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Abstract

Gesture recognition remains a critical challenge in human-computer interaction due to issues such as lighting variations, background
noise, and limited annotated datasets, particularly for underrepresented sign languages. To address these limitations, we propose
G-MAE (Gesture-aware Masked Autoencoder), a self-supervised framework leveraging a Gesture-aware Multi-Scale Transformer
(GMST) backbone that integrates multi-scale dilated convolutions (MSDC), multi-head self-attention (MHSA), and a multi-scale
contextual feedforward network (MSC-FFN) to capture both local and long-range spatiotemporal dependencies. Pre-trained on the
Slovo corpus with 50–70% masking and fine-tuned on TheRusLan, G-MAE achieves 94.48% accuracy, with ablation studies con-
firming the contributions of each component. Removing MSDC, MSC-FFN, or MHSA reduces accuracy to 92.67%, 91.95%, and
90.54%, respectively. The optimal masking ratio (50–70%) balances information retention and learning efficiency, demonstrating
robust performance even with limited labeled data, thus advancing gesture recognition in resource-constrained scenarios.

1. Introduction

Gesture recognition is a critical technology in modern human-
machine interaction, enabling intuitive and touchless control
mechanisms in various applications (Ryumin et al., 2023a, Qi
et al., 2024). However, neural network-based models often
struggle with challenges such as lighting variations, background
noise and gesture variability, which affect the accurate recogni-
tion of both static and dynamic gestures (Hashi et al., 2024). In
addition, gesture recognition corpora are often relatively small,
partly due to the challenges of annotation and data collection,
except for large corpora such as AUTSL (Sincan and Keles,
2020), Slovo (Kapitanov et al., 2023) and HaGRID (Kapitanov
et al., 2024). Gesture annotation requires high-quality labeling
which can be time-consuming and effort intensive, especially
for video data where precise timing, type, and context of ges-
tures need to be specified. In addition, the collection of such
corpora can be difficult, as it involves capturing a variety of ges-
tures under different conditions, which affects the size of the
corpus. Many sign languages remain poorly represented, and
their digital recognition requires the creation of new specialized
corpora. This challenge is further exacerbated by the diversity
of sign languages across countries and cultures, each with its
own unique characteristics requiring specific approaches to data
annotation and collection.

With recent advances in computer vision and machine learning,
automatic gesture recognition has received increasing research
attention (Ni et al., 2024). End-to-end trained deep neural net-
works allow for autonomous extraction of salient features from
raw input data (Ikne et al., 2024a, Vostrikov et al., 2024), elim-
inating the need for hand-crafted feature engineering and clas-
sifier design. This method improves model learnability, robust-
ness and prediction accuracy, making it more suitable for real-
world applications. While end-to-end deep neural networks
have improved feature extraction and reduced reliance on hand-
crafted methods (Ikne et al., 2024a, Vostrikov et al., 2024),
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real-world deployment still faces limitations in terms of effi-
ciency, robustness, and generalization - especially with lim-
ited labeled data. Transfer learning, meta-learning, and self-
supervised learning aim to reduce annotation costs and improve
model adaptability, but current solutions still often depend on
pre-training on large external corpora.

To overcome these challenges, we propose G-MAE (Gesture-
aware Masked Autoencoder), a self-supervised learning frame-
work for gesture recognition. G-MAE leverages a novel Gesture-
aware Multi-Scale Transformer (GMST) backbone that integ-
rates convolutional and attention mechanisms to capture both
local and long-range spatio-temporal dependencies. Unlike con-
ventional MAE frameworks based on vision transformers (He
et al., 2022), which require large-scale pre-training, G-MAE is
designed for effective training on small corpora, reducing the
dependency on external data and pre-trained models.

The rest of the paper is organized as follows. In Section 2,
we analyze the state-of-the-art methods for gesture recognition.
Section 3 provides a detailed description of the method pro-
posed. Experimental results are presented in Section 4. Finally,
Section 5 presents the conclusions and future work.

