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Abstract

The problem of wavefront reconstruction by its slopes, related to the the phase recovery of a light wave based on Shack-Hartmann
sensor data, is considered. A reconstruction method based on the application of physics-informed neural networks to slope measure-
ment data on both regular and irregular grids in two modifications WRPINN and WRRADPINN is proposed. A comparison with the
reconstruction method based on the variational approach combined with the projection method using a fractional smoothness sta-
bilizer on typical smooth, nonsmooth, and discontinuous wavefronts defined on a regular grid is given. The results of the method’s
performance on irregular grids and with partially missing data are analyzed, leading to the conclusion about its effectiveness in
handling such data.

1. Introduction

The problem of wavefront reconstruction from the data of its
local slopes is one of the important problems arising in many
applications: in the estimation of atmospheric turbulence para-
meters (Andreeva et al., 2012), in the restoration of the light
wave phase for the purposes of adaptive optics (Larichev et al.,
2002), in various applied problems of medical physics (Bary-
shnikov et al., 2019), (Goncharov et al., 2015), and others. In
particular, multifocal intraocular lenses (IOLs) have recently
been implanted in an increasing number of patients to correct
refractive anomalies. However, multifocal IOLs can lead to un-
desirable visual artifacts, as well as make it difficult to achieve
a clear and wide view of the retina during ophthalmoscopy and
visualization by optical methods. To solve these problems, it is
necessary to develop special mathematical methods for the re-
construction of nonsmooth wavefronts from measured slopes,
which will allow visualization and subsequent analysis of the
optical image of human retinal structures in vivo.

The mathematical formulation of the problem consists in restor-
ing the function of two variables by measurements of its par-
tial derivatives of these variables. The peculiarity of the prob-
lem under consideration is that both the slope data (due to dis-
tortions of various nature arising during measurements) and
the wavefronts themselves (e.g., IOL) are often nonsmooth
and even discontinuous, which makes the development of
stable methods for wavefront reconstruction an urgent task
that attracts the attention of specialists (see, e.g., (Liu et al.,
2024), (Gu et al., 2021), (Huang et al., 2023)). Such spiral
vortex structures are one of the frequently studied phenomena
both in atmospheric turbulence (Wang et al., 2023), (Hyde and
Spencer, 2023) and in the case of laser beams (Hyde and Porras,
2023), (Acevedo et al., 2023), (Kozlova et al., 2024).

It is also worth noting that, given the specific nature of the
Shack-Hartmann sensor, the task of analyzing and reconstruct-
ing the wavefront is invariably faced, both from data specified
inaccurately in the case when the amplitude is comparable to
the amount of the noise recorded at the sensors, and in the case

when data are missing in the region of several sub-apertures.
Moreover, from the point of view of higher resolution wavefront
reconstruction, it is worth keeping a balance between increas-
ing resolution by increasing the number of sub-apertures and
the fact that increasing the number of sub-apertures too much
can cause the total intensity within each sub-aperture to drop
to values comparable to the noise on the sensors. This leads
to additional difficulties in using the existing methods due to a
number of limitations imposed by them on the grid on which
the slope data are specified and its resolution.

In (Razgulin et al., 2017), a finite-dimensional variational-
projection scheme aimed at reconstructing a nonsmooth wave-
front is considered. In (Razgulin et al., 2019)), a family of
new wavefront reconstructors is proposed, in which a stabilizer
with fractional second-order difference derivatives is added to
improve the spatial-frequency response of the scheme and its
alignment at high frequencies. In (Razgulin et al., 2022), un-
der the condition of matching the grid step with the stabilizer
parameters, estimates of the accuracy of the method (Razgulin
et al., 2019) are obtained from anisotropic Sobolev spaces
with fractional smoothness indices. The results of these works
show the effectiveness of the proposed variational-projection
method for the problems of reconstructing nonsmooth wave-
fronts defined on rectangular regions and when uniform grides
are chosen for each variable. However, adapting the projection
method to more general domains (including unconnected ones)
and non-uniform grids given by the original measurement data
arising in applications greatly complicates its implementation
and reduces its efficiency. In these cases, a possible alternative
is the use of machine learning methods and neural networks.

