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Abstract

Achieving natural, accurate, and identity-preserving lip synchronization in talking avatars is a fundamental problem in audio-visual
synthesis. Existing methods often struggle to generalize across speakers, maintain temporal smoothness, or preserve view consis-
tency due to architectural limitations. In this paper, we present NeRF-LipSync, a novel generative framework that synthesizes lip
movements conditioned on speech audio while maintaining temporal coherence and view-consistent appearance through a combi-
nation of diffusion-based modeling and NeRF-based spatial alignment. Our model incorporates temporal attention and leverages
rich audio-visual embeddings to produce expressive, speaker-specific articulation. We evaluate NeRF-LipSync on the VoxCeleb2
and LRW datasets and compare it against strong baselines including Wav2Lip, PC-AVS, and Diff2Lip. On VoxCeleb2, our method
achieves an FID of 2.75, SSIM of 0.56, PSNR of 18.32, and LMD of 3.01, with synchronization accuracy (Syncc) reaching 9.06.
On LRW, it yields an FID of 2.40, SSIM of 0.71, PSNR of 21.03, and LMD of 2.16. These results confirm the strong generalization
ability and perceptual realism of our approach. Ablation studies highlight the contribution of NeRF alignment to identity consis-
tency, diffusion to visual expressiveness, and temporal attention to motion stability. NeRF-LipSync thus offers a robust, scalable
solution for high-quality, speech-driven avatar animation.

1. Introduction

Synthesizing realistic lip movements for digital avatars in sync
with spoken language is a critical challenge in human-machine
interaction (HCI), virtual assistants, and media production. Re-
cent advances in generative models, particularly those that use
deep learning (DL), have significantly improved the quality of
facial animation (Kirschstein et al., 2024, Galanakis et al., 2025).
However, it remains a challenge in ongoing research to achieve
accurate, temporally coherent and speaker-specific lip synchro-
nization (Song et al., 2024, Zhao et al., 2024, Sun et al., 2024).

Traditional lip animation techniques often rely on parametric
models, such as blend-shape-based methods (Alvarez Masso et
al., 2021, Zhu and Joslin, 2024) or phoneme-to-viseme map-
pings (Gupta, 2024). These methods, while providing inter-
pretable control over facial animation, struggle with general-
ization across speakers, accents, and spontaneous speech varia-
tions. For example, methods that rely on predefined phoneme-
to-viseme mappings may fail to accurately capture the nuanced
speech characteristics of speakers from diverse linguistic back-
grounds. In contrast, methods based on DL, including con-
volutional and recurrent architectures (Alshahrani and Maashi,
2024, Wang et al., 2023), attempt to map audio features directly
to lip dynamics. Although prior speech-driven talking face gen-
eration methods have achieved significant advancements in vi-
sual and lip-sync quality, they often overlook the issue of mo-
tion jitters, which can significantly degrade the perceived qual-
ity of generated videos (Ling et al., 2023).

Motivated by the success of diffusion-based generative mod-
els in face synthesis and pose estimation, we propose a novel
audio-conditioned diffusion model that synthesizes natural lip
movements while preserving speaker identity and expressive-
ness. In contrast to related work, our method:

• Incorporates a temporal consistency mechanism to ensure
smooth articulation over time, preventing abrupt transi-
tions in lip movements.

• Employs NeRF-based spatial alignment to achieve view-
consistent lip motion synthesis across different head poses
and camera perspectives.

• Conditions the generation process on rich audio embed-
dings, capturing both phonetic content and prosodic nu-
ances for enhanced realism.

To evaluate our method, we use VoxCeleb2 (Chung et al., 2018)
and LRW (Chung and Zisserman, 2017), two large-scale audio-
visual corpora featuring diverse speakers and variations in real
world speech. Our experiments show that in terms of percep-
tual realism, synchronization accuracy, and speaker-specific ex-
pressiveness, the proposed method outperforms state-of-the-art
(SOTA) lip-sync methods.

