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Abstract 

 

Automation in medical diagnostics based on machine learning algorithms relies heavily on the quality and volume of training data. For 

pulmonary tuberculosis diagnosis in chest X-rays image quality varies due to differences in equipment and acquisition conditions, and 

the availability of high-quality data is limited due to legal constraints and the smaller size of public datasets compared to those for 

some other lung diseases. Additionally, concerns regarding cross-dataset compatibility and discrepancies between training and target 

data distributions further complicate the analysis. To mitigate these issues, we propose a data augmentation technique utilizing the Fast 

and Adaptive Bidimensional Empirical Mode Decomposition (FABEMD) algorithm. Experiments have demonstrated its effectiveness 

for pulmonary tuberculosis diagnosis in chest X-rays. 

 

 

1. Manuscript 

Tuberculosis is an infection with high mortality causing more 

than a million deaths each year. Despite the fact that research and 

medical efforts have succeeded in reducing mortality from 

tuberculosis, the incidence rate has only increased in recent years 

(World Health Organization, 2024). Pulmonary tuberculosis 

(TB) is the most prevalent form of TB. Chest X-ray (CXR) 

review is an effective tool for screening lung diseases, including 

TB, due to its non-invasiveness and availability, but it requires 

trained radiologists to interpret the images. 

 

For pulmonary tuberculosis (TB) diagnosis in chest X-rays the 

quality of images is highly dependent on the equipment, its 

settings and other acquisition conditions, collecting a large 

volume of images is not easy due to limited number of patients 

and legal reasons, and publicly available chest X-ray datasets for 

pulmonary tuberculosis diagnosis (Oloko-Oba and Viriri, 2022, 

Zeyu et al., 2022, Singh et al., 2022, Santosh et al., 2022) are 

smaller than those for some other pulmonary diseases. Besides, 

cross-dataset compatibility degree and difference of training and 

real-world data distributions for chest X-ray analysis are of big 

concern (Pooch et al., 2020, Xue et al., 2023, Pchelintsev et 

al., 2023). 

 

As for data standardization preprocessing techniques in CXR 

analysis, the most common method is local contrast enhancement 

by local histogram equalization (CLAHE) (Pizer et al., 1987), but 

some other examples are: automatic gamma correction, balance 

contrast enhancement technique (Rahman et al., 2021). More 

complex medical image enhancement methods also exist (PLIP 

unsharp masking (Zhao and Zhou, 2016), multiscale Retinex 

(Setty et al., 2013), TV-homomorphic (Rui and Guoyu, 2017), 

G-CLAHE (Nia and Shih, 2024), but they are not commonly used 

as a deep learning preprocessing step. 

 

To cope with the lack of data and increase coverage of data 

distribution in machine learning, augmentation techniques are 

used. Typical methods for image data include random crops, 

affine transformations, brightness, contrast and color adjustment, 

label fusion, adding noise. In this paper we present a method of 

chest X-ray data augmentation for pulmonary tuberculosis 

diagnosis using the Fast and Adaptive Bidimensional Empirical 

Mode Decomposition (FABEMD) algorithm (Bhuiyan et 

al., 2008a, Bhuiyan et al., 2008b). 

 

2. Empirical Mode Decomposition Algorithms Overview 

2.1 EMD Overview 

Empirical Mode Decomposition (EMD) (Huang et al., 1998) is 

an iterative method of representing input signal as a sum of 

intrinsic mode functions (IMFs) and a residue R: 

 

I = ∑ IMF𝑘

𝑘

+ R, 

 

where 𝑘 is the intrinsic mode number. An IMF must satisfy two 

conditions: (1) the number of extrema and the number of zero 

crossings must either equal or differ at most by one; (2) at any 

point, the mean value of the envelope defined by the local 

maxima and the envelope defined by the local minima is zero. 

 

The idea of EMD at the 𝑘-th iteration is to find local maxima and 

minima of the function 

 

J = I − ∑ IMF𝑖

𝑘−1

𝑖=1

 

 

and construct its upper and lower envelopes using spline 

interpolation. The average of the envelopes E𝑚 is calculated, and 
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the quotient J − E𝑚 is considered to be the new IMF𝑘 (or can be 

refined further by the same procedure) and J − IMF𝑘 is treated as 

the signal for the next iteration. The stopping criteria may include 

the monotony or the standard deviation of the residue and the 

maximum number of IMFs. 