2. Related Work

Deep learning has significantly advanced gesture recognition
by enabling the modeling of complex spatio-temporal motion
dependencies (Ryumin et al., 2023b). State-of-the-art meth-
ods integrate convolutional (Alonazi et al., 2023), transformer-
based (Hampiholi et al., 2023, Garg et al., 2024), recurrent-
based (LSTM (Axyonov et al., 2021a) and Mamba (Altaher et
al., 2025)) and graph-based (Ikne et al., 2024b) neural archi-
tectures to optimize feature extraction and classification. Some
studies propose the use of deformable 3D convolutions and mod-
ified graph neural networks to better capture gesture variabil-
ity (Papadimitriou and Potamianos, 2023), while others exploit
spatio-temporal features to improve recognition accuracy (Ry-
umin et al., 2023b). These methods highlight the importance
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of architectural optimizations and multimodal analysis in the
development of more robust and efficient gesture recognition
systems.

Lightweight neural architectures have been explored to address
the computational constraints of real-time gesture recognition.
A sparsity-aware 3D convolutional model (Kim et al., 2024)
uses inter-frame differential information and region-of-interest
based computation to optimize feature extraction while signi-
ficantly reducing computational costs. By incorporating ac-
tivation and weight sparsity, this method achieves a signific-
ant parameter reduction while maintaining a high recognition
accuracy. Similarly, the multimodal method (Christidis et al.,
2024), which fuses 2D skeleton sequences with localized im-
age patches, improves recognition performance without impos-
ing an excessive computational cost. Despite these advances,
challenges remain, particularly in balancing model efficiency
and generalization when training on limited labeled data. Re-
ducing annotation costs while ensuring model robustness is a
key challenge for the deployment of deep learning-based ges-
ture recognition systems in practical applications.

Transfer learning has emerged as a critical technique for im-
proving the generalization of deep learning models in gesture
recognition, facilitating knowledge transfer across domains to
account for inter-user variability and environmental variations
(Ojeda-Castelo et al., 2022). For example, TL-MKCNN (Zou
and Cheng, 2021) improves adaptability between users and ses-
sions by using distribution normalization and alignment mod-
ules, significantly improving classification accuracy in cross-
user and cross-day scenarios. Similarly, in mIV3Net (Karsh et
al., 2024), a modified Inception V3 network fine-tunes convo-
lutional layers to focus on salient gesture features, mitigating
challenges associated with complex backgrounds and similarit-
ies between classes. In addition to traditional transfer learn-
ing, meta-learning techniques such as cross-lingual few-shot
learning (Bilge et al., 2024) enable models to recognize un-
seen gestures with minimal labelled data, proving effective for
low-resource domains. In addition, self-supervised learning has
been integrated into transfer learning frameworks to leverage
large unlabeled gesture corpora and construct auxiliary tasks
that exploit the spatio-temporal structures of gesture movements
to reduce reliance on manual annotation. A notable example
is DFCNet+ (Feng et al., 2024), which incorporates dynamic
motion features and gloss-level alignment to improve continu-
ous sign recognition, using contrastive learning to capture fine-
grained temporal dependencies. Together, these investigations
highlight the potential of transfer learning in developing robust,
adaptive and efficient gesture recognition systems, bridging the
gap between research advances and real-world applications.

Self-supervised learning using masked autoencoders (MAEs)
(He et al., 2022) has received considerable attention for its abil-
ity to effectively extract semantic features from images without
relying on traditional data augmentation methods. However,
the application of MAEs to gesture recognition remains limited.
In particular, MAEs that use vision transformers as their back-
bone require pre-training on large corpora, making them dif-
ficult to apply to smaller corpora. Unlike vision transformers,
swin transformers (Liu et al., 2021) incorporate inductive biases
similar to those in convolutional neural networks, making them
easier to train on limited data. For example, the research (Xu et
al., 2023) introduces a swin-MAE method that effectively trains
on small medical images without the need for pre-trained mod-
els. In addition, the research (Liu et al., 2023) presents the mix-
MAE method, which accelerates pre-training and increases the

efficiency of models across different hierarchical vision trans-
formers. In addition, methods such as the anatomically guided
spatio-temporal MAE (Ikne et al., 2025) integrate anatomical
constraints into the self-supervised training of spatio-temporal
MAEs, thereby enhancing 3D keypoint learning for real-time
hand gesture recognition. Another notable method based on
MAEs (Zhao et al., 2024) introduces a motion-aware strategy
and a semantic alignment module for sign language recogni-
tion, explicitly exploring dynamic motion cues while aligning
global semantic features, leading to state-of-the-art results on
benchmark corpora. These methods demonstrate that integ-
rating MAEs with advanced neural architectures such as swin
transformers, and incorporating anatomical and motion-aware
guidance, can lead to more efficient and adaptive gesture recog-
nition systems capable of operating with limited labeled data.