2. Related Work

Lip synchronization has long been a central problem in speech-
driven facial animation. Early methods employed parametric
models such as blendshapes or viseme-based mappings (Gupta,
2024, Alvarez Masso et al., 2021), which offer interpretable
control but lack expressiveness and generalization across di-
verse speakers and spontaneous speech. More recent methods
have leveraged DL techniques, including convolutional neural
networks (CNNs) and recurrent neural networks (RNNs) (Al-
shahrani and Maashi, 2024, Wang et al., 2023), to directly pre-
dict lip motion from speech features. However, many of these
models suffer from frame-level inconsistencies, leading to un-
natural motion jitter and poor temporal coherence.

Publisher's note: Copernicus Publications has not received any payments from Russian or Belarusian institutions for this paper.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W9-2025 
ISPRS Intl. Workshop “Photogrammetric and computer vision techniques for environmental and infraStructure monitoring, Biometrics and Biomedicine” 

PSBB25 , 9–11 June 2025, Moscow, Russia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W9-2025-25-2025 | © Author(s) 2025. CC BY 4.0 License.

 
25



To address these issues, StyleLipSync (Ki and Min, 2023) in-
troduced a style-based architecture for personalized lip-sync,
and Diff2Lip (Mukhopadhyay et al., 2023) employed diffusion
models for audio-to-lip generation. DiffPoseTalk (Sun et al.,
2024) extended this idea by incorporating head pose dynamics,
while Expressive3D (Song et al., 2024) explored latent diffu-
sion for expressive animation. Nevertheless, these works often
assume static camera views, limiting their applicability to real-
world conditions where pose variation is common.

With the recent integration of NeRF-based rendering, view-
consistent animation across arbitrary head poses is now possi-
ble (Kirschstein et al., 2024). In particular, the promise of com-
bining geometry-aware modelling with diffusion-based synthe-
sis is shown by DiffusionAvatars (Kirschstein et al., 2024) and
FitDiff (Galanakis et al., 2025). However, these methods do not
directly tackle the challenge of lip-syncing or audio-driven con-
trol. Our work builds upon these advances by explicitly model-
ing lip motion through an audio-conditioned diffusion process
while ensuring view-consistent rendering using NeRFs.

Several studies have also explored multi-modal conditioning
using large-scale audio-text models such as Whisper (Radford
et al., 2022) or expressive embeddings (Zhao et al., 2024). These
embeddings are crucial for capturing both phonetic alignment
and prosodic variation, which are necessary for high-fidelity
speech-driven synthesis.

Our method distinguishes itself by unifying the benefits of dif-
fusion models, temporal attention, and NeRF-based spatial align-
ment in a single generative pipeline for speech-driven lip mo-
tion. Through rigorous evaluations and ablation studies, we
show that each of these components contributes to improve-
ments in realism, synchronization, and robustness.

3. Proposed Method

Achieving quality lip synchronization in digital avatars requires
a model that accurately captures the relationship between speech
and lip movements while ensuring both temporal coherence and
spatial consistency. Based on an input speech signal, our audio-
conditioned diffusion model synthesises speaker-specific and
view-consistent lip movements. It ensures that the generated ar-
ticulations accurately match the phonetic and prosodic charac-
teristics of the speech, while adapting to variations in head pos-
ture and viewpoint (see Figure 1). Different from conventional
GAN-based lip synchronization methods (Ki and Min, 2023,
Koh et al., 2024), which often suffer from unstable output, poor
generalization, and lack of temporal smoothness, the proposed
method exploits the generative capabilities of denoising diffu-
sion models (Ho et al., 2020). The integration of temporal atten-
tion mechanisms (Yan et al., 2019) and NeRF-based (Milden-
hall et al., 2021) spatial alignment further enhances realism
by preserving both articulation consistency and view-dependent
appearance.