Recently, there has been significant development in the field
related to wavefront reconstruction in various applications us-
ing deep learning(Wang et al., 2024), which includes the ap-
plication of various neural network architectures. One pop-
ular approach is based on recovering the Zernike coefficients
of the recorded wavefront from data obtained directly from a
Shack-Hartmann sensor using modifications of various convo-
lutional networks that have been shown to be effective in re-
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gression problems, especially ResNet (Gu et al., 2021), (He et
al., 2021), (Ning et al., 2024), as well as using Self-Attention
blocks embedded in convolutional network modules (Ge et
al., 2023), (Zhang et al., 2024). Another popular approach is
to use modifications of convolutional networks no longer ap-
plied to regression problems, but to the reconstruction of two-
dimensional datasets, typically images. In (Zheng et al., 2024),
a U-Net-type convolutional network is considered to recover a
high-resolution wavefront directly from its low-resolution ver-
sion, while in (Zhao et al., 2022), the focus is on reconstruct-
ing slopes in all sub-apertures of the considered region using
slope information from only a limited number of sub-apertures.
It is also worth noting that the application of deep learning
to wavefront reconstruction is not limited to a purely software
solution (Platt and Shack, 2001), (Zhao et al., 2022), (Zhang
et al., 2024), (Ning et al., 2024), (Ma et al., 2023), (Ge et
al., 2023), (Gu et al., 2021), (Wu et al., 2023b), but also in-
cludes more complex hardware and software versions (Zheng
et al., 2024), (Grose et al., 2024), including, for example, an
event-based camera operating in synchronization with a stand-
ard frame-based version (Grose et al., 2024). Nevertheless, the
approach based on the application of convolutional neural net-
works for wavefront reconstruction is used not only to work
with data obtained from the Shack-Hartmann sensor, but also
successfully applied to the reconstruction of the Zernike coeffi-
cients, which define the desired wavefront, from the analysis of
a pair of images consisting of an image in focus and its defo-
cused version (Ge et al., 2023), (Ma et al., 2023).

In this regard, the approach based on the application of physics-
informed neural networks (PINN) to solve initial boundary
value problems for partial derivative equations (Raissi et al.,
2019), which has been gaining popularity in the last few years,
looks promising. The approach is based on the ability of vir-
tually any modern framework (PyTorch, TensorFlow, JAX) im-
plementing machine learning methods to analytically specify
a nonlinear approximation of the desired function and com-
pute its derivatives as well. This possibility allows us to re-
duce the initial boundary value problem for the partial deriv-
ative equation to the problem of minimizing a functional con-
taining the deviations of this nonlinear approximation from the
initial boundary data and its residual when substituted into the
equation under consideration. The proposed approach is not
limited by the specific resolution or location of the points at
which the slope data were obtained, or by the requirement that
they be uniformly located. This allows, when applied to the
problem considered in this paper, wavefront reconstruction to
be performed on both uniformly specified and arbitrary grids.
Moreover, the application of this approach is possible for the
case of regions for which there is no information in a part of
points or in a set of subareas or for the case when the slopes are
known in a relatively small number of points and it is required
to reconstruct the wavefront of a significantly higher resolution.
The proposed method was evaluated on typical wavefronts en-
countered in ophthalmological applications, turbulent distortion
correction and optical quantum communication.

2. Problem statement

In this paper, we propose to reconstruct the wavefront u(x, y)
from measurements of its slopes g1(x, y), g2(x, y) along the
corresponding x and y directions by considering the corres-
ponding problem of minimizing the total deviation of the slopes
of the sought nonlinear approximation from the known values

in a given set of points. The reconstruction problem is gener-
ally considered within an arbitrary aperture, but a comparison
with the projection method is made for the case of a square
aperture Ω = [−π, π] × [−π, π] or a normalized square aper-
ture Ω0 = [−1.0, 1.0] × [−1.0, 1.0] containing a unit circle,
in which the Zernike polynomialsthat are typical for describing
wavefronts of ophthalmological nature and atmospheric wave-
fronts are defined.