 

The first IMFs contain high frequency information, and with the 

growth of the IMF number more coarse structures are stored in 

the corresponding IMF. The last IMF with information of the 

lowest frequencies is called residue. An example of the EMD 

result of a 1D signal is shown in Fig. 1. 

 

 
Figure 1. An example of a function (top), its IMFs (brown) and 

the residue (bottom) obtained by EMD (Victor, 2012) 

 

EMD has some limitations, including the computational 

complexity, the unpredictability of the IMFs obtained due to 

noise contamination, the unpredictability of the IMFs number for 

a given signal, the boundary effects caused by the spline 

interpolation (Sweeney-Reed et al., 2018). 

 

2.2 FABEMD overview 

An alternative to EMD for two-dimensional functions, in 

particular images, called bidimensional EMD (BEMD) was 

presented in (Nunes et al., 2003). Although IMFs of BEMD may 

not satisfy all EMD conditions presented in the original paper, 

BEMD is just as much empirical and replicates the spatial feature 

extraction procedure of EMD. However, for multiple dimensions 

computational complexity is greatly increasing, thus another 

approach called Fast and Adaptive Bidimensional Empirical 

Mode Decomposition (FABEMD) was proposed in (Bhuiyan et 

al., 2008a, Bhuiyan et al., 2008b). Despite its name, it is not a 

variant of the empirical mode decomposition method, but an 

alternative approach to the adaptive decomposition of functions. 

 

FABEMD replaces scattered data interpolation for envelope 

estimation with application of maximum and minimum filters to 

the image, with the window size determined by the local extrema 

distances, and subsequent application of box filter to the resulting 

"rough" envelopes, and does this only 1 time instead of iterating 

until bidimensional IMF (BIMF) convergence in terms of 

standard deviation. To calculate the window size of the maximum, 

minimum and smoothing filters, minimum (or maximum) 

distances between local extrema are used, which produces so-

called LD-OSFW (or HD-OSFW) variants of FABEMD. 

 

It should also be noted that this method provides the ability to 

analyze images based on the study of the dependence of changes 

in the adaptively selected parameter of the method (window size): 

see, for example, (Guryanov and Krylov, 2017). 

 

The algorithm of FABEMD is as follows: 

1. Set the initial window size 𝑤 = 3. 

2. Find strict local maxima (minima) 𝑝 in the window of 

size 𝑤 : I(𝑝)  >  I(𝑞)  ( I(𝑝)  <  I(𝑞) ), ∀𝑞 ∈ 𝑊𝑤(𝑝) , 

where 𝑊𝑤(𝑝) is a window of size 𝑤 centered at 𝑝. 

3. Determine the smallest distance between distinct local 

maxima (minima) 𝑑𝑚𝑎𝑥  ( 𝑑𝑚𝑖𝑛 ) and let 

𝑑  =  min(𝑑𝑚𝑎𝑥 , 𝑑𝑚𝑖𝑛)  for LD-OSFW (or 

𝑑  =  max(𝑑𝑚𝑎𝑥 , 𝑑𝑚𝑖𝑛) for HD-OSFW). 

4. Update the current window size 

 

𝑤 ≔ 2 ⋅
𝑑 + 1

2
+ 1. 

 

5. Calculate upper and lower envelopes  

 

U(𝑝) =  max
𝑞∈𝑊𝑤(𝑝)

I(𝑞) , 

L(𝑝) =  min
𝑞∈𝑊𝑤(𝑝)

I(𝑞) . 

 

6. Calculate the smoothed average 

 

R(𝑝) =
1

𝑤2
∑

𝑈(𝑝) + 𝐿(𝑝)

2
𝑞∈𝑊𝑤(𝑝)

. 

 

7. Decompose I into the sum of M = I − R and R. 

8. Iterate on R. 

 

An example of the FABEMD result is presented in Fig. 2. 

