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Abstract

Medical image segmentation is a crucial task that supports clinical diagnosis and treatment planning. This field was revolutionized
in both theoretical and practical aspects due to the employment of deep learning, specifically U-Net and its variants. Recently,
with the aim of improving scaling and transferable capabilities, which are the drawbacks of U-Net, STU-Net, and other similar
works were released. As a result, this led to significant advancements in medical applications practically. However, STU-Net trades
efficiency for performance disproportionately, resulting in huge fine-tuning costs to achieve improvement over training from scratch.
In this paper, we systematically identify architectural strengths and limitations of STU-Net and MedNeXt that hinder optimal feature
learning. Through this analysis, we propose RSB-MedNeXt, a more robust CNN architecture designed to surpass STU-Net while
maintaining efficiency. Our architecture introduces two key innovations: (1) a robust stem module with three parallel branches
that extract information at multiple scales, (2) a hybrid bottleneck that combines CNN-based feature extraction with self-attention
mechanisms to capture both fine-grained details and global context. We integrate our network into the nnU-Net framework and
conduct comprehensive experiments on multiple segmentation tasks against STU-Net and MedNeXt. Results demonstrate that RSB-
MedNeXt achieves superior performance while requiring fewer computational resources than STU-Net. Through our approach, we
hope that the trade-off between performance and efficiency in medical image segmentation can be effectively addressed and offers
a promising method in resource-constrained clinical applications.

1. Introduction

Medical image segmentation is a crucial task that aims to ac-
curately segment organs and tumors, thereby supporting doc-
tors in diagnosis and treatment planning via images. Hence, it
has long been of high interest to researchers, especially after
the emergence of U-Net (Ronneberger et al., 2015, Awais et al.,
2025, Zhao et al., 2025), a CNN-based architecture designed
specifically for the segmentation of medical image data. U-Net
has quickly revolutionized this field and has continually been
impactful in other research directions, demonstrated by its cita-
tions exceeding 100000 to date. As U-Net’s release, numerous
variants have been proposed to improve further performances
in various organs and modalities (Zhou et al., 2018, Isensee
and Maier-Hein, 2019). However, their inherent disadvantage,
which is the need to configure architectures carefully based on
specific tasks to achieve state-of-the-art results, has not been
ever solved yet (Isensee et al., 2024, Xia et al., 2024, Isensee
et al., 2018). As a result, U-Net and its variants are likely to
have a lack of generalizability, which is necessary for clinical
applications.

Recently, this issue has been mitigated by the introduction of
STU-Net (Huang et al., 2023, Zhang and Metaxas, 2024, He
et al., 2025, Xia et al., 2024), an architecture with scaling and
transfer capabilities, which has resulted in more generalizations.
Thanks to its abilities, STU-Net achieved high rankings and
even won several medical image segmentation challenges by
∗ Corresponding author: pcthang@dut.udn.vn

fine-tuning pre-trained models derived from previous large-scale
dataset pre-training. However, it is not without drawbacks, as
it trades efficiency, specifically size, and speed, at a dispropor-
tionate ratio for impressive performance. This leads to high
fine-tuning costs, and hence, there is only a marginal difference
between fine-tuning and training from scratch.

Therefore, motivated by this observation, in this paper, we at-
tempt to surpass STU-Net by systematically investigating both
STU-Net and MedNeXt (Roy et al., 2023, Liu et al., 2024) -
another CNN architecture with competitive performance. From
this analysis, we propose a more generalizable and robust net-
work that can surpass both while being more efficient than STU-
Net.

Our contributions fold: (1) We analyze the pros and cons of
STU-Net and MedNeXt systematically. (2) Based on this in-
depth analysis, we propose a new architecture with a robust
stem module and enhanced bottleneck. (3) We conduct exper-
iments in nnU-Net to highlight our proposed architecture per-
formance compared to the two aforementioned methods.