3. Method of wavefront reconstruction by
physics-informed neural network

3.1 Neural network approximation

The method proposed in this paper is based on approximating
the reconstructed wavefront by a nonlinear approximation given
by a fully-connected neural network

u = u(x,θ) = σ(L)

(
1

nL−1
W (L)y(L−1) + b(L)

)
,

y(l) = σ(l)

(
1

nl−1
W (k)y(l−1) + b(l)

)
.

(1)

Here x = (x, y) ∈ Ω is the input coordinate vector, σ(l) : R →
R is the piecewise nonlinear activation function, y(l) ∈ Rnl —
hidden layer with neurons, y(0) = x, W (l) ∈ Rnl×nl−1 ,
b(l) ∈ Rnl , θ = {W (i), b(i), i = (1, L)} is the vector of
weights obtained during the solution of the minimization prob-
lem, l = 1, L− 1.

As an activation function σ(i) in problems of recovering solu-
tions of initial boundary value problems for partial derivative
equations, as a rule, tanh(·) —hyperbolic tangent and trigono-
metric sin(·) are considered. Unlike projective constructions
based on finite elements of fixed shape, the method gives a
smooth nonlinear approximation and does not require a priori
any special structure of the Ω domain.

3.2 PINN minimization problem

In general, to find the weights of the desired approximation
u(x,θ) we consider the problem of minimizing the functional

L(θ) = Lb(θ) + Lr(θ) → min, (2)

where Lr(θ) is the component responsible for minimizing the
residual with the registered slopes g1(x, y), g2(x, y), given by
the formula

Lr(θ) =
1

Nr

Nr∑
i=1

{(
ux(x

(i)
r ,θ)− g1(x

(i)
r )

)2

+

(
uy(x

(i)
r ,θ)− g2(x

(i)
r )

)2

} (3)

and Lb(θ) = 1
Nb

∑Nb
i=1

(
u(x

(i)
b ,θ)− gb(x

(i)
b )

)2

is the com-
ponent minimizing the deviation from the boundary values
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given at the given boundary points x
(i)
b , i = 1, Nb by some

known function gb(x).

In the case of typical problems of wavefront reconstruction by
slopes in the absence of a priori information about the beha-
vior of the wavefront on the boundary, the value Lb(θ) is not
included in (2) and further in the paper we will consider the ver-
sion that does not take into account the contribution of values on
the boundary of the region. For each function with predefined
slopes on a grid to be recovered, the training data consisted
solely of slope values, while the learning process comprised
solving the minimization problem for functional Lr .

The choice of the Nr points used to minimize (2) depends on
the domain and can be either a regular uniform rectangular grid
x
(i)
b = (xk, yj), xk = xmin + k · hx, yj = ymin + j · hy ,

k = (1, Nx), j = (1, Ny) or some given set of points x
(i)
b =

(xi, yi) ∈ Ω, i = (1, Nr), such as those obtained by computing
the slopes in the Shack-Hartmann sensor.

3.3 RADPINN minimization problem

It is worth noting that, despite the efficiency demonstrated by
classical PINNs in solving initial boundary value problems,
there are a number of drawbacks that numerous modifications
of the classical approach are aimed at correcting. Without
claiming completeness of the given directions for improvement
and proposed methods, let us mention the problem of modeling
a rapidly oscillating solution (Wu et al., 2023a), (Wang et al.,
2022), which is of the greatest interest in the context of the con-
sidered problem of wavefront restoration. A significant number
of papers present examples in which the solution is a relatively
rapidly oscillating function, when modeling which the classical
PINN approach often shows a significant deviation from the ex-
act solution, see for example (Wang et al., 2022). Despite the
existence of a wide set of proposed methods for modifying both
the nonlinear approximation of the solution itself, the choice of
the set of points at which the minimized discrepancy is com-
puted, and the minimization algorithm, it is worth considering
their limitations and complexity of application in the case of
the specificity of the problem of recovering a function from its
slopes. One promising approach (Wu et al., 2023a) proposes
several modifications of the algorithm for constructing the min-
imized functional and the set of points used to compute it. In
the case where we are restricted to a fixed location of points on
the plane where the slopes of the wavefront to be reconstructed
are known, we can use the RADPINN modification, in which
the functional changes every M iterations at each step is rep-
resented by the formula:

