | 34.12/0.935 | 31.45/0.892 | 28.19/0.802 | 38.64 /0.983 | 32.69/0.918
HAIR (Cao et al., 2024) 30.98/0.979 | 34.16/0.935 | 31.51/0.892 | 28.24 /0.803 | 38.59/0.983 | 32.70/0.919
AdaHybridNet (ours) 39.19/0.990 | 35.46/0.959 | 33.26 /0.938 | 30.25/0.893 | 36.67/0.972 | 34.97/0.950
Input HAIR AdalR AdaHybridNet (ours)
(Hazy - SOTS) PSNR: 33.66 dB, SSIM: 0.990 PSNR: 27.13 dB, SSIM: 0.987 PSNR: 43.54 dB, SSIM: 0.995 Ground Truth

Figure 2. Qualitative comparison of the dehazing performance of the proposed method against existing approaches.

Input

(RAIN) PSNR: 37.98 dB, SSIM: 0.977

HAIR AdalR
PSNR: 37.98 dB, SSIM: 0.976

AdaHybridNet (ours)

PSNR: 38.63 dB, SSIM: 0.973 Ground Truth

Figure 3. Qualitative comparison of the deraining performance of the proposed method against existing approaches.

3.2 Experiment Results

The performance of the proposed AdaHybridNet was compre-
hensively evaluated against several state-of-the-art image res-
toration models across three representative degradation tasks:
haze removal, Gaussian denoising, and rain streak removal. As
reported in Table (1), AdaHybridNet consistently outperformed
all baseline methods across both quantitative metrics PSNR and
SSIM.

For the dehazing task on the SOTS dataset, our model achieved
a PSNR of 39.19 and an SSIM of 0.990, substantially surpass-
ing prior methods, including Restormer (Zamir et al., 2022)
(27.78 dB/ 0.958) and AdalR (Cui et al., 2025) (31.06 dB/
0.980). In the Gaussian denoising task evaluated on the BSD68
dataset at noise levels ¢ = {15, 25, 50}, AdaHybridNet achieved
PSNR/SSIM scores of 35.46 dB/0.959, 33.26 dB/0.938, and
30.25 dB/0.893, respectively, outperforming recent competitive
models such as PromptIR (Potlapalli et al., 2023) and HAIR (Cao
et al., 2024).

For the deraining task on the Rain100L dataset, the proposed

AdaHybridNet achieved a PSNR of 36.67 dB and an SSIM of
0.972. Although the result is competitive and comparable to
state-of-the-art methods, it slightly underperforms the highest
PSNR score of 38.64 dB reported by AdalR (Cui et al., 2025).
This performance gap can be attributed to the distinct frequency-
domain distribution characteristics of rain streak artifacts, which
differ considerably from those of Gaussian noise and haze. Since
AdaHybridNet leverages frequency-domain learning combined
with complex-valued feature representations, the irregular and
non-uniform spectral distribution of rain streaks presents a greater
challenge during model optimization, thereby limiting its capa-
city to fully suppress this type of degradation. Nevertheless, the
model still demonstrates strong generalization ability across di-
verse restoration tasks.

On average across all tasks, AdaHybridNet achieved a PSNR
of 34.97 and an SSIM of 0.950, marking a significant improve-
ment over existing approaches. These results validate the effect-
iveness of combining convolutional and attention mechanisms
along with adaptive feature learning in enhancing the model’s
generalization across multiple image restoration scenarios.
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Figure 4. Qualitative comparison of denoising performance on Gaussian noise with three levels (¢ = 15,25, 50) using the proposed
method and existing approaches.

In addition, the visual results presented in Figures (2), (3), and
(4) further validate the quantitative findings, highlighting the
effectiveness of the proposed all-in-one AdaHybridNet model
in addressing three distinct image restoration tasks: dehazing,
deraining, and denoising. Across all scenarios, the model con-
sistently demonstrates superior visual quality compared to other
baselines. Notably, in the denoising task illustrated in Fig-
ure (4), our proposal achieves restored images that closely ap-
proximate the groundtruth references, with PSNR values reach-
ing 38.08 dB, 36.17 dB, and 33.39 dB at noise levels ¢ =
15, 25, and 50, respectively. These results clearly outperform
two of the most recently introduced models, HAIR (Cao et al.,
2024) and AdalR (Cui et al., 2025), confirming both the robust-
ness and generalization capability of the proposed framework
under varying degradation conditions.

4. Conclusion

In this study, a novel multi-task learning framework was pro-
posed to address various image degradation problems, includ-
ing Gaussian noise removal, rain streak removal, and haze re-
moval. Through extensive experiments, the model demonstrated
strong generalization capability and robustness across diverse
degradation scenarios. The proposed approach leverages the
complementary strengths of convolutional feature extraction and
attention-based global context modeling, while simultaneously
incorporating degradation characteristics in the frequency do-
main. This combination enables the model to effectively restore
fine-grained details and preserve global structural information,
thereby improving the visual quality of degraded images.

The promising experimental results highlight the potential of

the proposed architecture as a flexible and scalable solution for
image restoration tasks in real-world applications. Future re-
search will focus on extending this framework to handle more
complex degradations and exploring its applicability in related
domains such as video restoration and medical image enhance-
ment.
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