The proposed method follows a structured, multi-step process
to ensure quality lip movement synthesis. It begins with the
extraction of features from both speech and video data, cap-
turing the necessary information for generating accurate and
natural articulations. Given the importance of both phonetic
and prosodic cues in driving lip movements, we use Whisper-
large-v3 (Radford et al., 2022) to extract deep representations
of the audio signal, encoding both linguistic content and ex-
pressive speech features. These embeddings, trained on large

speech corpora, provide an extensive feature space that allows
the model to learn subtle variations in articulation correspond-
ing to different phoneme transitions and co-articulatory effects.
Additionally, spectrogram-based representations are computed
to serve as auxiliary conditioning signals, further enhancing the
robustness of the speech-driven generation process.

In parallel with speech processing, facial attributes are extracted
from the video input to ensure that the synthesized lip move-
ments remain consistent with the speaker’s identity and head
dynamics. Facial landmark detection is performed using Medi-
aPipe Face Mesh (Lugaresi et al., 2019), enabling precise local-
ization of the lip region. Since head movements significantly
influence the perceived articulation, it is essential to account
for these variations during the synthesis process. The Skinned
Multi-Person Linear Model (SMPL) (Loper et al., 2023), which
offers a compact parametric representation of 3D facial mo-
tion, is used to estimate head pose parameters. This enables
the system to differentiate between actual lip movements and
apparent lip movements caused by changes in head orientation.
Additionally, optical flow analysis is employed to capture fine-
grained temporal variations in lip movement, providing an extra
source of monitoring during training.

Once the speech and visual features have been extracted, the
next step is to encode them into a structured latent space, rather
than directly predicting lip movements in pixel space. This
is achieved using a variational autoencoder (Doersch, 2016),
which learns a compact representation of lip movement dynam-
ics. Mapping raw motion sequences to a lower-dimensional
latent space enables the model to generalize more effectively
across speakers while preserving detailed articulation patterns.

This latent representation is then used as input to the diffusion-
based generative model, which forms the core of our method.
The diffusion model is trained to progressively refine a noisy
initial representation into a quality motion sequence, rather than
directly predicting lip movements.

Ensuring temporal coherence in the generated lip movements
involves incorporating a temporal attention mechanism that ex-
plicitly models dependencies between consecutive frames. A
major problem in lip synthesis is the prevention of jittery or
unnatural animations, which often result from discontinuities
between frames. Standard autoregressive models tend to accu-
mulate errors over time, resulting in inconsistencies in longer
sequences. Our model addresses this by applying self-attention
across the temporal dimension, enabling the learning of smooth
transitions between adjacent frames. By aggregating motion in-
formation over multiple time steps, the system enforces conti-
nuity in articulation, preventing unnatural frame-to-frame vari-
ations. Additionally, we introduce a regularization loss that
penalizes large deviations between consecutive frames, ensur-
ing the synthesized lip movements adhere to realistic kinematic
constraints. This method captures the natural inertia of human
speech articulation, with lip movements exhibiting gradual ac-
celerations and decelerations instead of abrupt transitions.

A significant limitation of traditional lip-sync models is their in-
ability to generalize across varying head poses and viewpoints.
Most existing methods assume a fixed frontal camera angle,
which is unrealistic in real-world scenarios where speakers are
often in motion. To address this issue, we integrate a NeRF-
based spatial alignment module that ensures the generated lip
movements remain consistent, regardless of head orientation.
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Figure 1. Pipeline of the NeRF-LipSync method

By utilizing SMPL-based pose estimation, we map the syn-
thesized lip movements into a canonical 3D space, enabling
dynamic adjustments based on the speaker’s head pose. This
transformation guarantees accurate articulations even when the
speaker rotates their head or shifts their gaze. Moreover, NeRF-
based rendering enhances realism by synthesizing view-consis-
tent lip movements, reducing artifacts such as misaligned lip
textures or false motion parallax effects.