L(j)
r (θ) =

1

Nr

Nr∑
x∈Xj

{
(ux(x,θ)− g1(x))

2 +

(uy(x,θ)− g2(x)
2

}
,

where Xj =
{
x ∈ {x(i)

r , i = 1, Nr}
}

is the set of points x, se-
lected according to the corresponding probability distribution,
which takes into account the magnitude of the quadratic devi-
ation of the derivatives from the slopes measured at the point.

In the following, the modifications of the method discussed in
sections 3.2 and 3.3 will be referred to as WRPINN and WR-
RADPINN, respectively, indicating, if necessary, the activation

function σ chosen for implementation in the neural network ap-
proximation (1) in parentheses after the name.

3.4 Program implementation

In terms of the used software framework it is possible to use
any machine learning framework that contains the capabilities
of analytical differentiation of the desired nonlinear approxim-
ation given by the neural network by its input and parameters.
In this work, the Python language PyTorch machine learning
framework was used. The software implementation is provided
on the open web service GitHub (Romanenko, 2025). To test
the performance and compare the running time of the presented
method with existing analogs, a MacBook Pro 14 laptop with
an Apple M3 Max processor with 14 processor cores and 30
graphics cores and a computer with an AMD Ryzen 9 5900X
processor and NVIDIA RTX 3080 Ti GPU were used. The
stochastic Adam optimizeror its combination with a memory-
constrained modification of the L-BFGS quasi-Newton method
was used as the weight parameters optimizer.

4. Data description

With important medical applications in mind, testing of the
method was performed on wavefronts characteristic of distor-
tions that occur in the optical system of the human eye and
can be described using Zernike polynomials, and a class of
nonsmooth and discontinuous spiral wavefronts used in IOL
modeling (Kolodziejczyk et al., 2007).

4.1 Wavefronts

4.1.1 Zernike polynomials One of the important types
of wavefronts, typical also for ophthalmologic applica-
tions, is the front defined by orthogonal Zernike poly-
nomials in the unit circle Zm

n (ρ, φ) = Rm
n (ρ) cos(mφ)

and Z−m
n (ρ, φ) = Rm

n (ρ) sin(mφ), where the ra-
dial polynomials are defined by the formula Rm

n (ρ) =∑(n−m)/2
k=0

(−1)k(n−k)!

k!(n+m
2

−k)!(n−m
2

−k)!
ρn−2k.An example of such a

polynomial Z(13, 3) multiplied by a super-Gaussian function
is shown in part a) of Figure 1.

Figure 1. Examples of the considered wavefronts.

4.1.2 Wavefronts of atmospheric distortions A Butter-
worth filter (see, e.g., (Razgulin et al., 2017)) with a selec-
ted pass frequency superimposed on the noise image given by
Gaussian or Poisson noise (see Figure 1 part d)) was used as a
wavefront typical of atmospheric distortion.
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4.1.3 Non-smooth and discontinuous spiral wavefronts
Given the relevance of the reconstruction of different spiral
wavefronts (Hyde and Porras, 2023), (Acevedo et al.,
2023) (Wang et al., 2023), (Hyde and Spencer, 2023), (Kozlova
et al., 2024), the following types of such fronts were con-
sidered: non-smooth and discontinuous. As a non-smooth
wavefront, a front defined by the surface u(ρ, φ, n,κ) =
u0 + exp

{
− (ρ/a)2M

}
· U(ρ, φ, n,κ) was chosen. Here ζ =

κr+2n(φ−π/2)+π/6, U(ρ, φ, n,κ) = ζ mod 2π, if
[

ζ
2π

]
is odd, and 2π − ζ mod 2π otherwise, n ∈ N, κ ∈ R.