3. Proposed Method

The aim of the current work is to adapt MAE to small ges-
ture corpora. We propose G-MAE: Gesture-aware Masked Au-
toencoder (see Figure 1) for human-machine interaction, which
uses the Gesture-aware Multi-Scale Transformer (GMST ) as
its backbone. GMST combines convolutions and self-attention
to extract multi-scale local features, using multi-scale dilated
convolutions (MSDC) and multi-head self-attention (MHSA)
to effectively capture inter-scale and long-range correlations in
gestures. In addition, we introduce a multi-scale contextual
feedforward network (MSC-FFN ) module that enhances fea-
ture representation at multiple scales to improve recognition ac-
curacy. GMST uses a pyramid structure to process gesture data
at different scales, capturing different levels of detail for im-
proved performance. In G-MAE, similar to MAE, the decoder
reconstructs the complete gesture from the encoder output.

3.1 Multi-Scale Dilated Convolution

To effectively capture the multi-scale spatial and temporal pat-
terns inherent in human gestures, we incorporate an MSDC
module into the GMST encoder. The primary focus of this
module is to expand the receptive field of the convolutional op-
erations without increasing the number of parameters or redu-
cing the resolution of the feature maps, which is essential for
preserving fine details such as finger positions while modeling
broader contexts such as hand pose and body orientation.

The MSDC module processes the input feature map through
multiple parallel convolutional branches. Specifically, a 1 × 1
convolution operation is applied to preserve fine-grained local
information. In parallel, three 3 × 3 dilated convolution oper-
ations with dilation rates d = {1, 2, 3} are applied to capture
local, mid-range and long-range dependencies within the ges-
ture data. The output of each branch is normalized by batch nor-
malization (BN) and passed through a GELU activation func-
tion to enable stable, non-linear feature transformations. Given
an input feature map F ∈ RH×W×C , the computation of the
parallel branches is calculated as 1:

{
F0 = GELU (BN (Conv1×1(F ))) ,

Fi = GELU (BN (DConvd=i−1(F ))) , i ∈ {1, 2, 3}
(1)

The outputs from all four branches are concatenated along the
channel dimension to produce a fused multi-scale feature map,
calculated as 2:
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Figure 1. Gesture-aware Masked Autoencoder (G-MAE) pipeline

Fconcat = Concat(F0, F1, F2, F3) (2)

To fuse these multi-scale features while controlling dimension-
ality, we apply a 1 × 1 convolution to the concatenated tensor,
producing the output Multi-Scale Feature Fusion (MSFF ), as
shown in 3:

MSFF = GELU (BN (Conv1×1(Fconcat))) (3)

This module effectively achieves receptive fields equivalent to
3×3, 5×5 and 7×7 by controlling the dilation rates in the paral-
lel branches, as shown in Figure 2. In the feature fusion stage,
these MSDC complement each other, allowing the model to
capture both fine-grained local structures and broad contextual
dependencies. This significantly improves the completeness of
the feature representation across different spatial scales.

Figure 2. Receptive fields of MSDC dilated convolutions.

To further improve feature selectivity, the MSDC module in-
corporates a spatial attention (SA) mechanism that highlights
important spatial regions by applying both average pooling and
max pooling operations along the channel axis of MSFF . The

resulting two spatial maps are concatenated and processed us-
ing a convolutional layer with a 7 × 7 kernel, followed by sig-
moid activation, to generate the spatial attention mask, as cal-
culated in 4:

Fconcat = Concat (AvgPool(F ),MaxPool(F )) ,

SA = σ (Conv7×7(Fconcat))× F
(4)

In parallel, a channel attention mechanism based on the squeeze-
and-excitation (SE) block is applied to adaptively recalibrate
channel-wise feature responses. Global average pooling is first
performed on MSFF to obtain a channel descriptor, as shown
in 5:

SE = GlobalAvgPool(MSFF ) (5)

This descriptor is then passed through two fully connected (FC)
layers with a ReLU activation in between and a sigmoid activ-
ation at the output, as shown in 6:

Fexcited = σ (FC2 (ReLU (FC1 × SE))) (6)

The resulting excitation vector is multiplied by the original fea-
ture map by channel-wise multiplication, resulting in the recal-
ibrated feature map CA, the channel-attended feature map, as
shown in 7:

CA = Fexcited ×MSFF (7)
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Finally, the output of the MSDC module is calculated by ap-
plying a residual connection between the recalibrated feature
map CA and the original input feature map F , as shown in 8:

MSDC = CA + F (8)

The residual connection preserves both original and multi-scale
enhanced features, ensuring stable training and improved gradi-
ent flow. The MSDC module captures fine-grained gesture de-
tails and global contextual information, improving recognition
of gestures with subtle variations in different conditions.