The final step of the method focuses on rendering and post-
processing to seamlessly integrate the synthesized lip move-
ments into the avatar’s animation. Direct application of the
generated lip movements can lead to minor inconsistencies, so
multi-view aggregation techniques are employed to blend mul-
tiple pose-adjusted motion estimates, resulting in a smoother
final animation. This method is especially useful when rapid
head movements could otherwise cause rendering inconsisten-
cies. Additionally, adaptive blending and motion smoothing are
applied during post-processing to further enhance the final out-
put and ensure visual quality in the synthesized animation.

Overall, the proposed method presents a structured, multimodal
generative pipeline that combines diffusion-based motion syn-
thesis, temporal attention, and NeRF-driven spatial adaptation
to achieve SOTA performance in lip synchronization. By ex-
ploiting deep speech embeddings, structured latent representa-
tions, and pose-aware synthesis, the model produces very natu-
ral, temporally stable, and view-consistent lip animations. The
integration of NeRF-based spatial alignment is particularly cru-
cial for real-world use, as it allows the model to generalize
across different speakers, head poses, and camera perspectives,
significantly increasing its robustness compared to traditional
lip-syncing methods. Evaluation on large-scale audio-visual

corpora such as VoxCeleb (Chung et al., 2018) and LRW (Chung
and Zisserman, 2017) shows that the proposed model achieves
SOTA lip-sync accuracy, speaker consistency, and perceptual
realism compared to existing SOTA methods. These advances
position our method as a promising solution for applications in
virtual assistants, digital content creation, and real-time inter-
active avatars, where naturalistic and robust lip synchronization
is essential for immersive HCI.

4. Experimental Setup

We perform experiments on two large audio-visual corpora, Vox-
Celeb2 (Chung et al., 2018) and LRW (Chung and Zisserman,
2017), to evaluate the effectiveness and generalization of our
proposed NeRF-LipSync method. The VoxCeleb2 consists of
over 1 million utterances from more than 6 000 speakers, cov-
ering a wide range of age, ethnicity, head pose, and recording
conditions. We use the standard training split of VoxCeleb2 for
training and a held-out test portion for evaluation. The LRW
contains over 160 hours of lip-reading data with aligned audio-
visual data and is used exclusively for cross-dataset evaluation
to assess generalization to unseen identities and speaking styles.

All video frames are cropped to include only the speaker’s face
and resized to 256 × 256 pixels. The audio is downsampled
to 16 kHz and converted into 80-dimensional log-mel spectro-
grams. The window length is 25 ms and the hop size is 10 ms.
Data augmentation includes random horizontal flips of video
frames and small random temporal shifts of the audio waveform
(up to ±50 ms) to improve robustness.

Our model is implemented in PyTorch framework version 2.4.
For audio processing, we extract deep phonetic and prosodic
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embeddings using Whisper-large-v3 (Radford et al., 2022), com-
plemented by spectrogram features projected into a shared la-
tent space. On the visual side, facial landmarks are extracted
using MediaPipe Face Mesh (Lugaresi et al., 2019), and head
pose is estimated with the SMPL model (Loper et al., 2023).
Optical flow is computed to capture lip dynamics across frames.

The core of our method is a denoising diffusion model (Ho et
al., 2020) with T = 50 timesteps. The backbone UNet includes
audio-visual cross-attention and temporal self-attention layers
to promote lip articulation coherence. Training is performed
on four NVIDIA A100 GPUs with a batch size of 32, using
the Adam optimizer with β1 = 0.9, β2 = 0.999, an initial
learning rate of 2×10−4, and cosine annealing (Axyonov et al.,
2024). Training converges within 200 000 steps, approximately
50 epochs.