Since the wavefront phase can experience a 2πn discontinu-
ity in the case of points with field amplitude equal to 0, such
as when propagating through a turbulent medium (Gbur and
Tyson, 2008)), the slopes of the wavefront in the discontinuity
zone are not determined. Therefore, a model surface given by
the formula above,where the function U(ρ, φ, n,κ) character-
izes the discontinuity in the angular variable: U(ρ, φ, n,κ) =
(κr + 2n(φ− π/2) + π/6) mod 2π.

Examples of the wavefronts described in subsection 4.1.3 are
shown in Figure 1 in parts b) and c).

4.2 Irregular grid

It is worth noting that, in addition to the specifics of the data
presented in the previous sections, it is important to take into ac-
count the specifics of the region on which the Shack-Hartmann
tilts are recorded. Often in applications, the region is a circu-
lar aperture on which, in addition to ”bad” regions or regions
with amplitude values below some threshold under considera-
tion, there may be several band-like regions where data are not
available for registration. An example of such a region with a
characteristic arrangement of points where slope data are recor-
ded and regions where no slope information is available, as well
as an example of a wavefront defined on an annular aperture
with excluded band-like regions, are shown in Figure 1 parts (f)
and (e), respectively.

Figure 2. Example of data obtained directly from the
Shack-Hartmann sensor of the setup (Kopylov et al., 2024).

A typical example of the location of the points and the ex-
perimental data themselves, recorded directly by the Shack-
Hartmann sensor mounted on the telescope (Kopylov et al.,
2024), from which the slopes are subsequently calculated, is
shown in Figure 2. Note that the characteristic number of points
in this case is 2 orders (400-500 times) smaller than in the case
of the uniform grid considered earlier.

5. Results for regular grids

Comparison of the accuracy results of the presented method
with the variational-projection method was carried out on reg-
ular grids of size N × N , N = 126, 256, 512, 1024, 2048
on Zernike polynomials, non-smooth and discontinuous spiral
fronts and atmospheric fronts described in sections 4.1.1-4.1.3.

The following examples show the results on a regular grid for
N = 256. All calculations were performed for slope values to
which Poisson noise was added, with a magnitude of approx-
imately 2% of the amplitude. The number of iterations of the
presented method depending on the modification was chosen
so that the running time of all modifications was close. All
fronts are considered in the region Ω = [−π, π] × [−π, π]. In
all images of the results presented below, the left image in the
row corresponds to the original analytically specified wavefront
plotted on the corresponding grid section, the center image cor-
responds to the one reconstructed by the specified method and
plotted on the specified grid, and the right image corresponds
to the absolute deviation of the reconstructed front from the ori-
ginal one.

5.1 Comparison with the variational-projection method

As a preliminary part of the analysis of the method perform-
ance quality, we compared the variational-projection method
with 4 different modifications: WRPINN and WRRADPINN,
in which tanh and sin were chosen as the activation function.
For each of the considered examples, to which the variational-
projection method is applicable, for it and for all 4 modifica-
tions, the table presents the results of recovery quality by 3 met-
rics: relative standard deviation MSEN , structural similarity

index SSIM and percentage error δperc =
max |ze − zr|

max ze −min ze
·

100% , where ze(x, y) is the exact value of the front, zr(x, y) is
the reconstructed value of the front, and max and min are taken
over the whole Ω region.

In all images presented in Section 5.1 (a), (d) correspond to the
original analytically specified wavefront; (b) — to the front re-
constructed by the variational-projection method, (e) — to the
front reconstructed by the specified modification of the PINN
method; (c) — to the absolute deviation of the front reconstruc-
ted by the variational-projection method from the original front;
(f) — to the absolute deviation of the front reconstructed by the
specified modification of the PINN method from the original
front.