3.2 Multi-Head Self-Attention

MHSA is used to capture global dependencies in gesture data,
facilitating the interaction between local and global features. In
the G-MAE model, the MHSA module follows the MSDC
module to enhance the network’s ability to capture complex
interactions between spatial and temporal patterns in gestures.
The number of attention heads is set to 4, 8, 16 and 32 across the
model stages, allowing the model to efficiently process multi-
scale representations of gestures.

Given the input features F , the module first applies a FC layer
to generate the query (Q), key (K) and value (V ). The attention
map (A) is then computed by performing a dot product between
Q and K, followed by a softmax operation for normalization,
as shown in 9:

A = Softmax(K ×Q/α) (9)

where α is an adaptive scaling parameter for softmax control.

The attention-weighted features are obtained by multiplying A
by V , and the final output feature map F̂ is computed by passing
the result through another FC layer, as shown in 10:

F̂ = FC(A(Q,K, V )) (10)

The attention heads are split along the channel dimension, al-
lowing the model to learn different attention patterns for differ-
ent parts of the gesture simultaneously.

3.3 Multi-Scale Contextual Feed-forward Network

The MSC-FFN is designed to capture multi-scale contextual
information, which is essential for recognizing gestures with
both fine details (e.g., finger positions) and broader contexts
(e.g., hand pose and body orientation). The network refines
the features extracted from the previous MSDC and MHSA
modules to provide a more complete and contextually aware
representation of the input gesture.

The MSC-FFN processes features from multiple scales in
parallel. The network first applies dilated convolutions at dif-
ferent dilation rates to capture different spatial and temporal
contexts. The outputs of these convolutions are concatenated
along the channel dimension to form a multi-scale feature map.

The structure of MSC-FFN consists of two main stages: fea-
ture extraction using dilated convolutions and feature refine-
ment through linear layers. The first stage applies 1× 1 convo-
lutions to preserve fine-grained local features, while the second

stage applies dilated convolutions at different rates d to capture
local, mid-range, and long-range dependencies. The outputs are
concatenated along the channel dimension to form a multi-scale
feature map, as shown in 11:

MS(X) = Concat (DConvd(X), d ∈ {1, 2, 3}) (11)

Next, a 1 × 1 convolution is applied to fuse these multi-scale
features while maintaining computational efficiency, as shown
in 12:

MSF(X) = MS(X) + Conv1×1(X) (12)

The resulting multi-scale feature map is fed through a two-layer
feed-forward network (FFN), where the first layer increases the
dimensionality by a factor of 4 and the second layer reduces it
by the same factor. This ensures a balanced flow of information.
The MSC-FFN is formulated as shown in 13:

MSC-FFN(X) = Conv1×1 (GELU(FC1(MSF)))× FC2

(13)

The final output is a refined multi-scale feature representation.
This improves the accuracy of gesture recognition.

3.4 Pre-training and Fine Tuning

The training of G-MAE follows a two-stage paradigm: unsuper-
vised pre-training and supervised fine-tuning. This method al-
lows the model to first learn informative spatio-temporal repres-
entations from large-scale gesture corpus, and then adapt these
representations to the specific task of gesture classification.

In the pre-training stage, the G-MAE model is trained as a
masked autoencoder, where a significant portion of the input
gesture sequence is randomly masked. The encoder processes
only the visible (unmasked) parts of the sequence, generating a
latent representation. The decoder then attempts to reconstruct
the missing frames based on this latent representation and the
available context. The objective function used in this stage is
the mean squared error (MSE) (Sara et al., 2019) between the
reconstructed and original gesture sequences, as shown in 14:

L =
1

N

N∑
i=1

(xtrue,i − xpred,i)
2 (14)

This pre-training strategy allows the encoder to capture robust
and transferable representations of gesture sequences by ex-
ploiting temporal and spatial continuity, even in the absence of
explicit labels.