2. Related Work

CNN-based Architectures Traditional methods of Medical
Image Segmentation faced difficulties due to the requirement
for manual annotation support and the complexity of medical
images (Gotra et al., 2017, Ansari et al., 2022, Li et al., 2015).
However, this field was revolutionized when CNN-based net-
works were applied to it, especially with the release of U-Net
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(Ronneberger et al., 2015). It quickly became the most pop-
ular baseline for medical image segmentation due to its spe-
cific design for this task (Siddique et al., 2021, Azad et al.,
2024). Specifically, it consists of an encoder-decoder struc-
ture with skip connections, which allows precise localization
with limited annotated data. This leads to efficient end-to-end
training and strong performance even on small datasets, mak-
ing it particularly suitable for biomedical applications. After
that, many of its variants have been proposed to address spe-
cific challenges and enhance U-Net’s performance. The modi-
fications included the introduction of 3D U-Net (Çiçek et al.,
2016) and V-Net (Milletari et al., 2016) for volumetric data,
replacing 2D convolutions with 3D convolutions to better cap-
ture spatial context in CT and MRI scans or nested designs
(Huang et al., 2020) such as UNet++ (Zhou et al., 2018) em-
ploy dense skip connections and multi-scale feature aggrega-
tion to reduce the semantic gap between encoder and decoder.
These enhancements further improved segmentation accuracy
in challenging scenarios. With the release of nnU-Net (Isensee
et al., 2018), a self-adapting framework that automates the con-
figuration of U-Net architectures, preprocessing, training, and
inference pipelines for any given dataset, U-Net became not
only a top choice for research works but also for practical pro-
jects. nnU-Net demonstrated that even standard U-Net architec-
tures can outperform many newly proposed and complex mod-
els across diverse benchmarks when it is properly configured
and tuned. Specifically, nnU-Net introduced dynamic adapta-
tion of network topology (e.g., 2D, 3D, or cascaded U-Nets),
which is automatic adjustment of patch size and pooling opera-
tions, and robust data augmentation and normalization strategies.
Notably, nnU-Net’s success highlighted that careful pipeline
design and rigorous validation are often more impactful than
incremental architectural tweaks (Isensee et al., 2018, Isensee
et al., 2024). Recent works have also explored scaling U-Net
models to larger sizes, both in depth and width, and pre-training
them on large, diverse datasets to improve transferability and
generalization. For example, STU-Net (Huang et al., 2023) ex-
tends nnU-Net by systematically scaling model size up to over
a billion parameters and demonstrates that larger models, when
trained on sufficiently large datasets, yield consistent perform-
ance gains and strong transfer learning capabilities across mod-
alities and tasks, or MedNeXt (Roy et al., 2023), developed
from the U-Net architectural framework with individual blocks
improved from ConvNeXt (Liu et al., 2022, Woo et al., 2023),
achieves competitive performance with STU-Net without pre-
training on large datasets.

Transformer-based Architectures To overcome CNN limit-
ations, transformer-based architectures in medical image seg-
mentation were proposed. UNETR (Hatamizadeh et al., 2022)
was one of the earliest works that replaced CNNs’ localized re-
ceptive fields by processing non-overlapping volumetric patches
through a transformer encoder to model global dependencies
across entire scans. SwinUNETR (Hatamizadeh et al., 2021)
subsequently employed shifted window attention in Swin Trans-
former (Liu et al., 2021) to reduce computational complexity
while maintaining contextual integration. There were also some
hybrid approaches like TransUNet (Chen et al., 2021) and CoTr
(Xie et al., 2021), which strategically combined transformers
with CNNs to benefit from both local feature precision and
global context. Their superior ability to capture long-range
spatial dependencies, which are critical for segmenting inter-
connected anatomies or irregular pathologies, led to a signi-
ficant improvement in performance generally. However, trans-
formers still face significant computational challenges. Their

main self-attention mechanisms scale quadratically with input
size, causing prolonged inference times and often exceeding
GPU memory limits on standard hardware. Recent studies ad-
dressed these efficiency constraints through architectural modi-
fications such as interleaved convolution-transformer blocks in
nnFormer (Zhou et al., 2022), and state-space-model-based U-
Mamba (Ma et al., 2024). Additionally, CNN-based alternat-
ives like MedNeXt (Roy et al., 2023) demonstrated that large-
kernel convolutions can approximate transformer-like interac-
tions with lower overhead.

3. Methodology

In this section, we begin with a systematic analysis of exist-
ing architectures (U-Net, STU-Net, and MedNeXt), identify-
ing their strengths as well as limitations. Based on this ana-
lysis, we identify the architectural requirements that need to
be achieved, then propose a new architecture through enhance-
ments at multiple granularities: macro design, block design,
and micro design. Firstly, for macro design, we determine the
overall architectural framework, reusable blocks, and the size
of the architecture. Then, for block design, we redesign sev-
eral blocks to meet the direction of the macro design. Finally,
for micro design, we select detailed parameters of the architec-
ture to further optimize its performance. This entire process
maintains consistency through our analysis of the selected ar-
chitectures and the requirements we’ve established, resulting in
our novel architecture for medical image segmentation, namely
RSB-MedNeXt.