5.1.1 Zernike polynomials In the case of low-order
Zernike polynomials, all 4 modifications of the proposed
method produce qualitatively similar results, as reflected in
Table 1. Typical results of the reconstruction of smooth
low-frequency surfaces given by the Z(5, 3) Zernike poly-
nomial by the variational-projection method (top row) and
WRRADPINN(tanh) method (bottom row) are presented in
Figure3.

Method MSEN δperc SSIM
Projection 0.0014 0.010% 0.999

WRPINN(tanh) 0.0055 0.33% 0.998
WRPINN(sin) 0.0110 0.54% 0.988

WRRADPINN(tanh) 0.0043 0.21% 0.999
WRRADPINN(sin) 0.0050 0.28% 0.998

Table 1. Accuracy of the methods on the surface given by the
Zernike polynomial Z(5, 3).

In the case of a linear combination of higher-order Zernike
polynomials Z(45, 17)−Z(31,−23)+Z(32,−14)−Z(46, 32),
we observe a situation in which the basic version of the PINN
method cannot recover a function characterized by a fast spatial
change without additional modifications to the method. Such a
situation and the proposed ways to solve it for initial boundary
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Figure 3. Result of wavefront reconstruction given by the
Zernike polynomial Z(5, 3).

Method MSEN δperc SSIM
Projection 0.0245 1.192% 0.996

WRPINN(tanh) 1.000 50.03% 0.015
WRPINN(sin) 1.0000 50.05% 0.006

WRPINN(sin) ×4 it. 0.1115 7.92% 0.844
WRRADPINN(tanh) 0.2436 19.42% 0.611
WRRADPINN(sin) 0.0752 3.83% 0.901

Table 2. Accuracy of the methods on a surface given by a linear
combination of Zernike polynomials.

Figure 4. Result of wavefront reconstruction given by a linear
combination of Zernike polynomials.

value problems for partial derivative equations are given, for
example, in (Wang et al., 2022), (Wu et al., 2023a).

Thus, the WRRADPINN(tanh) modification showed results
comparable to the variational-projection method, and the modi-
fication of the WRRADPINN(sin) in general produced values
close in accuracy. It is also worth noting that in this case the
basic version of WRPINN(sin) with a 4-times increase in the
number of iterations of the method (and, consequently, the run-
ning time) allows us to obtain a relatively good quality of re-
construction. The results of reconstruction of the above surface
by the variational-projection (top row) and WRRADPINN(sin)
methods (bottom row) are presented in Figure 4.

5.1.2 Spiral wavefronts The comparative values of the ac-
curacy of the modification for a non-smooth spiral wavefront
are summarized in Table 3. Despite the best value of the SSIM
metric on the WRRADPINN(sin) version, the lowest deviation
is characterized by the WRPINN(tanh) modification, the res-
ults of which (bottom row) in comparison with the variational-
projection method (top row) are presented in Figure 5.

The results for the reconstruction of the discontinuous spiral

Method MSEN δperc SSIM
Projection 0.0406 28.55% 0.993

WRPINN(tanh) 0.0649 22.49% 0.952
WRPINN(sin) 0.0448 39.24% 0.977

WRRADPINN(tanh) 0.0763 33.94% 0.947
WRRADPINN(sin) 0.0483 40.96% 0.975

Table 3. Accuracy of the methods on a non-smooth wavefront.

Figure 5. Result of reconstructing a non-smooth spiral
wavefront.

wavefront are presented in Table 4 and for the cases of the
variational-projection method (top row) and WRPINN(sin)
(bottom row) in Figure 6, respectively. The method is able to
give comparable recovery quality, but in the case of discontinu-
ous data, due to the inherently continuous nature of the chosen
nonlinear approximation, it loses to the variational-projection
method.