 

 
Figure 2. A chest X-ray and some of its BIMFs obtained by 

FABEMD in ascending order of the BIMF number 

 

2.3 Applications 

EMD and its variants are normally used to analyze and 

preprocess input data and are valued for being able to extract 

adaptive instance-wise nonlinear components with local certainty 

from the data. There are a number of applications in biomedical 

data processing (Yousefi Rizi, 2019). In chest X-ray analysis it is 

used as a contrast-enhancing method and can improve 

performance of deep-learning-based algorithms for diagnosis. 

For instance, in (Hasan, 2021) BEMD is used to remove the low 

frequency background from an input chest X-ray and emphasize 

the details before feeding the image into the network for COVID-

19 diagnosis. In (Siracusano et al., 2023) FABEMD is utilized as 

the first step of a complex contrast enhancement pipeline, which 
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is meant to assist radiologists, but also can increase performance 

of deep-learning models. 

 

They also find applications as a tool for data augmentation in 

some deep-learning-based algorithms. In (Nam et al., 2020) time 

series are augmented by exclusion of certain IMFs for an audio 

noise classification task. The augmentation was done IMF-wise, 

which increased the noise classification accuracy, but for general 

time series classification tasks showed suboptimal performance 

(Gao et al., 2023). In (Otero et al., 2022) two-dimensional curves 

of handwriting data are represented by two one-dimensional 

functions and each of these functions is recomposed by random 

sampling from its set of multivariate EMD (mEMD) IMFs. In 

(Yang et al., 2023) randomly sampled BIMFs of same-class 

images are fused by summation to increase the volume of training 

data. A similar approach is applied for graph MRI data 

augmentation in (Chen et al., 2022). 

 

3. Method 

Each 𝑘-th BIMF of a chest X-ray is assigned its own typical scale 

𝑠𝑘 equal to the distance between local extrema and the size of the 

envelope smoothing window 𝑤 at the corresponding step of the 

FABEMD algorithm. It is assumed that BIMFs with large 

smoothing windows are unlikely to contain fine details crucial 

for diagnosis and can be removed. The result I𝑡, which is defined 

as 

 

I𝑡 = ∑ BIMF𝑘

𝑘: 
𝑠𝑘

min(ℎ,𝑤)
<𝑡

, 

 

where ℎ and 𝑤 are the height and the width of the X-ray, and 𝑡 is 

the threshold value, is thought to be an image that is different 

from the original one, but still suitable for meaningful analysis 

(when 𝑡  is reasonable). We add such background-removed 

X-rays to the training set. We used FABEMD with LD-OSFW to 

better capture local features, and made BIMF window size 

sequence to be non-decreasing by setting the local extrema search 

window size to the last envelope smoothing window size 

(therefore sk ≥ 𝑠𝑘−1, ∀𝑘) to ensure the BIMF fine and coarse 

details hierarchy and for faster convergence of the decomposition 

process. Examples of the resulting images are shown in Fig. 3. 

 

 
Figure 3. Examples of FABEMD-based background removal 

(the corresponding threshold value is written above each 

column) 

 

4. Experimental Study Setup 

4.1 Datasets 

The following public datasets were considered: 

• Montgomery (Candemir et al., 2013) and Shenzhen 

(Jaeger et al., 2013) were combined, since these 

datasets are used together in most works; the resolution 

is approx. 3000-4500 px by each side; 

• DA and DB (Chauhan et al., 2014) were also combined 

due to their close relationship and small sizes; approx. 

1000-3000 px by each side; some TB images in the DB 

dataset are missing; 

• TBX11K (Liu et al., 2020); 512 px; only TB and 

healthy images were used; 

• Sakha-TB (Pchelintsev et al., 2023) (8-bit version, 

approx. 1000x1000 px). This dataset was collected by 

the authors earlier in collaboration with a number of 

medical institutions of the Sakha Republic (Yakutia) 

region of Russia, and is believed to better represent the 

target data in this region. 

 

The image counts are presented in Table 1. Each dataset was 

independently split into train (64%), validation (16%) and testing 

(20%) sets with class stratification. 