3.1 Analysis of STU-Net and MedNeXt

Overall Architecture The common point of U-Net, STU-Net,
and MedNeXt is that they are all based on a symmetric encoder-
decoder architecture with skip connections. The strength of
this architectural framework is the clear separation of feature
compression and decompression phases corresponding to the
encoder and decoder, along with the tight connection between
these two modules through skip connections at each resolution
stage. This helps the model learn features at many different
levels, from raw to abstract, while ensuring no information loss
during the learning process.

Resolution stage Both Vanilla U-Net, 3D U-Net, and more
recently MedNeXt, typically have only 4-5 resolution stages,
rarely reaching the seven stages of more complexly configured
U-Net versions in the nnU-Net framework. This means the
aforementioned architectures lack sufficient depth to learn fea-
tures at the most abstract level, which is necessary for increas-
ing model performance. However, this depth issue has been
fundamentally mitigated in STU-Net, an architecture with a
fixed number of 6 resolution stages, allowing the model to have
sufficient depth for feature learning while not being excessively
deep to cause information loss or gradient vanishing.

Stem Limitations A common disadvantage of U-Net, STU-
Net, and MedNeXt is that they were not designed to extract
input information sufficiently, resulting in limited feature learn-
ing and inaccurate mask prediction in the decompressing phase.
While MedNeXt’s stems were too simple, with only a 1×1×1
convolution, STU-Net’s stems have a better design by using
3 × 3 × 3 and 1 × 1 × 1 convolutions along with a residual
connection. However, both blocks lack the ability to extract
global-level context information and long-range dependencies,
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which is done well by transformer-based architectures. Addi-
tionally, the lack of diversity in kernel sizes used for feature ex-
traction from the input also causes CNN-based architectures in
general and U-Net-based architectures in particular to lack the
ability to handle objects of varying sizes. This results in miss-
ing important small details or undersegmenting the boundaries
of large organs.

Upsampling & Downsampling Limitations U-Net and STU-
Net’s downsampling (DS) and upsampling (US) blocks encounter
similar limitations as mentioned above, specifically an inad-
equate number of convolutions and the unemployment of resid-
ual connections—an important mechanism for preserving in-
formation in deep neural networks. This leads to forgetting de-
tails or losing information during up and down sampling pro-
cesses. As a result, the accuracy of mask prediction is reduced
significantly, and even masks do not capture some details, such
as tiny tumors or fragments. This issue has been well addressed
in MedNeXt’s Upsampling and downsampling blocks, with the
core improvement being the enhancement of ConvNeXt’s stand-
ard sampling block and the use of residual connections to en-
able easier gradient flow. These improvements help MedNeXt
preserve spatial information at a level comparable to Transformer-
based architectures.

Bottleneck Limitations Despite its important role in processing
the compressed features and memorizing them the last time
before the decompressing phase, the bottleneck is often over-
looked when considering improvements in U-Net-based archi-
tectures. Similar to stem or DS and US blocks, bottlenecks
in U-Net, MedNeXt, and STU-Net only consist of convolution
layers, leading to similar disadvantages such as Limited Global
Context learning. This has been somewhat addressed by us-
ing transformer blocks in transformer-based architectures like
SwinUnet and SwinUnetR. However, such pure transformer block
bottlenecks face another inherent disadvantage, which is neg-
lecting fine-grained information, a strength of bottlenecks con-
structed from convolution blocks.

3.2 Macro Design

Having thoroughly analyzed existing architectures, we now present
the macro-level design decisions for our proposed model. These
foundational choices establish the overall structure upon which
our more detailed enhancements are built.

Overall Architecture Due to the advantages mentioned above
of the encoder-decoder framework of U-Net-based architectures,
our proposed architecture is also based on this architectural
framework. This choice provides a proven foundation while al-
lowing us to easily implement architectural improvements and
design new modules. By maintaining this established structure,
we can focus our innovations on specific components that ad-
dress the identified limitations while preserving the strengths of
the U-Net paradigm (Figure (1)).