We adopt several strategies to stabilize training and acceler-
ate convergence. Mixed precision training is enabled using
torch.cuda.amp, and gradient clipping with a maximum norm
of 1.0 is applied. An exponential moving average (EMA) of
model weights with decay 0.999 is maintained throughout train-
ing. To enforce view-consistent lip motion under natural head
movements, camera poses are randomly sampled from a uni-
form yaw range of ±20◦ during training.

The total loss combines multiple objectives: (1) the denoising
diffusion loss for reconstruction, (2) a sync loss using a pre-
trained SyncNet model to enforce temporal alignment between
speech and lip motion, (3) an identity loss based on cosine sim-
ilarity of face embeddings from a pre-trained ArcFace model,
and (4) a temporal loss of smoothness, which regularizes abrupt
changes in the speed of the lip pose from frame-to-frame.

During inference, depending on resolution and sampling strat-
egy, the NeRF-LipSync model generates lip-synchronised video
at approximately 2-5 frames per second on a single NVIDIA
A100 GPU. Although this is sufficient for offline applications
such as content creation and dubbing, achieving real-time per-
formance remains a challenge due to the iterative nature of dif-
fusion sampling and volumetric NeRF rendering.

5. Evaluation Metrics

We evaluate NeRF-LipSync across two core tasks: (1) recon-
struction, wherein the model generates lip movements for a
known identity using paired speech-video input, and (2) cross-
generation, where the model synthesizes lip motion conditioned
on speech from one speaker and a reference identity from an-
other. For both settings, we assess performance based on lip-
sync accuracy, visual realism, and generalization.

Lip-sync accuracy is measured using two complementary met-
rics derived from a pre-trained SyncNet model (Chung and Zis-
serman, 2016). The first, Sync Confidence (Syncc), captures the
model’s certainty that audio and video inputs are temporally
aligned. The second, Sync Distance (Syncd), computes the av-
erage L2 distance between embeddings extracted from the au-
dio and corresponding visual frames. Higher Syncc and lower
Syncd indicate better synchronization.

We also report the Landmark Distance (LMD), which measures
the mean Euclidean distance between predicted and ground-
truth mouth landmarks. Lower LMD values correspond to more

precise articulation and better temporal consistency. In cross-
generation settings, LMD also serves as a proxy for generaliza-
tion under mismatched identities.

Visual realism is assessed using both full-reference and ref-
erenceless metrics. Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index Measure (SSIM) are computed when
ground-truth frames are available, quantify fidelity and struc-
tural integrity at the pixel level. Higher values in both metrics
indicate better reconstruction quality. The Fréchet Inception
Distance (FID) (Heusel et al., 2017) is used to assess perceptual
realism in both reconstruction and cross settings. FID compares
the distribution of real and generated images in the Inception-
V3 feature space; lower values reflect closer alignment with the
distribution of real faces.

All metrics are computed individually for each test video and
then averaged across the dataset to ensure robust comparisons.
Our evaluations are conducted on 500 randomly sampled clips
from the VoxCeleb2 test set and the full LRW evaluation set. On
average, NeRF-LipSync achieves a reconstruction FID of 2.75
and 2.40 on VoxCeleb2 and LRW respectively, while maintain-
ing high PSNR (18.32 / 21.03) and SSIM (0.56 / 0.71). Lip-sync
accuracy remains strong, with Syncc reaching 9.06 on Vox-
Celeb2 and 8.15 on LRW. These results place our method on par
or ahead of state-of-the-art baselines across both reconstruction
and cross-generation settings, reflecting its naturalness, fidelity,
and robustness to unseen data.

6. Results and Discussion

We compare NeRF-LipSync with several representative base-
lines: Wav2Lip (Prajwal et al., 2020), PC-AVS (Zhou et al.,
2021), and Diff2Lip (Mukhopadhyay et al., 2023). Evaluation
is conducted on VoxCeleb2 and LRW datasets across both re-
construction and cross-generation settings. Table 1 summarizes
results using standard metrics for visual quality (FID, SSIM,
PSNR), lip synchronization (LMD, Syncc, Syncd), and gener-
alization.