Method MSEN δperc SSIM
Projection 0.1529 41.58% 0.966

WRPINN(tanh) 0.6136 101.2% 0.611
WRPINN(sin) 0.2797 68.46% 0.802

WRRADPINN(tanh) 0.6547 89.55% 0.561
WRRADPINN(sin) 0.2834 68.71% 0.774

Table 4. Accuracy of the methods on a discontinuous spiral
wavefront.

Figure 6. Result of reconstructing a discontinuous spiral
wavefront.

5.1.3 Atmospheric wavefronts Simulations for the case of
a wavefront characterizing atmospheric turbulence were carried
out on wavefronts specified by a Butterworth filter applied to
the generated normal distribution. The results of the recon-
struction by the variational-projection method (top row) and
WRRADPINN(sin) method (bottom row) are presented in Fig-
ure 7. In the case of sufficiently high-frequency data, as in the
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case of high-order Zernike polynomials, the basic version of
WRPINN does not allow to recover the desired front with suffi-
cient accuracy, whereas the WRRADPINN modification, espe-
cially with the activation function sin, shows a comparatively
better quality of recovery.

Method MSEN δperc SSIM
Projection 0.0445 2.533% 0.993

WRPINN(tanh) 0.7752 48.56% 0.357
WRPINN(sin) 0.3347 10.61% 0.511

WRRADPINN(tanh) 0.7291 34.09% 0.335
WRRADPINN(sin) 0.2658 9.369% 0.624

Table 5. Accuracy of the methods on the atmospheric wavefront.

Figure 7. Result of atmospheric wavefront reconstruction.

It should be noted that, in spite of the restoration results presen-
ted above, which showed accuracy close to the results obtained
with the variational-projection method, the typical runtime of
the method on a grid of similar size was more than an order
longer on the same hardware and software. This makes the use
of the method in cases where the desired front needs to be re-
constructed almost in real time currently inefficient given the
existing capabilities of modern graphics processing units.

5.2 Results for regular grids with ”bad” regions and grids
of lower dimensionality

In this section we present the results of the method on those
regular domains, the work on which is difficult or impossible
for classical methods.

5.2.1 Regular grids with ”bad” regions In the case of
”bad” points or regions, when applying classical methods, in-
cluding the variational-projection method, the question of ob-
taining missing values by interpolation arises. In the case of
the method of physics- informed neural networks, the missing
points are simply not included in the summands of the minim-
ized functional. At the same time, the design of the method (2)
allows us to determine the wavefront in all points of the Ω re-
gion without any additional post-processing.

Figure 8 shows the results of WRPINN(tanh) method recon-
struction for non-smooth and WRRADPINN(tanh) method re-
construction for discontinuous wavefronts with two and four
”bad” slope regions, respectively. The modifications of the
methods that showed the best values in the previously men-
tioned metrics were chosen for visualization; the metric values
for these modifications are given in Table 6. The blackened
circles in the figures of the original fronts show the regions
where the slope values were missing. When obtaining the mod-
ulus of the difference between the exact solution and the recon-
structed wavefront, the entire region was considered.

Method MSEN δperc SSIM
WRPINN(tanh) 0.0246 21.10% 0.994

WRRADPINN(tanh) 0.9474 117.2% 0.491

Table 6. Accuracy of the WRPINN(tanh) and
WRRADPINN(tanh) on non-smooth and discontinuous

wavefronts with ”bad” slope regions, respectively.

Figure 8. Result of reconstruction of nonsmooth and
discontinuous spiral wavefronts with ”bad” regions.

The above results show that the method gives good recovery
quality under the conditions of location of ”bad” regions on
both smooth, non-smooth and discontinuous parts of the sur-
face.

5.2.2 Regular grids of lower dimensionality As one ex-
ample, a grid of smaller (16 times fewer points with slope in-
formation than on the original grid) dimensionality was con-
sidered and the quality of the reconstruction was tested on it
using the variational-projection and PINN methods.