Resolution Stage Our analysis revealed that STU-Net, with
the number of resolution stages fixed at 6, has demonstrated
superior performance as well as better generalization, trans-
ferability, and scalability compared to U-Net and MedNeXt.
Therefore, to serve similar purposes in the future and main-
tain optimal information flow between abstraction levels, the
number of resolution stages in our architecture is also fixed at
6. This design choice balances the need for sufficient depth
to capture abstract features while avoiding excessive depth that
could lead to information loss or gradient vanishing problems.

Besides, similar to STU-Net Large, each RSB-MedNeXt’s res-
olution stage includes N MedNeXt block, with the value of N =
2.

3.3 Block Design

Basic block Based on our analysis above, our requirement for
the basic block is robustness in learning features as well as pre-
serving information. As shown in Figure (2), MedNeXt block
consists of a Depthwise (DW) convolution layer with kernel
size k×k×k (k=1), along with group normalization (GNorm),
resulting in C output channels. Next, the expansion layer, which
includes a convolution layer with Gaussian Error Linear Unit
(GELU) activation, is placed, followed by a convolution layer
with 1×1×1 kernel as the compression layer. This layer is en-
hanced by a skip connection. Thus, the MedNeXt block itself,
which is an improvement from the ConvNeXt block, is already
sufficient to meet these requirements. Therefore, this MedNeXt
block will be reused as the basic block in our architecture to
inherit its powerful capabilities.

Upsampling & Downsampling Blocks Similar to the require-
ments for the basic block, for DS and US blocks, our goal is the
ability to maintain features during the sampling process. For
this reason, MedNeXt DS and US blocks, which are custom-
ized from the MedNeXt block to serve sampling, effectively
address the identified limitations above in STU-Net’s approach
by incorporating adequate convolutions and residual connec-
tions. Thus, they are sufficient to ease these aforementioned
issues and can also be reused in our architecture.

Robust Stem Module Based on our analysis, our goal for the
stem is a new module with the ability to extract input informa-
tion more powerfully at different levels using kernels of diverse
sizes. Therefore, a more robust stem module is proposed with
three parallel branches to extract information in multiple levels,
which includes one branch with DW 7 × 7 × 7 and 5 × 5 × 5
convolutions for global-level context, another branch with two
stacked DW 3× 3× 3 convolutions for important information,
and the remaining branch with a DW 1 × 1 × 1 convolution
for local-level detail. Residual connections are employed to
concatenate extracted information before feeding to the latter
1× 1× 1 convolution for a combination. Stride with the value
of 1 is applied to all convolution layers in this module (Figure
(3)).

Hybrid Bottleneck Based on our analysis, our goal for the
bottleneck is similar to that for the stem, which is not only to
learn fine-grained features well but also to capture global in-
formation. Therefore, a new bottleneck is proposed consisting
of 2 parallel branches along with a residual connection (Fig-
ure (4)). In the first branch, MedNeXt’s bottleneck is utilized
because it leverages the MedNeXt block, which is superior to
other basic residual convolution blocks. In the other branch,
a self-attention block is employed to learn global relationships
within the compressed features. As a result, our hybrid bot-
tleneck can benefit from the strengths of two distinct blocks,
which are merged by concatenate operation to serve the de-
coder’s decompression process.

4. Experiments

4.1 Datasets

Our model is evaluated on diverse datasets encompassing both
organ and tumor segmentation tasks to demonstrate its compre-
hensive performance. These datasets include ATLAS (Quinton
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Figure 1. Overall architecture showing the integration of our enhanced components across the six resolution stages, with the encoder
pathway (left), decoder pathway (right), and skip connections between corresponding levels.

Figure 2. MedNeXt block.

Figure 3. Robust stem with three parallel branches for
multi-scale feature extraction.

et al., 2023), AMOS22 (Ji et al., 2022), and KiTs2023 (Heller
et al., 2023).

Figure 4. Hybrid bottleneck with self-attention mechanism.

4.2 Experimental Setup

Training Strategy To validate the efficiency of RSB-MedNeXt
to other U-Net-based architectures in challenging tasks like tu-
mor segmentation, specifically STU-Net and MedNeXt, nnU-
Net is leveraged as our standardized framework. Our models
are trained from scratch in 200 epochs with an initial learning
rate of 1 × 10−2 for all selected datasets. Additionally, other
hyperparameters will be configured by default by nnU-Net to
ensure fairness. Only for ATLAS, MedNeXt are trained with
the same training recipe of RSB-MedNeXt, and STU-Net are
finetuned in 100 epochs.