In the fine-tuning stage, the pre-trained coder is retained, and
the decoder is discarded. A classification head is attached to the
encoder for gesture classification. During the initial fine-tuning
epochs, the encoder weights are frozen to allow the classific-
ation head to stabilize. After this warm-up period, the entire
model is fine-tuned together in an end-to-end manner.
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The fine-tuning process is monitored and optimized using a
multi-class cross-entropy loss function, as show in 15:

Lcls = − 1

M

M∑
i=1

C∑
c=1

yi,c log ŷi,c, (15)

where M is the number of training samples, C is the number of
gesture classes, yi,c is a binary indicator (1 if sample i belongs
to class c, 0 otherwise), and ŷi,c is the predicted probability for
class c for sample i.

This two-stage training scheme enables G-MAE to achieve state-
of-the-art (SOTA) performance in gesture recognition tasks, es-
pecially in scenarios with limited labelled data, by exploiting
self-supervised representation learning during pre-training.

3.5 Masking Strategy and Decoder

A core component of the G-MAE method is the design of the
masking strategy and the decoder, which together enable effect-
ive self-supervised learning through masked gesture reconstruc-
tion.

During pre-training, a large portion of the input gesture se-
quence is randomly masked. Specifically, a masking ratio (ran-
ging from 50% to 70%) is applied to the input frame along the
spatial dimension, such that only a few pixels of the frame re-
main visible to the encoder. This masking is performed uni-
formly and randomly, without regard to gesture boundaries or
motion intensity, which enhances the ability of the model to
generalize to different missing data scenarios.

After masking, the entire sequence of frames - each with its
own spatial masking pattern - is flattened into a sequence of
spatio-temporal tokens. Positional embeddings are added to
each token to preserve both spatial and temporal information.
The resulting token sequence is then passed through the en-
coder, which extracts a latent spatio-temporal representation
from the visible parts of the sequence.

The decoder, which is only used during the pre-training stage,
receives two types of tokens:

• The latent tokens output by the encoder, corresponding to
unmasked patches.

• Learnable mask tokens representing the positions of the
masked patches.

Positional embeddings are also added to both types of tokens to
maintain the correct spatial and temporal order.

The decoder reconstructs the original gesture sequence by pre-
dicting the pixel values (or patch embeddings) at the positions
of the masked patches. The reconstruction objective is to min-
imize the MSE between the original gesture frames Gorig and
the reconstructed frames Grecon at the masked positions. The
reconstruction loss is shows in 16:

Lrecon =
1

N

N∑
i=1

∥∥∥Gorig
i −Grecon

i

∥∥∥2

2
(16)

where N is the total number of masked patches across all frames
in the sequence. This loss encourages the model to infer plaus-
ible content for the missing parts based on the available spatio-
temporal context.

After pre-training, the decoder is discarded, and the pre-trained
encoder is now capable of modelling complex gesture dynamics
from incomplete sequences.

4. Experimental Results

4.1 Research Corpora

The proposed G-MAE method is pre-trained on the Slovo ges-
ture corpus (Kapitanov et al., 2023), where 50% to 70% of the
data is randomly masked and fed into the encoder. The decoder
reconstructs the gesture data from the encoder’s latent repres-
entations. Subsequently, G-MAE is fine-tuned on the TheR-
usLan corpus (Kagirov et al., 2020), where only the encoder
processes the unmasked data. The output features are globally
averaged before being passed to a classifier for gesture recogni-
tion.

4.2 Implementation Details

All experiments were implemented in the PyTorch framework
version 2.4. The AdamW optimizer was used with training
hyperparameters and a cosine annealing learning rate schedule
configured analogously to the research (Axyonov et al., 2024).
The batch size was set to 64 for all training stages. During
the pre-training phase on the Slovo corpus (Kapitanov et al.,
2023), a total of 500 epochs were run with a masking ratio of
0.75. In the fine-tuning phase, the model was trained for 250
epochs on the TheRusLan corpus (Kagirov et al., 2020). All
experiments were performed on a high-performance computing
infrastructure based on an NVIDIA A100 GPU with 80 GB of
video memory. The software environment was based on Py-
thon 3.12 with PyTorch 2.4 and CUDA support. The operat-
ing system was CentOS 7 with Linux kernel, which provided a
stable and reproducible environment for all experimental pro-
cedures. Docker was used to manage the dependencies and to
ensure fixed initial random seeds for consistent experimental
replication.

4.3 Recognition Performance

The recognition results demonstrate that G-MAE method out-
performs previous SOTA methods. Specifically, on the TheR-
usLan corpus (Kagirov et al., 2020), G-MAE achieved a recog-
nition accuracy of 94.48%, outperforming competing methods,
as shown in Table 1.