Method MSEN δperc SSIM
Projection(tanh) 0.0781 24.20% 0.959

WRRADPINN(tanh) 0.0672 60.36% 0.971

Table 7. Accuracy of the methods for the reduced grid.

Figure 9. Result of wavefront reconstruction for the reduced
grid.

Figure 9 shows the results of wavefront reconstruction from the
slopes given on a similar grid reduced by a factor of 16. As can
be seen, the proposed method almost completely restored the
structure of the wavefront, which is shown by the low value of
the absolute deviation from the exact solution on the original,
unreduced grid. The emission of the absolute deviation in the
central regions is related to the essentially discontinuous nature
of the slopes on the reduced grid.

Table 7 shows the values of the reconstruction quality metrics
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for the variational-projection method, where the comparison
was performed on a reduced grid, and for WRRAPINN(tanh),
for which the comparison was performed on the original size
grid. The variational-projection method recovers the desired
front with better absolute accuracy, but remains limited to a grid
of significantly lower dimensionality.

6. Results for irregular grids

In this section we discuss the results of testing the quality of the
method’s performance on two types of irregular grids.

6.1 Annular grids with ”bad” stripes

The results of the WRRADPINN(sin) method modification on
the annular region with banded excluded subareas are presen-
ted in Figure 10 and Table 8. The metrics were calculated on
the original annular region without ”bad” strips. In Figure 10,
part a) shows the original wavefront defined in the annular do-
main with the ”bad” band regions superimposed on it, part b)
shows the original wavefront, part c) shows the reconstructed
wavefront, and part d) shows the absolute deviation of the re-
constructed wavefront from the original wavefront.

Method MSEN δperc SSIM
WRRADPINN(sin) 0.03169 1.68% 0.992

Table 8. WRRADPINN(sin) performance accuracy in the case
of an annular region with ”bad” bands.

Figure 10. Result of wavefront reconstruction defined on a
circular aperture with excluded band-like regions.

6.2 Irregular annular grid

The second type of irregular data considered was the set of
points obtained from the experimental setup (Kopylov et al.,
2024), on which a linear combination of Zernike polynomials
Z(2, 0) − Z(4, 0) was analytically specified and Poisson noise
approximately 2% of the amplitude of the slopes was added to
the slopes analytically calculated at the points. The results of
the method on such a grid are presented in Figure 11 and show
the recovery with a maximum deviation from the exact value of
about 6.2% of the spread of the original signal amplitude.

It is important to note that unlike the regular grid case (with
known slope values at 65,536 points), this configuration used a
significantly coarser grid of just 144 points - several orders of
magnitude smaller.

Figure 11. Result of wavefront reconstruction defined on the
experimental set of 144 points.

In Figure 11, part a) shows the points of the annular domain
with outer and inner radii of 0.5 and 1.03, respectively, where
the slopes were set. Part b) shows the original wavefront set
at the annular points depicted in part a), part c) shows the re-
constructed wavefront obtained by WRRAPINN(sin). In part
d), the absolute deviation of the reconstructed front from the
original front is given.

The above presented results show the good performance of the
proposed method both on an irregular annular aperture with ex-
cluded strip-like regions and on an irregular set of points 2 or-
ders smaller than in the previously considered case of a regular
grid.

7. Conclusion

The problem of front reconstruction by its slopes on regular and
irregular grids is considered. Two modifications of the method
based on physics-informed neural networks WRPINN and WR-
RADPINN are proposed for its solution, reducing the task to the
problem of minimizing the mean-square deviation of the slopes
of the sought nonlinear approximation from the registered val-
ues. The WRRADPINN modification with sin activation func-
tion has shown to be effective on rapidly oscillating wavefronts.
Analysis of the method’s performance on regular grids of smal-
ler dimensionality, regular grids with ”bad” regions, and irreg-
ular grids has shown its efficiency with regard to the specifics
of the considered data and promising for further analysis of the
possibilities of its application in ophthalmology and the estim-
ation of atmospheric turbulence parameters.
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