Evaluation strategy Regarding evaluation strategy, K-fold cross-
validation with the common value K = 5 is employed to ensure
fairness, especially with small-scale datasets like medical im-
ages. This scheme helps maintain consistent experimental con-
ditions across different architectures and facilitates further com-
parisons with one of the largest benchmarks conducted in the
study of Isensee et al. (Isensee et al., 2024), as well as results
from other works. Therefore, the metrics from this benchmark
are also reused to evaluate our model’s performance, specific-
ally the average and standard deviation Dice Similarity Coef-
ficients (DSC) are the primary and secondary metrics, respect-
ively.

4.3 Experimental Results

RSB-MedNeXt consistently outperforms previous state-of-
the-art models across diverse datasets. Our experimental res-
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Network Average Dice Similarity Coefficients (%)↑
ATLAS AMOS22 KiTs2023

STU-Net L 83.36 89.34 85.84
MedNeXt L k3 84.70 89.62 88.25
MedNeXt L k5 85.04 89.73 87.74
RSB-MedNeXt 85.81 89.69 88.94

Table 1. Performance comparison of RSB-MedNeXt against STU-Net Large and MedNeXt Large across datasets. ↑: Higher is better.
Bold indicates the best, and underline indicates the second best.

Network Standard Deviation of Dice Coefficients (%)
ATLAS AMOS22 KiTs2023

STU-Net L 2.6 0.45 2.1
MedNeXt L k3 2.1 0.43 0.94
MedNeXt L k5 2.0 0.43 1.2
RSB-MedNeXt 1.77 0.41 0.98

Table 2. Standard deviation of Dice Similarity Coefficients across different architectures and datasets.

ults in Table (1) demonstrate the robustness of RSB-MedNeXt,
which achieves higher average DSC scores across most of the
datasets compared to STU-Net Large (L), MedNeXt Large with
k3 and k5 kernel versions. RSB-MedNeXt has significant im-
provements when compared to STU-Net L, specifically with
substantial gains of +2.45% on ATLAS (Figure (5)) and +3.10%
on KiTS2023 datasets. These improvements suggest that our ar-
chitecture effectively addresses the limitations identified in pre-
vious models, especially in feature extraction at multiple levels.

Performance gains of RSB-MedNeXt are stable across pop-
ular benchmarks. Table (2) shows the evidence that RSB-
MedNeXt exhibits lower standard deviations (1.77%, 0.41%,
0.98%) compared to STU-Net L (2.6%, 0.45%, 2.1%) across all
three datasets. This indicates that our model not only achieves
higher average performance but also provides more reliable res-
ults. Specifically, our model without pretraining on large-scale
datasets is still more robust than STU-Net across different ana-
tomical structures and imaging conditions, which is a critical
factor for clinical applications.

The robust stem design significantly improves feature ex-
traction capabilities. RSB-MedNeXt’s performance in mean
and std of DSC scores are superior compared to other networks,
especially in two challeging tumor segmentation tasks ATLAS
and KiTs2023, with the gains of 2.45% and 3.1% over STU-Net
L respectively. Despite the large number of resolution stages,
our network are still robust and generalizable thanks to the stem
module. This demonstrates that the parallel branch structure in
our stem module enables efficiently simultaneous extraction of
multi-scale features, addressing a key limitation in previous ar-
chitectures that relied primarily on fixed kernel sizes.

Hybrid bottleneck architecture effectively balances global
context capture and fine-grained detail preservation. Sim-
ilar to the stem, our bottleneck also contributes to the efficiency
of RSB-MedNeXt, specifically in highest average DSC score in
ATLAS and KiTs2023 (85.81% and 88.94%). For AMOS22,
despite marginal gap compared to MedNeXt L k5 (89.73%),
which is the best results, our network still significantly outper-
forms STU-Net L.

5. Conclusion

In this work, we attempt to beat STU-Net by carefully invest-
igating it and other state-of-the-art architectures. Based on our
analysis, we propose a new architecture with strategic designs

that can outperform STU-Net and be more efficient than it, spe-
cifically RSB-MedNeXt. Our method’s performance is demon-
strated on several challenging tasks against other strong baselines.
We hope that RSB-MedNeXt can serve as a top choice for med-
ical image segmentation in clinical practice, offering both im-
proved accuracy and reduced computational requirements.
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