 

Dataset TB Healthy Total size 

Montgomery 58 80 138 

Shenzhen 336 326 662 

DA 78 78 156 

DB 47 75 122 

TBX11K 800 3800 4600 

Sakha-TB 400 400 800 

Table 1. The number of images in the considered public 

datasets 

 

4.2 Metrics and Evaluation 

During the research we evaluated and analyzed the models' 

performance in terms of ROC AUC and Precision-Recall AUC 

(PR AUC). ROC AUC is a composite indicator for assessing 

classification algorithm quality based on sensitivity and 

specificity values widely used in medicine. Unlike such metrics 

as Precision, Recall, F1 or Accuracy, which evaluate the 

classification algorithm quality for a single fixed confidence 

threshold, ROC AUC measures the entire algorithm power. As 

for PR AUC, it is more indicative for imbalanced datasets, which 

is the case for TBX11K. However, during our experiments its 

behavior followed that of ROC AUC, so for some results we 

provide only ROC AUC for visual clarity. 

 

All evaluations provided below were done on the test sets for all 

considered datasets by averaging of 3 independent training runs 

with different random seeds. 

 

4.3 Models 

4.3.1 Model Architecture and Training Procedure: For 

diagnosis we finetuned the ImageNet-pretrained 

EfficientNetV2-M with a 2-class classification head. The image 

preprocessing algorithm consisted of the following steps: 

1. downsizing to the input size of 512x512 px; 

2. center crop of 1% pixels from each side to remove 

frames present in some X-rays; 

3. automatic image normalization:  

 

ℎ(𝑥) = 255 ⋅
𝑥 − 𝑝0.5

𝑝99.5 − 𝑝0.5
, 

 

where 𝑥 is the pixel intensity of the input image, 𝑝0.5 

and 𝑝99.5 are the 0.5%- and 99.5%-percentiles of the 

pixel intensities of the image; 

4. automatic gamma correction:  

 

𝑔(𝑥) = 255 ⋅ (
𝑥

255
)

𝛾

, 𝛾 = log 𝜇
255

0.5 , 
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where 𝜇 is the average intensity of the entire image; 

5. an optional local contrast enhancement by CLAHE. 

 

During training we augmented the data by random rotation, 

scaling and translation transformations, brightness and contrast 

adjustments, and used the cross-entropy loss, AdamW with LR 

of 5 ⋅ 10−6 , 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜆 = 0.01, batch size of 32 

and validation-loss-based ReduceLROnPlateau scheduler. The 

stopping criteria was based on the balanced accuracy score 

growth for the validation set, the final weights were chosen by 

the highest balanced accuracy score of the validation dataset.  

 

The model without CLAHE preprocessing and the model with 

CLAHE processing step, both trained on the original data, are 

referred to as the “baseline model” and the “baseline CLAHE 

model” below. The CLAHE model was used to estimate the 

influence of the proposed data augmentation technique, when the 

base algorithm itself has a local contrast enhancement or 

normalization step. 

 

4.3.2 CLAHE Preprocessing Parameters: The CLAHE 

algorithm has two parameters: window size, which determines 

the section of the image where histogram is equalized, and clip 

limit, which determines the contrast power. We defined the 

window size as an integer fraction of the size of the smaller side 

of the image. To choose the CLAHE parameters, a grid search 

was performed with the window size factor 𝑘 grid of {4, 8} and 

the clip limit 𝑙𝑐 grid of {0.01, 0.005, 0.0025}. For each pair of 

parameters, a model was trained and its ROC AUC for each 

dataset was calculated. The results are presented in Fig. 4, all 

models were scored on the original test sets. 

 

 
Figure 4. The dependence of the CLAHE model diagnosis 

performance on the CLAHE parameters: 

(a) k=4, clip limit=0.01; (b) k=4, clip limit=0.005; (c) k=4, clip 

limit=0.0025; (d) k=8, clip limit=0.01; (e) k=8, clip 

limit=0.005; (f) k = 8, clip limit=0.0025. 

 

We chose the parameters that allowed the model to perform as 

well as or better than the baseline model for every dataset: the 

window size factor of 4 and the clip limit equal to 0.01. Examples 

of the CLAHE impact on the data with such parameters can be 

seen in Fig. 5. 