On VoxCeleb2, NeRF-LipSync achieves highly competitive per-
formance. For reconstruction, it attains a low FID (2.75), com-
parable to Diff2Lip (2.46), but delivers slightly better PSNR
(18.32) and higher SSIM (0.56), suggesting improved sharp-
ness and structural fidelity. LMD reaches 3.01, matching or
slightly surpassing competing methods in articulation accuracy.
Synchronization remains robust, with Syncc of 9.06, closely
matching Wav2Lip, and Syncd of 5.86, indicating strong tem-
poral alignment. In cross-generation, our method maintains re-
alism (FID = 4.64) and achieves the lowest LMD (4.81), con-
firming robustness under identity mismatch.

On LRW, which features challenging out-of-domain speakers,
NeRF-LipSync continues to perform strongly. It achieves a re-
construction FID of 2.40 and cross-generation FID of 2.59, close
to Diff2Lip (2.62 and 2.54 respectively), but surpasses it in
SSIM (0.71 vs. 0.67) and PSNR (21.03 vs. 20.62). LMD re-
mains competitive (2.16 / 3.89), while synchronization metrics
(Syncc = 8.15, Syncd = 6.18) are on par with or better than other
methods, including Wav2Lip and Diff2Lip.

While Wav2Lip still excels in raw synchronization confidence
on VoxCeleb2, its visual quality and cross-view consistency
fall behind. PC-AVS struggles across all metrics, particularly
in generalization scenarios. In contrast, NeRF-LipSync offers
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Dataset Method FID ↓ SSIM ↑ PSNR ↑ LMD ↓ Syncc ↑ Syncd ↓ FID ↓ LMD ↓
Reconstruction Cross

VoxCeleb2

Wav2Lip 3.26 0.53 18.18 3.16 9.08 5.93 5.11 4.84
PC-AVS 4.25 0.53 18.26 3.16 6.71 7.80 10.62 5.00
Diff2Lip 2.46 0.53 18.09 3.04 8.78 5.93 4.53 4.82
NeRF-LipSync (Ours) 2.75 0.56 18.32 3.01 9.06 5.86 4.64 4.81

LRW

Wav2Lip 4.23 0.68 20.76 2.15 8.13 6.09 5.19 3.88
PC-AVS 6.80 0.61 20.10 2.29 6.68 7.29 8.48 4.09
Diff2Lip 2.62 0.67 20.62 2.17 7.41 6.21 2.54 3.93
NeRF-LipSync (Ours) 2.40 0.71 21.03 2.16 8.15 6.18 2.59 3.89

Table 1. Quantitative comparison of NeRF-LipSync with existing methods on VoxCeleb2 and LRW datasets. Results are reported for
both reconstruction and cross-generation tasks. Lower is better for FID, LMD, Syncd; higher is better for SSIM, PSNR, and Syncc.

a more balanced trade-off between articulation precision, syn-
chronization, and view-consistent realism.

Qualitative feedback from human evaluators supports these re-
sults: participants noted fewer artifacts, more expressive mouth
motion, and smoother transitions in NeRF-LipSync outputs. The
integration of these preferences is consistent with lower FID
and LMD values in both corpora.

In summary, NeRF-LipSync provides a competitive and robust
solution for speech-driven lip synchronization. It performs well
not only on seen speakers but also under generalization settings
involving new identities and poses, confirming its suitability for
real-world avatar applications.

7. Ablation Study

To quantify the contribution of individual components in our
NeRF-LipSync architecture, we perform an ablation study by
systematically removing or modifying key modules. We then
re-evaluate the model under identical training and testing con-
ditions. Specifically, we examine three ablated variants:

(1) Without NeRF spatial alignment. In this setting, we re-
place the NeRF renderer with a 2D convolutional decoder that
generates video frames directly from latent motion representa-
tions. While the system retains pose-conditioning via SMPL, it
lacks explicit 3D spatial alignment. As a result, cross-view con-
sistency deteriorates: FID increases from 4.64 to 5.3, and LMD
rises from 4.81 to 5.34 in the VoxCeleb2 cross scenario. The
model also produces more visible distortion under non-frontal
head poses. These results highlight the role of NeRF-based ge-
ometry in maintaining visual coherence across viewpoints.