4.4 Ablation Studies

An ablation study was performed by selectively removing key
modules and varying the masking ratio during pre-training, in
order to assess the impact of different components of the pro-
posed architecture, as shown in Table 2.

The ablation results clearly show the contribution of each ar-
chitectural component to the final recognition accuracy. Re-
moving the MSDC module resulted in a decrease in accur-
acy from 94.48% to 92.67%, confirming its importance in cap-
turing multi-scale spatio-temporal dependencies in gesture se-
quences. Removing the MSC-FFN resulted in a further drop
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Method Recognition rate, %

(Axyonov et al., 2021b)

53.07
68.23
69.74
73.54
74.28
77.43
79.98
84.67
87.38
88.92

(Axyonov et al., 2022) 91.14
(Ryumin et al., 2023a) 93.33
Ours (G-MAE) 94.48

Table 1. Comparison of gesture recognition accuracy (%) on the
TheRusLan corpus.

Configuration Recognition rate, %
Masking 50–55% 93.41
Masking 55–60% 93.72
Masking 60–65% 93.88
Masking 65–70% 94.02
Masking 50–70% 94.48
Masking 75–80% 93.85
Masking 80–85% 92.97
Masking 85–90% 91.65
Without MSDC module 92.67
Without MSC-FFN module 91.95
Without MHSA module 90.54
Without MSDC & MSC-FFN 89.72

Table 2. Ablation study and masking ratio influence on
recognition accuracy (%) on the TheRusLan corpus.

to 91.95%, highlighting its role in improving feature represent-
ation through multi-scale processing within the feed-forward
layers. Removing the MHSA module had an even more pro-
nounced effect, reducing performance to 90.54%, highlight-
ing the importance of attention-based mechanisms for model-
ling long-range dependencies in gesture data. The most sig-
nificant degradation was observed when both the MSDC and
MSC-FFN modules were excluded simultaneously, resulting
in a recognition accuracy of 89.72%. This confirms the syner-
gistic effect of these modules in preserving the rich and diverse
spatio-temporal features necessary for accurate gesture recog-
nition.

In addition, the analysis of the masking ratio shows that optimal
performance is achieved when the masking ratio during the pre-
training is in the range of 50% to 70%. The highest accuracy
of 94.48% was recorded with a dynamic masking ratio sampled
within this interval. Both lower (50–55%) and higher (75–90%)
masking ratios resulted in decreased recognition accuracy, sug-
gesting that excessive reduction or preservation of input inform-
ation negatively affects the model’s ability to learn robust latent
representations. Notably, recognition accuracy declined above
70% masking, highlighting the need to balance information re-
tention and learning pressure during pre-training.

5. Conclusion and Future Work

In this research, we introduced a novel method for gesture re-
cognition based on G-MAE (Gesture-aware Masked Autoen-
coder). Through extensive experimentation, we have shown
that our method improves recognition accuracy. On the TheR-
usLan corpus, it achieves 94.48%, outperforming all previous
SOTA methods. The method uses self-supervised pre-training
on the Slovo gesture corpus, followed by fine-tuning on the
TheRusLan corpus. During this process, we investigated the
effect of different masking ratios and found that a masking ra-
tio in the range of 50% to 70% provided the best performance.
Our ablation study also highlighted the critical importance of
the key modules MSDC, MSC-FFN and MHSA. Removal
of these modules resulted in a decrease in performance, demon-
strating their essential role in improving the model’s ability to
capture and process gesture-related features.

In addition, we observed that recognition accuracy decreased
when the masking ratio exceeded 70%, confirming the need
for a balanced method in the pre-training phase. This finding
highlights the importance of carefully tuning the masking ra-
tio to avoid excessive loss of information, which could other-
wise hinder the model’s ability to learn effectively. Overall, our
method not only demonstrates the performance of SOTA, but
also provides valuable insights into the design of self-supervised
models for gesture recognition.

Future work will focus on expanding the corpus with a wider
range of gestures to improve generalization and robustness. We
plan to explore advanced self-supervised techniques such as
contrastive learning for better feature extraction. Another dir-
ection is the integration of multimodal data to improve recog-
nition in complex scenarios. In addition, we aim to optimize
the method for smart devices and develop domain-specific fine-
tuning strategies for different application contexts.
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