 

 
Figure 5. Examples of chest X-rays (above) and their CLAHE-

processed versions (below) 

 

4.4 Data Augmentation Procedure 

Due to the computational complexity of FABEMD, before 

decomposition we downscaled all images larger than 

1600x1600 px by integer factors to reach the resolution of 

approximately 1000x1000 px. After background removal we 

normalized the resulting images using 1%- and 99%-percentiles 

before saving. To isolate the influence of the downscaling 

operation, we compared the baseline model performance for the 

original and downscaled images (the results are shown in 

Table 2) and also tracked the performance changes during data 

augmentation for both the original and downscaled images. 

 

Dataset 
Original 

resolution 
Downscaled 

DA&DB 0.919 0.932 

Montgomery-Shenzhen 0.955 0.958 

Sakha-TB 0.916 0.916 

TBX11K 0.995 0.995 

Table 2. The baseline model performance (ROC AUC) for 

original and downscaled images 

 

We chose a set of 8 background-removing thresholds ranging 

from 0.05 to 0.40: 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 

and added the corresponding augmented images from the training 

sets of all considered datasets to the global training set 

independently, obtaining 8 versions of joint original&augmented 

training datasets which in turn provided us 8 models. The 

finetuning procedure replicated that of the baseline models. 

 

5. Results 

5.1 Impact of Background Removal on Model Performance 

We applied the baseline models to the FABEMD-augmented data 

and analyzed the models’ performances in terms of ROC AUC 

and Precision-Recall AUC (PR AUC) as functions of the 

threshold for the considered threshold values. For each dataset 

and for each threshold value a set of test set images without the 

low-frequency background was created and then scored by the 

baseline model and the baseline CLAHE model. The results are 

presented in Fig. 6-7 and Fig. 8-9, respectively. 

 

As the threshold value becomes lower, the datasets behave 

differently, but all of them fall below the initial level of 

performance at the threshold value of 0.20. 
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Figure 6. The dependence of the baseline model diagnosis 

performance (ROC AUC) on the X-ray background removal 

threshold value 

 

 
Figure 7. The dependence of the baseline model diagnosis 

performance (PR AUC) on the X-ray background removal 

threshold value 

 

 
Figure 8. The dependence of the baseline CLAHE model 

diagnosis performance (ROC AUC) on the X-ray background 

removal threshold value 

 

 
Figure 9. The dependence of the baseline CLAHE model 

diagnosis performance (PR AUC) on the X-ray background 

removal threshold value 

 

The experiments showed an overall decline in performance with 

the growth of background-removal degree for all datasets for 

both baseline models, although the Montgomery-Shenzhen pair 

turned out to be the most resistant. The local contrast 

normalization preprocessing step indeed slightly reduced the 

performance drop for DA&DB and Sakha-TB datasets which 

suffered the most, but the previously rather stable dataset 

TBX11K took the hit instead. 

 

5.2 Impact of FABEMD-based Data Augmentation on 

Model Performance 

We measured the performance of all 8 models trained on the 

augmented data on the original and downscaled testing sets 

(without data augmentation). The results for models trained 

without CLAHE preprocessing step are shown in Fig. 10, and for 

models trained with CLAHE preprocessing are presented in 

Fig. 11. 

 

 
Figure 10. ROC AUC for non-CLAHE models trained on the 

original and augmented data with different thresholds. The solid 

lines indicate the original resolution data, the dashed lines show 

the downscaled data. 
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Figure 11. ROC AUC for CLAHE models trained on the 

original and augmented data with different thresholds. The solid 

lines indicate the original resolution data, the dashed lines show 

the downscaled data. 

 

Both plots show positive impact on diagnosis performance, 

except for the case of the baseline non-CLAHE model and the 

most extreme background-removal threshold values. Notably the 

threshold value of 0.15 is the best option for every dataset and 

both model types overall. 

 

It is noteworthy that CLAHE models not only stabilized the 

model quality response to data augmentation and prevented the 

performance drop after the threshold of 0.15, but also increased 

the positive effect of the proposed data augmentation method for 

DA&DB and Sakha-TB datasets. These datasets exhibited 

similar behavior in the diagnosis accuracy analysis during 

background-removal. 

 

6. Conclusion 

The proposed FABEMD-based image data augmentation method 

has shown its effectiveness for data augmentation for pulmonary 

tuberculosis diagnosis in chest X-rays. It also shows promise for 

use in various medical image analysis tasks. In future work 

optimization of this technique is going to be considered. 
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