(2) Without temporal attention. Temporal attention is re-
moved from the diffusion U-Net, making each frame depend
only on the current audio context. While synchronization re-
mains acceptable (Syncc drops only slightly from 9.06 to 8.65),
motion consistency suffers: Syncd increases from 5.86 to 6.3,
and users report more frame-to-frame jitter. The standard devia-
tion of lip landmark velocity increases by over 30%, indicating
unstable dynamics. This confirms that temporal modeling is
essential for generating smooth, lifelike articulation sequences
over time.

(3) Without diffusion. In this variant, the generative diffusion
process is replaced with a deterministic mapping from audio
to motion latent space. Although this simplification speeds up
inference and training, it results in over-smoothed articulations

and reduced realism. Perceptually, the outputs lose subtle mo-
tion detail. Quantitatively, FID increases from 2.75 to 3.4 in
reconstruction, LMD worsens to 3.16, and PSNR drops by over
1 dB. Subjective MOS ratings also fall by more than 0.5 points
on average. These results demonstrate that the diffusion mech-
anism plays a crucial role in modeling the stochastic variation
and fine-scale detail characteristic of natural lip motion.

Across all ablations, the full NeRF-LipSync model consistently
delivers the best results across synchronization, perceptual qual-
ity, and motion stability. Each module - diffusion, temporal
attention, and NeRF-based spatial alignment - contributes dis-
tinct strengths, and their combined effect is essential for produc-
ing high-fidelity, temporally coherent, and identity-preserving
speech-driven facial animation. The synergy of these compo-
nents is key to the model’s generalization under both seen and
unseen speaker conditions.

8. Conclusion and Future Work

In this work, we presented NeRF-LipSync, a method that com-
bines denoising diffusion models, temporal attention, and NeRF-
based spatial alignment to generate lip movements that are tem-
porally coherent, view-consistent, and aligned with speech. The
model leverages deep audio-visual embeddings and pose-aware
synthesis to address key challenges in speech-driven facial ani-
mation, including articulation accuracy and robustness to view-
point variation.

Experimental results on VoxCeleb2 and LRW show that the
proposed method performs competitively across several stan-
dard benchmarks. Compared to existing approaches such as
Wav2Lip, PC-AVS, and Diff2Lip, NeRF-LipSync demonstrates
favorable results in both reconstruction and cross-generation
tasks, particularly in metrics that assess perceptual quality, syn-
chronization, and identity consistency. The qualitative evalu-
ation also suggests an improvement in visual stability and ex-
pressiveness across a range of head poses and speech styles.

Ablation studies highlight the role of each design choice: tem-
poral attention improves motion continuity, NeRF-based align-
ment contributes to consistent rendering under pose changes,
and diffusion-based generation enhances articulation realism.
The integration of these factors supports the model’s ability to
generalize across different audio-visual conditions.

Nonetheless, limitations remain. The model’s inference time,
driven by diffusion sampling and NeRF rendering, is not yet
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suitable for real-time applications. One direction for future re-
search is to address this through model distillation, hybrid ren-
dering schemes, or efficiency-oriented redesign. In addition,
extending the model toward full-face generation, emotional ex-
pressivity, and multilingual capabilities could further broaden
its practical relevance.

Overall, NeRF-LipSync contributes to the ongoing development
of speech-driven avatar systems by combining geometric con-
sistency with generative expressiveness. We expect this ap-
proach to inform future research on high-fidelity and adaptable
facial animation in human–computer interaction.
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